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Abstract

Perfect reconstruction filter banks (PRFBs) are widely used for signal decomposition,
subband coding, subband adaptive filtering etc. Both TIR and FIR filter banks are used
in the applications mentioned above. Causal stable [IR PRFBs are popular as they have
good responses and pre processing of input is not necessary. For 2 channel case efficient
design methods have been developed in the literature. For M channel case existing design
procedures are complicated. General design method for causal stable IIRPRFB received
less interest. FIR PRFBs are popular as they are easy to implement. For a class of PRFBs,
namely paraunitary PRFBs, complete characterizations and efficient design methods have
been developed. However, the problem of complete characterization of general FIRPRFBs
received less interest. Recently, complete characterizations of general FIRPRFBs for
which the analysis polyphase is of order one has been solved. However, design of a large
class of general FIRPRFBs with analysis polyphase order greater than one has not been
given. In this work, the problem of design of wider classes of IIR causal stable PRFBs
and general FIRPRFBs, with the order of analysis polyphase matrix greater than one, is
addressed.

First, some design approaches for M channel IR causal stable PRFBs are developed.
The analysis polyphase matrix is realized in state space form, and minimal characteri-
zations are used to avoid pole zero cancelation. The inverse system is explicitly given
if the analysis polyphase matrix is invertible at z = oco. All the design methods are
based on forcing the poles of analysis polyphase matrix and its inverse system inside unit
circle. A design method based on the concept of function of a matrix is proposed. A de-

sign method based on similarity transformation is also developed. Further, factorization

i



based approach is developed where the analysis polyphase matrix is factorized into degree
1 terms using the theorems on factorization of rational matrix functions. Several design
examples are provided that compare favorably with existing ITR PRFB designs.

The second part of the work deals with the design of a very wide class of general M
channel FIRPRFBs with the order of analysis polyphase matrix greater than one (say
[). The analysis polyphase matrix is treated as a regular matrix polynomial so that its
inverse exists. The design problem is treated as the inverse problem of constructing a
regular matrix polynomial given the spectral data (degree of the determinant of analysis
polyphase matrix) of the regular matrix polynomial. Explicit formula of the inverse given
spectral data is provided. The proposed design allows restrictions on reconstruction delay
and order of the inverse polynomial (synthesis polyphase). Further, near linear phase FBs
for which length of all the filters is equal to (I + 1)M is developed. Here also the design
method allows restrictions on reconstruction delay and order of the inverse polynomial.
Lastly, low reconstruction delay is achieved with unimodular matrix polynomials, and a
design of low delay FBs is also developed. All the proposed designs are illustrated by few

simulation examples.
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Notations and Terminology

Represents

Transpose

i'" derivative of the function f(.)

WE  eizrh/M
(#)(n) Discrete time sequences
Il Norm
ker(.) Null space
()7 Pseudo inverse

det(.) Determinant

deg(.) Degree

dim(.) Dimension
diag(.) Diagonal or block diagonal matrix with elements inside as diagonal entries
A3 B diag(A,B)

l{AB'}L, [AT (AB)" (ABY) - (AB))T]

Lower case bold faced letters represent vectors. Lower case and upper case letters
represent constants. Calligraphic letters represent matrix polynomials and rational matrix
functions. Upper case bold faced letters represent matrices. I represents identity matrix.
J represents exchange matrix. In some cases subscripts are skipped if the dimensions
are obvious from the context. A(z) represents the z-transform of a(n), where a(n) can
be a discrete time sequence or filter response in time domain. B; ; represents the (7, ;)"
element of the matrix B. If A(z) = Ei’:o A;27" is a matrix polynomial, then it’s dual
polynomial ./Zl(z) is given by 27 Ei’:o A7

N(X), R(X) represents null space and range of a arbitrary matrix X. Vector spaces,



subspaces and fields are represented by the letters of the type, say R represents real
number field. SVD represents singular value decomposition [49].

The k x k Jordan block J% corresponding to eigen value A is represented by,

A 10 0
0 A 1 0
k
JA -
0 0 A
00 0 Y
A Jordan matrix J with Jordan structure [ay,aq,- -+, a,] corresponding to eigen value
A s given by J = diag(J{, 52, -+, 1), If all the eigen values of a matrix are zero, then

the matrix is nilpotent. Jordan nilpotent matriz is a Jordan matrix with zero eigen value.
So, for example the Jordan nilpotent matrix J with Jordan structure [3,4] is represented

as

01 0
0 0 1
0 0 0
J = 01 0 0
00 1 0
0 0 0 1
00 0 0



Chapter 1

Introduction

1.1 Introduction to multirate signal processing

Within DSP lies the world of multirate signal processing. Sampling of continuous sig-
nal leads to the notion of resolution in time. The higher the sampling frequency, the
better the resolution of digital approximations of the original signals. This increases stor-
age cost. Multirate signal processing strives to keep that cost at a reasonable level by
applying smart signal processing algorithms, involving alterations of sampling rates. Sig-
nal decomposition techniques find wide spread applications in modern signal processing.
Some applications include subband coding, subband adaptive filtering, signal analysis
and restoration etc. Multirate filter banks play a major role in most of these applications.
Essential operations of multirate systems are down sampling and up sampling shown in

figure (1.1). In words, down sampling keeps every Mth sample while up sampling inserts

B ) x(n/M) if {5 is an integer
) ) = o) e gty = { )
Downsampling Upsampling

Figure 1.1: Block diagrams for downsampling and upsampling
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01(n) vi(n) ) g1

Oar—1(n) var—1(n) upr—1(n) grr—1(n)

—= Hyr—1(2) - Frr—1(2)

Figure 1.2: M channel analysis and synthesis system

M —1 zeros between consecutive samples. In multirate signal processing the signal z(n) is
decomposed into M sub signals {0;(n)}X5" by a bank of filters { H;(2)}X5?, called analy-
sis filters as shown in the figure (1.2). As the number of samples at a time is increased due
to M sub signals, entire rate can be reduced by decimating each sub signal by a factor of
n; to obtain signals {v;(n)}¥X5'. On the reconstruction side all the {u;(n)}¥5' (changed
due to some operations), are up sampled by {n;}¥5! to get {g:(n)}25" and summed up
after passing through the stack of filters { F}(2) f\ial, called synthesis filters. These filters
should be such that if no processing is done on the sub signals, original signal should be
retrieved from the sub signals. In other words, if {u;(n)}2g" = {vi(n)} 5", the output
#(n) can be made delayed and scaled version of z(n). Such a system is called perfect
reconstruction (PR) system. If one of the sections (analysis or synthesis) is taken arbi-
trarily then the other section is constrained. In the present work maximally decimated

fitlerbanks are assumed, i.e. n; = M Ve =0,---, M — 1.
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1.2 The perfect reconstruction problem

1.2.1 Two channel case

For 2 channel if { Hy, H,} is the analysis filter pair and { Fp, I} is the synthesis filter pair,

then the reconstructed signal #(n) can be written as

1 1
X(2) = SlHo(2)Fo(2) + Hi(2)F1(2)]X (2) + S[Ho(=2) Fol2) + Hi(=2) Fi(2)] X (=2)
= T(z)X(z)+ S(2)X(—2) (1.1)
Aliasing distortion is eliminated by restricting S(z) to zero, which gives the condition

Ho(—2)Fo(z) + Hi(—z)Fi(2) = 0, and this can be achieved if Fy(z) = —H;(—z) and
Fi(z) = Ho(—z). The reconstructed signal is given as:

. 1
X(2) = SlHi(2) Ho(~2) — Ho(2)Hi(=2)]X(2)
Phase and amplitude distortions are eliminated by taking T'(z) as a delay.

Hy(2)Ho(=2) — Ho(2)H\(—2) = =" (1.2)

1.2.2 M channel case

For M channel case perfect reconstruction is achieved by the following two approaches.

1.2.2.1 Alias component approach
The decimated signal v;(n) can be expressed in terms of 6;(n) as follows
1 M-1
0;( ZMWM

k=0

The up sampled signal g;(n) can be written as
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Since X(Z) = Ef\ial Fi(2)G(2), and it is assumed that u;(n) = v;(n), the reconstructed

signal can be written as

A | M M—1
X = 2 YRGS 0
=0 k=0
| MM
= X( ZWM ZWM)F( )

~.
o

Now X(Z) can be written compactly as

Ho(2) Hyroa(2) Fol2)

X(2) = ¥ (e x| Y Hya(:War) | | Fil2)
I Ho(ZW]\]\f_l) HM—I( wM 1) Il FM—1(Z) |

H(z) £(2)

where H(z) is called alias component matrix. The above equation can be expanded as

- (% Z Fk<z>Hk<z>> X(z)+ % ’_ Z Hy (=W X (zWy)Fi(2)  (1.3)

aliasing terms

Three kinds of undesirable distortions can be found from the equation (1.3).

Aliasing distortion: The sub sampling process causes aliasing components while up
sampling produces images. These aliasing terms can be removed if the following condition
is imposed:

H(z)f(z) = [MT(2),0,---,0]" (1.4)
In this case the output is given by

X(z) = T(2)X(z)
T(z) = Y Hy(z)Fi(2)

k
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Amplitude and phase distortion: After having constrained {Hy, F}.} to force the
aliasing term to zero, the term T'(2) causes amplitude and phase distortion. Since T'(e/*) =
T (7)) amplitude distortion can be eliminated if |T(e/")| is a constant and phase
deviation can be removed if ¢(w) is linear. For perfect reconstruction T'(z) must be a
delay, but a more stringent condition can be obtained when polyphase approach is used.

Given analysis filters, synthesis filters can be obtained from equation (1.4) inverting
the alias component matrix. In case of FIR filter banks, alias component matrix must have
a monomial determinant for the synthesis filters to be FIR, and in case of IR filter banks,
the alias component matrix must have a minimum phase determinant for synthesis filters
to be stable and causal. The roots of the alias component matrix are related to analysis
filters in a complicated manner. Restricting the analysis filters for the determinant of alias
component matrix to be monomial or minimum phase is extreamly difficult, so polyphase

approach is used for analyzing PR conditions.

1.2.2.2 The polyphase approach

The analysis and synthesis filters can be written as

M-1
H:(z) = Z_kEM(ZM)
k=0
Bip(z) = Y hilk+Mj)z™,  0<ik<M—1
Jj=—00
M-1 M-1
Fi(z) = Z Z_kR;,k(ZM) = g~ (M1 ;',M—1—k(ZM)
k=0 k=0
Wz = Y Rk M 0<i k<M -1
Jj=—00

where F; (z) and R;k(z) are the M fold down sampled versions of z*H;(2) and 2% F(z2)
respectively, which are called kth polyphase components of H;(z) and F;(z) respectively.

The above equations are shown in figure (1.3). The bank of analysis filters can be written



Chapter 1. Introduction 8

x(n) fo(n) o (n) ug(n) go(n)
0 0 —{ M—» @ 0 0
» f1(n) v1(n) u1(n) 91(n) 1
z 1 1 — — @ 1 1
(M) : R(zM)

—1
z M-1 M-1 @ @ M-1 M-1
- —
N/
g

Op—1(n)  var—1(n) upr—1(n)

as

h(Z) = [{‘]0(2),- ,HM_l(Z)] _
Foo(2) Fon-1(2)
sz = | Pl Brara(2)
L Eyvicio(2) oo Ev-iv-1(2) |
e(z) = [1,z7%,..., z~(M-UT

E(z) is called the analysis polyphase matrix. The synthesis filters are expressed in a

different way as

where J is the exchange matrix. Using the noble identities of decimation and interpolation

[1], the analysis and synthesis sections can be interchanged as shown in figure (1.4). The
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vo(n)
T P
Z_l —»@—» 1 1 —»
L &(z) v (n)
. L—@—» M-1 M — l—
var—1(n)

o (n)

ui(n)

E——

upr—1(n)

Figure 1.4: Interchanged analysis and synthesis sections

above multirate system is PR if only delays, decimators and interpolators are present.

Introducing the matrices £(z) and R(z), the PR condition is given by [1]

—l 0 [M—T’
cz™
27 0
Pseudocirculant matriz
0 Inr_,
czlo M E7(2)
27 0
o ne | aditee)
ey A det(E(z))

(1.5)

The delay due to delay chain and the cascade of the polyphase matrices is d = (M +

r+ M — 1. Tt can be seen that the synthesis fillers are obtained by inverting the analysis

polyphase matrix.

analysis filters, which is difficult to see in alias component approach.

Thus, synthesis filters have which has a simple relation with the

From the above discussion it is obvious that the condition to get synthesis filters is

analysis polyphase matrix £(z) must be invertible. In general, two types of filter banks
are popular, namely FIR and TIR. For FIR case both £(z) and R(z) must be FIR, and
this condition is satisfied if det(£(2)) is monomial, i.e. det(E(z)) = cz=*. For IIR case

causal stable synthesis filters are obtained if det(£(z)) is minimum phase with £(z) being

causal, which is obvious from the equation (1.7).
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For FIR case, if [, and [, are the degrees of £(z) and 2~?R(2) respectively and if L,
and L, represent the length of longest filter in analysis and synthesis sections, where d is

the delay introduced to make R(z) causal, then

Ml, < Ly < M(l, + 1)

Ml, < Ly < M(l,+1).

In a general design method of a FIRPR system, analysis bank is obtained by first choosing
E(z) with monomial determinant and desired responses for analysis filters, then R(z) is
obtained from the equation (1.7) by chosing proper r and [y such that the delay is small
and R(z) is causal. In general r is taken to be zero where the PR condition reduces to
R(2)E(z) = ez~ Iy, which is also used for ITR case. In the next section, the design
methods for TIR filters is discussed first, and then FIR case is considered.

Paraunitary filter banks: 1If £7'(z) = E7(z7'), then £(2) is said to be paraunitary
or lossless. It can be seen that on the unit circle the inverse system is just flipped and
transposed version of £(z). In this case the length of the synthesis filters is same as the
analysis filters. Factorizations of lossless systems are briefly discussed in [4].

Linear phase filter banks: In image processing applications, linear phase filters are
preferred because phase information is crucial in an image. The condition for £(z) to be

linear phase is

E(z) = DZ_(I_l)g(Z_l)J (1.8)

where [ is the highest degree term in £(2), J is M x M exchange matrix and D is a diagonal
matrix with 41 and —1 on the diagonal depending upon the number of symmetric and
antisymmetric filters. If M is even then it was proved that there exists M/2 symmetric
and M /2 antisymmetric filters, and if M is odd then there exists (M + 1)/2 symmetric
and (M — 1)/2 antisymmetric filters [15] [38]. As it is known that, only FIR filter can
be linear phase and TIR linear phase filters are not practically realizable, FIRPR linear

phase filter banks are discussed in the present thesis.
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1.3 Review of IIRPRFB designs

There are several design methods for M channel IIR PR Filter Banks, but in most of the
cases the synthesis bank becomes anti causal stable. Problem with anti causal synthesis
bank is preprocessing of input is necessary to implement anti causal operations at the
synthesis section, which is extra burden. Causal stable design doesn’t require this. For
causal stable design the poles of analysis and synthesis polyphase matrices must be inside
the unit circle. The strict condition that the determinant of the analysis polyphase matrix
must be minimum phase leads to the design of IIR causal stable FBs. It is possible to
obtain PR TIR structures if the synthesis filters are operated in non causal way. In this
case, the poles of R(z) outside unit circle are the stable poles of an anti causal filter, and
filtering is performed in a non causal fashion, which is acceptable for image processing.
In [2] the filters are run in both causal and anti-causal fashion by introducing the time
reversal operations after analysis sections, but this increases the storage cost of the system.
In [3] it was shown that for 2 channel case if the filters { Hy, Hy} are realized with all-pass
filters PR is achieved eliminating the amplitude distortion, but phase distortion cannot be
eliminated with this structure. Causal stable solutions are obtained mostly for 2 channel
case and few for M channel case. [4] proposed that using all pass filters instead of delays
in lossless matrices ITR, PRFB can be achieved but synthesis becomes anti causal. First
result on IIR causal stable PRFB was given by [5]. In their design first a good low
pass filter in the analysis section is designed, then the remaining filters in the analysis
section are designed such that the analysis polyphase matrix becomes unimodular, using
the Quillen-Suslin-theorem on the completion of unimodular matrix polynomials. The
design method given by the authors is complex and a general characterization has not
been given even though the method covers a large class of causal stable solutions. Tt
is highly likely that other filters in the analysis section may not have good responses
as they are constrained by the first filter. In [6] 2 channel causal stable IIR design is
given, where special structure for analysis polyphase matrix is assumed. Moreover £(z) is
assumed to be upper triangular with the diagonal elements to be delays and the remaining

super diagonal elements are assumed to be a rational function. This may be assumed to
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be a near FIR polyphase matrix. In [7] 2 channel IIR QMF banks are designed with
approximately linear phase analysis and synthesis filters. Similar linear phase case, but
with a different method using complex all pass sections, is done by [8]. 2 channel TIR
causal stable PR design was done by [9] using constrained optimization. In this design the
PR condition is taken as the constraint and special structures are assumed for analysis
filters. Orthonormal IIR 2 channel FBs are designed using all pass filters [10]. In [11]
M channel causal stable ITR FB is designed by assuming a special structure for £(z), i.e.
E(z) is assumed to be diagonal with each diagonal filter being minimum phase. So, it can
be seen that a general method for the design of TIR causal stable filter bank is difficult,
which is the problem of interest of the present thesis. Design of such filters is discussed

in second chapter.

1.4 Review of FIRPRFB designs

1.4.1 2 channel case

The first 2 channel FIRPRFB solution was given by [12] by assuming Hy (2) = 2= N~V Hy(—271),
where N is the length of each filter, there by calling the pair {Hy, H,} as conjugate
quadrature filters. Then it was shown by [13] that the above imposed condition is indeed
a paraunitary solution for 2 channel case, i.e. the polyphase matrix satisfies the parau-
nitary condition discussed in the previous section. In [14] different choices of analysis
filters leading to the PR condition are discussed but a clear characterization method is
not given. In [15] the close relation between the continued fraction expansion of functions
(CFE) and PRFBs is clearly demonstrated. Low delay filter banks are useful in speech
applications where phase information is not crucial, such low delay fiterbank designing
methods can be seen in [16]. Design method using linear programming approach can be
seen in [17]. Work by [18] investigates the relationship of pade table, CFE and PRFBs.
A new lattice structure for general 2 channel PRFB is also given. In [19] 2 channel FBs
are designed using frequency domain optimization, where the analysis filters are designed

to achieve the frequency specifications for subband coding while the synthesis filters are
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designed to minimize the reconstruction error in frequency domain.
In the above methods linear phase condition is not considered. Now linear phase
designs are presented. Lattice characterization for 2 channel linear phase FB is given in

[20]. In this paper the linear phase filters are classified into two types.

1. Type A. One filter is symmetric and another is antisymmetric and both the filters

are of even length.
2. Type B. Both filters are of odd length and symmetric.

If Ny, Ny are the lengths of the filters in the analysis section then it was proved that the
sum Ni + Ny must be a multiple of 4. In [15] lattice structures are given for 2 channel
case. In [6] a special structure for £(z) is assumed, and lattice structures are given for the
linear phase design. In [21] constrained optimization is used, where the PR problem is
treated in two ways, one as a quadratic programming with linear constraints and another
one with nonlinear constraints. Close form solution for the first approach and iterative
solution for the second approach is given. In [22] first one filter is assumed, and the second
one is obtained form null space projection approach. In [23] design method for type B
filters is given, in [24] type A, of equal and unequal length cases, and type B filters are
designed. First the lower length filter is designed, then the second filter is designed using
the remaining degrees of freedom, with PR condition. In [25] a design based on least
squares sense, minimizing the error energies of analysis filters subjected to PR condition,
was done. A large family of type A and type B LPFBs are designed in [26], and PR
is ensured structurally in this design. In a recent work [27] the linear phase property
and monomial determinant of analysis polyphase matrix are combined and formulated in
terms of convolution matrices. Design method for type A filters is given, where first a
linear phase filter is assumed, and the second filter is obtained from the solution space of
the linear equations framed for PR conditions. A sequential design algorithm using PR

condition is derived for both equal and unequal length filter banks.
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1.4.2 M channel case

The 2 channel design by [2] is extended to M channel by [13]. It was shown that the
earlier design is indeed 2 channel paraunitary design, and that lossless property of alias
component matrix is a sufficient condition for PRFB, and indeed it is verified that it is the
condition for analysis polyphase matrix to be paraunitary. A structure for the M channel
lossless polyphase matrices which corresponds to paraunitary FIRPRFB’s has been given.
In [28] a structure for paraunitary FIRPRFB’s in terms of polyphase matrix in which the
filter responses satisfy pairwise mirror image symmetry with respect to 7/2 is given. A
complete characterization for paraunitary FIRPRFB’s is given in [29] in terms of the
polyphase matrix. In [30] the authors give an alternative numerically efficient complete
characterization for paraunitary FIRPRFB’s. Also the authors discuss about an efficient
way of initialization of the parameters. Further developments on paraunitary FIRPRFB’s
can be seen in [31]. In [14] author presents a method for designing general FIRPRFB.
The idea is to first choose M — 1 filters and solve for the coefficients of the last filter such
that the determinant of the polyphase matrix is a monomial. Such a filter is called the
complementary filter. This leads to a set of linear equations. But a systematic way of
parameterization of remaining degrees of freedom after choosing M — 1 filters is not given.
In [3] the author discusses lot of problems regarding the design of general FIRPRFB
or bi orthogonal FB. Smith form of matrix polynomial [48] is discussed in which any
analysis polyphase matrix can be written as £(z) = U(2)D(2)V(z), where U(z), V(z) are
unimodular matrix polynomials ! and D(z) is a diagonal matrix. But characterization of
unimodular matrix polynomials having constant determinant is not given. Idea regarding
the order of £(z) from the above expression is difficult as some terms can become zero.
The author discusses some open issues regarding the most general £(z). Time domain
approaches are given in [15] [32], where the reconstruction error is reduced while designing
the filters. Filter banks with variable delay is given and it was seen in simulations that
very less and very large delays give poor filters.

In [33] the author presents some ideas for capturing all FIR QMFs with lossless and

Imatrix polynomials with constant determinant
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unimodular matrix polynomials. The author presents a class of systems that has the
following factorization structure for £(z), if det(£(2)) = cz~' and degree (1) of £(z) is
la,

£(z) = Ri,A(2)Ri,—1A(2) - - RiA(2)Ro (1.9)

where R; is some nonsingular matrix. If R; is unitary the above system becomes lossless.
It has been shown by the author that if £,(z) is the analysis polyphase matrix with
det(Er(2)) = z7F then every &;,(z) can be factorized into a form G(2)U(z), where G(z) is
FIR with degree L and U(z) is unimodular. Paraunitary G(z) is one of the possible cases.
Then the problem reduces to the parameterization of unimodular matrices.

A class of FIRPRFB’s for which the inverse of the polyphase matrix has only anti
causal terms i.e. only powers of z is considered in [34] [35]. Note that this class of
FIRPRFB’s includes paraunitary systems. Generalization of this design is given recently
by [36]. In [37] the authors address the problem of given K, filters finding M — K filters
such that they form a FIRPRFB. The problem is referred as (M, K') problem. First the
authors derive a condition that polyphase components of first K filters should satisfy
for the existence of complementary filters. Then characterization for the complementary
filters is derived. But the parameterization is given only for K = M —1. In [46] FIRPRFB
with low delay is designed using nilpotent matrices, where specific structures for £(z) are
assumed. In [47] the authors present the design method of FIRFB’s with arbitrary length
analysis and synthesis filters, but the FBs are not PR.

Characterizations for M channel linear phase paraunitary FIRPRFB’s can be found
in [38] [40]. Generally, while designing the M channel filter bank, it is assumed that
all the filters have same length, but this is not always so. Different filters can have
different lengths, and its easy to incorporate this in linear phase conditions. Design and
factorization of FIR paraunitary filter banks given several analysis filters is given in [39].
Linear phase case has been dealt, and PR is maintained structurally. In [41] a general
algorithm for design of linear phase paraunitary PRFBs is given. In [42] a lattice structure

for three channel linear phase FIRPRFB’s is discussed. But completeness of the structure

2Degree is the minimum number of delays elements to realize a system, for more information refer [1]
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is not provided. An approach for extending the structure for M channel case when M
is odd is provided. In [44], given K linear phase filters, an approach for finding M — K
linear phase filters forming a linear phase FIRPRFB is discussed. But completeness of
the approach has not been verified. In [45] the authors prove that given K linear phase
filters, there always exists M — K linear phase filters forming a FIRPRFB if the K’ x M
polyphase matrix of first K filters has the rank K for all 27! except z=! = 0. Given such
K filters, an approach similar to the one given in [44] is provided for finding M — K filters.

1.5 The scope of the thesis

1.5.1 Proposed causal stable IIRFB design

In chapter (2) the problem of characterization of M channel IIR PR causal stable filter
banks is addressed. The ITR causal stable condition demands the minimum phase condi-
tion of det(£(z)), which is very difficult to impose. As described in the section (1.3), in
most of the previous works this condition is achieved by assuming special structures for

E(z). In the proposed characterization £(z) is written in the state space form as follows.
E(z)= D[l +C(xI — A)7'B]

Here D is an M x M invertible matrix. It is known that the eigen values of the state
transition matrix (A) are the poles of the transfer function (written in state space form).
Stability demands eigenvalues of the state transition matrix to be inside the unit circle.

Explicit inverse for £(z) can be given if £(z) is assumed to be invertible at z = co as
ENz2) = [I+0(zI—-A"'BID™!

Where A* = A — BC. The eigen values of the state transition matrix of the inverse
system (A*) decides the stability of the inverse system. Minimal structures are preferred
to avoid nonunique representations of £(z). Conditions for minimality were imposed on

E(z). Given &(z) satisfying the minimal conditions, additional constraints have to be
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imposed on the matrices used in the state space form of £(z) for forcing the eigen values
of A* to be in side unit circle.

A is constructed by constraining its eigen values to be inside unit circle, and assuming
a Jordan from. Matrices B and (' can be constrained to force eigen values of A* inside unit
circle. The spectrum of A* is constructed using a mapping function from the spectrum
of A to some arbitrary points inside the unit circle, using the concept of function of a
matriz, so that A* is completely known once A and the mapping function are defined.
Some more results are given in chapter (2) to obtain matrices B and C' if rank of matrix
(A — A*) is known.

Next a design method based on factorization of a minimal system into degree one
factors is presented. Conditions for decomposing a large system into smaller systems is
presented, and based on these ideas a cascade structure for causal stable IR FB’s is given.

Special cases where change of sign in the structure gives inverse system are also presented.

1.5.2 Proposed FIRPRFB design

In section (1.4), review of several FIR PRFB designs were presented. The open issues
discussed by [33] [3] regarding general structures for FIR £(2) or bi orthogonal filter banks
received less interest. In most of the methods discussed in section (1.4) the synthesis
polyphase is of same degree as that of analysis for an M x M order [, matrix polynomial
E(z). Synthesis filters, however, can be longer or shorter than analysis filters. Moreover
there is no flexibility of having arbitrary system delay. All these issues can be dealt using
theory of matrix polynomials.

In chapter (3), spectral theory of matrix polynomials is used for the design of FIR-
PRFB’s. FIRPRFB’s constrain det(£(z)) to have a monomial determinant, and £(z) to
be regular ®. The eigen values of the matrix polynomial £(z) * must be zero to satisfy the
monomial determinant condition. Methods to obtain spectral data of a matrix polynomial

is given. The concept of decomposable pair, which is crucial in the construction of matrix

3Tnvertible matrix polynomials
ARefer [48] for details regarding the eigen values of a matrix polynomial
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polynomial, is discussed. The inverse problem, i.e. given the spectral data, construction
of a regular matrix polynomial is given. Some theorems, which are instrumental in finding
the minimum delay to be introduced to make the synthesis section causal, are given. The
system delay can be controlled in the proposed design. Length of the synthesis filters can
be varied by using different Jordan forms of the spectral data. It can be shown that for
the same (deg(det(E(z)))), lot of structures exist and can be obtained by simply changing
the spectral data corresponding to £(z).

Conditions on &£(z) to be linear phase are given. Some conditions on the spectrum
of the matrix polynomial are given so that it becomes an analysis polyphase matrix of a
linear phase filter bank. Some results regarding the deg(det(E(z))) and restriction of order
of £(z), given the parity of M, are given. Due to difficulty in solving one of the equations,
near linear phase condition is obtained instead. An error measure is defined for near
LPPRFB, and filters are designed to reduce this error besides frequency specifications of
filters. In this case also, there is a flexibility to alter the length of synthesis filters.

Unimodular matrix polynomials provide zero delay. Characterization of unimodular
matrix polynomials is given by giving the conditions under which a matrix polynomial

becomes unimodular. Here also the order of synthesis polyphase matrix can be varied.



Chapter 2

Design of M channel causal stable

IIRPRFB

2.1 Introduction

Let £(z) and R(z) be the M x M analysis and synthesis polyphase matrices. For perfect
reconstruction condition R(2)E(z)=cz ¥ Ip;. Assuming ¢ = 1 and k = 0 i.e. R(z) =

E7N(2), E(z) and R(z) are M x M rational matrix functions. Then R(z) is given by

R(z) = (&(=))7

1

= Ty e, (2.1)

If £(z) is causal stable, R(z) is causal stable if and only if det(€(2)) is minimum phase.
Characterization of a rational matrix function with minimum phase determinant is diffi-

cult, so state space formulation is assumed.

2.2 State space realization of &(z)

A rational matrix function can be realized as a state space system with realization £(z) =

D + C(2I — A)"'B. Assuming £(z) is invertible at z = oo [56] implies D is an invertible

19
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B [~ I C == D [—

Figure 2.1: State space representation of £(z)

matrix. Thus £(z) can be taken as
E(z)=D(I+ C(zI - A)"'B) (2.2)

where A', B, C and D are matrices with sizes m x m, m x M, M x m and M x M
respectively. The system is shown in the figure (2.1). The inverse system R(z) is realized
as

R(z) = (I- C(:I— A*)"'B)D"! (2.3)

where A* = A—BC. The poles of £(z) are the eigenvalues of A [56], similarly the poles of
inverse system are given by the eigen values of matrix A*. For causal stable analysis and
synthesis filter banks magnitude of eigenvalues of A and A* must be less than one. One
possible solution was described by Basu et al [5] for M-channel case. In their work, first a
good low pass filter was assumed, which forms first row of the analysis polyphase matrix.
Remaining rows of the analysis polyphase matrix are filled such that the resultant matrix
is unimodular with its poles inside unit circle. As the determinant of the unimodular

matrix is constant, it is a subclass of a generic class with minimum phase determinant.

2.2.1 Minimal systems

Before proposing the design, importance of minimal characterizations is discussed. A

rational transfer function is minimal if it can be represented with minimal number of

Lealled as state transition matriz in control literature.



Chapter 2. Design of M channel causal stable IIRPRFB 21

delays [56]. Equivalent definitions are given for minimal systems in literature [51]. A
minimal system is a consequence of pole zero cancellation. Non-unique combinations of
A, B, C and D matrices are avoided in minimal systems. Given £(z), it can be verified

for minimality by checking the following two conditions, namely:

e rank(C(A,B)) = m, where C(A,B) = [B AB A’B ... A*B], where m is the
dimension of A and k is the index of nil potency of A, this condition is called

controllability condition.

e rank(OT(C,A)) = m, where OT(C,A) = [CT ATCT ... (AT)ECT], where this

condition is called observability condition.

Once £(z) is ensured to be minimal, its inverse R(z) is minimal [56]. In the present
design some assumptions are made keeping in mind the minimality of £(z). Since B and
C are m x M and M x m matrices respectively, C(A,B) and O(C, A) will be m x kM
and kM x m matrices. If m < M, full rank matrices B and C ensure the minimality
conditions, which is not a necessary condition but a sufficient one. So, the dimension of
the matrix A never exceeds the number of channels M and rank(B) = rank(C) = m in

the present design.

2.3 Proposed function/transformation based design

From equation (2.3) matrix BC can be written as

BC = A-A"

= Aj (2.4)
Now the rank of the matrix BC is given by the expression

rank(BC) = rank(C) — dim(N(B) N R(C)) (2.5)
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where A'(B) and R(B) represents the null space and range of matrix B. If rank(BC) = r
(say), then
dim(N(B)NR(C))=m —r (2.6)

Even if B and C are full rank (m here), the product of the matrices (BC) can have a
rank less than m. Now the bounds on rank of a matrix, generated by the product of two

full rank matrices is discussed in the following theorem.

Theorem 1 If B and C are full rank matrices, and if r is the rank of their product, then

r is bounded as

2m — M

N
<
IN

m, ifm>M]/2

0 < r < m, other wise

Y

Proof: From equation (2.6) matrix C has m — r linearly independent columns forming
a subspace (say N'(B)) of the space N(B). The dimension of A (B)is M —m. Since
N'(B) is a subspace of N'(B), dim(N'(B)) < dim(N(B)) which implies

m—r<M-—m

r>2m-—M (2.7)

which is the lower bound on r. The upper bound on r is m which is obvious from the
equation (2.6), which happens when N (B) N R(C) = ¢. If m < M/2 then the lower
bound on r can become negative, but since rank cannot be negative lower bound by
default becomes zero. O

Given an m x m matrix with rank r (r < m), which is known to be a product of
two full rank matrices (not given) of sizes m x M and M x m with (m < M), and if r
lies in the bounds given by the theorem (1), then the following theorem gives the way to

construct the matrices whose product is the given matrix.

Theorem 2 If X is an m x m matriz with rank r and it is known to be the product of



Chapter 2. Design of M channel causal stable IIRPRFB 23

two full rank matrices say Y and 7, with sizes m x M and M x m respectively, and if r

lies in the bounds given by theorem (1), then' Y and Z are given by

Y = UB

r

Z = |98 N | VT
where B is an m x M full rank matriz, I is an (M —m) x (m —r) full rank matriz, X,
is an r x r diagonal matriz, BT is a full rank matriz and is the pseudo inverse of B with

size M x m, and U and V are m x m unitary matrices.

Proof: Taking the SVD of the matrix X we have,
X =UxxV’"

where U and V are m x m unitary matrices and ¥x is an m x m diagonal matrix with

¥, 0

first r diagonal entries nonzero. So, ¥x can be written as , where X, is the

0 0
nonzero block of Xx. If B is any m x M full rank matrix and A (B) is the null space of

B, then the product BN (B)T is zero for any full rank matrix I' (this fact is used below).

Now the matrix X is written as

00|,
X = U A%
0 0
X,
= U %%T Omx(m—r) VT
0
P 2 T
- U BRI BN (B) s (vr—m) T (M=) m—ry | V
¥, .
= UB ¥ N(B)T |V (2.8)
0
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Since BBT = 1,,, using the rank of product concept

rank(‘B‘BT) = rank(L,)
rank(B') — dim(N(B)UR(BY) = m
dim(N(B)UR(B")) = 0
)

N(B)UR(B') = ¢ (2.9)

Form the equation (2.9), the space spanned by the columns of B1 and A(B) are indepen-

r r

Y
N(B)T'| is full rank if and T are full
0 0

rank. Thus the equation (2.8) can be written as the product of two full rank matrices,

dent, so the block matrix |BT

r

0
Theorem (2) will be used to construct B and C from Aa. Now we propose how A

X = YZ, with Y = UB and Z = |8t N(B)| VT, O

and A* may be designed. The state transition matrices A and A* can have either same
or different eigen values with different Jordan forms. But both the matrices must have
eigen values inside unit circle for causal stable condition of IIRPRFB. Let us assume A*

is obtained by an operation O(A) acting on A,

O(A) = A” (2.10)

changing it’s spectrum. Now A* can have different spectrum and different Jordan form
[59] compared to A. The operation O(.) should preserve the causal stable condition.
If Ja and Jax are the Jordan forms of matrices A and A* then in the present design

following two cases are assumed.

e A and A* have different or same eigen values with different Jordan forms, i.e,

Ja # Jax, even if all the eigen values of A and A* are same.

e A and A* have same eigen values with same Jordan form, i.e. Jao = Jax.
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2.3.1 Case 1: Ja # Jx — function of a matrix approach

For this case, let Ja be known, then A can be constructed as
A =Po7'JaPas (2.11)

where P is an invertible matrix. Here the eigen values of A are taken to be inside the
unit circle. The eigen values of A* must be inside unit circle for causal stable condition.
Spectrum of A and A* can be disjoint or intersecting or one can be contained in another.
Once Ja and Py are given, one possible way to construct A* is by the concept of function
of a matriz approach.

In this case the operation O(.) acting on A can be taken as f(A), where f(.) is an
analytic * function. If f(.) is analytic and A is given by equation (2.11) then f(A) is

given as °

A* = O(A) = f(A) = Pa~' f(Ja)Pa. (2.12)

In this case Jax = f(Ja).

2.3.1.1 Construction of the function f(.)

Detailed discussion on the structure of f(Ja) and ways to construct the function f(.) are
given in Appendix (A). If {\y,---, A} are the eigen values of A, then {f(A1), -+, f(Ax)}
are the eigen values of f(A) (refer Appendix (A)). Now assuming the spectrum of A
and f(A) are known, i.e. the above discussed eigen values are known, then f(.) can
be constructed (refer Appendix (A)) such that rank(A — f(A)) lies with in the bounds
specified in theorem (1) for a given m. So, in simple words the mapping function is

constructed from the sample points and the matrix f(A) is determined completely.

must be infinitely differentiable
3Refer [59] for a detailed discussion on function of a matrix
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2.3.1.2 Construction of B and C

For an M channel filter bank, once A is fixed (with eigen values and Jordan from), a
suitable mapping function f(.) is defined (Appendix (A)), so that rank(A — A*) lies with

in the bounds given by theorem (1). Now matrices B and C are constructed as follows.

BC = A—A"=A— f(A)
= PL'JaPa —PL' f(Ja)Pa
= P, (Ja— f(Ja))Pa
= P,'A;Pa

As rank(BC) is r so is the rank of Az,. As it is assumed that r lies with in the bounds
given by theorem (1), Az, can be written as the product of two full rank matrices from

theorem (2).

BC = P;'A; P,
LN
= P'U;,B B[ " |N(B)T| VL Py (2.13)
N— —r 0

B

C

where Uz, and V 7, are the unitary matrices obtained from the SVD of A 7, as Uz, X7, V?A,

Y, 0

Y= and B is any m x M full rank matrix and T' is any (M —m) x (m —r)
0 0

full rank matrix.

Theorem 3 [f A* is obtained from A as f(A) then, the matriz Pa plays no role in the

design, i.e. information regarding Ja is enough for the design.

Proof: Substituting the expressions for the matrices B and C as in equation (2.13) in the

analysis polyphase matrix expression given in the equation (2.2), we have

E(z) = DI+Yz7Vy Pa(zI—A)'P;' Uy, B]
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= DI+ Y5V, Pa(:P,'Pa—PL'TaPA)'P,' Uy, B]
= DI+ YV, PAPL' (21— J4) 'PaP;'Uy, B8]

= DI+ Y, V] (21— 7Ja)"' Uz, B]. (2.14)

Thus Pa plays no role in the construction of £(z). O
The inverse structure is given by the equation (2.3) and using the equation (2.13) we

have

R(z) = MI=YX7 V] (:1—(Ja—-UzBY; V] ) 'UsBID™!
= I-Y7, V5 (21— (Ja — (Ja — f(Ja))) ' Uz, BID™
= [-Yz V5 (21— f(Ja))' Uz, BD! (2.15)

Free variables: Since real coefficient filters are of interest, A is constructed by assuming
some structure for Ja. k distinct eigen values * are used as variables for Ja. Then function
f(.) is selected such that r lies in the rank bounds given by theorem (1). To construct
B and C, full rank matrices B and T require Mm and (M — m)(m — r) free variables.
Invertible matrix D requires M? free variables. Then (M? 4+ Mm + (M —m)(m —r)+ k)

free variables are required for this design.

2.3.2 Case 2: Jr = Ja~

similarity transformation approach
This approach forces (A — f(A)) to zero, since Ja and Jax are same. Before proceeding
further a lemma is given which is used later in this section.

Lemma 1 If G and H are M x M matrices, and if H = T™'GT, i.e. H is obtained by
the similarity transformation of G, where T is an M x M nonsingular matriz, then G

and H have same Jordan forms.

Proof: If G = Pg' JgPg is the Jordan decomposition of G, then for the assumption

H = PST 'JsTPg

“can be complex, but conjugate pairs should exist for real coefficient filters
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= (TPg) 'Ja(TPg)

So, (TPg) is the Jordan chain matrix of H, and Ju = Jg. O
If the eigen values of A and A* are same with same Jordan forms, A* can be ob-
tained from A by a similarity transformation. So, the operation O(A) is the similarity

transformation.

O(A) = A* = T'AT (2.16)

But so constructed A* must ensure that r lies in the bounds given by the theorem (1),
which implies only some pairs of {A, T} exist. Characterizing such pairs for a given r is
very difficult. Assuming that we are working with such a pair, the matrices B and C can

be constructed from theorem (2) as

BC = A-T'AT

= UxXaVE

and B = UxB and C = TAVZ;, where Y A is analogous to one given in equation (2.8).

The analysis polyphase matrix is given by
E(2) = DI+ YaVL(2I — A)7'ULD] (2.17)
and the synthesis polyphase matrix is given by
R(z)=[I—-YAVi(zI - A*)"'U,B]D™ (2.18)

Matrices A and T are selected such that r is lies in required bounds, but characterizing
all such pairs is difficult. So specific cases are taken while designing the PRFB. Examples

for the special cases are given below.
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2.3.2.1 Case where rank(Aa) =m

For this case rank(BC) = m. Since C is chosen to be a full rank M x m matrix, rows of
B must be the span of columns of C for the above condition to be satisfied. So B = WCT,

where W is an m X m full rank matrix. Then

vCl'Cc = AL

¥ = A,(Cfo)!

Here (CTC)~! is an m x m full rank symmetric matrix. Now A and T are selected such
that A, is full rank. One possible choice is assuming A to be a diagonal matrix with

distinct eigen values and T to be a circulant matrix.

A 0 0 01 0 0

0 A 0 00 1 0
A - T =

0 0 Am 10 0 0

Here A\; # X; for ¢ # 5. Then A, is given by

Ay, 0 o 0
0 AA2 0
Ap = , .
0 0 A/\m
Ay = dipp— AN #0 Vi=12---m—1
A/\m = )\m_)‘17£0

From the above inequalities Ap becomes a nonsingular matrix.
Free variables: Diagonal matrix A, full rank matrices Cpry,, and Dasyear require m,

Mm and M? free variables respectively. Thus in total (M2 + Mm + m) free variables are
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required.

2.3.2.2 Case where rank(Aa) =0

For this case rank(BC) = 0, A — T~'AT = 0, then matrix A is called reflexive matriz
and T is called reflection matriz. B must be in the null space of C and vice versa. Since
B and C are full rank matrices, the dimension of A'(B) is M —m, and columns of C span
a subspace of N'(B), implying M —m > m leading to m < M/2. So, this case is possible
only when m < M/2.

Free variables: The number of free variables depends on the matrices A and T. Matrices
B and C are rank m matrices and are irrespective of the choice of A and T. mM free
variables are required for matrix B,,xas. Then columns of matrix C spans A (B). m
linearly independent vectors are generated from V' (B), Carxm = N(B)ar« mr—m®n—m)xm>
where @ is a rank m matrix. @ requires m x M — m free variables. Depending upon

choice of A and T some more free variables can be added.

2.4 Factorization of &(z)

Cascade approach for the design of filter banks received lot of attention in the filter bank
design community. Filter banks based on factorization of rational lossless systems [4] is
popular in filter bank designs. The propositions discussed in this section are general, i.e.

matrices B and C need not be full rank and size of matrix A is unrestricted.

2.4.1 Factorization of rational matrix functions

The analysis polyphase matrix given in equation (2.2) can be written as

£(z) = DE(2)
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where £'(2) = I+C(zI— A)™'B, and the synthesis polyphase matrix R(z) can be written
as

R(z) = R'(2)D™"

where R'(z) = T — C(2I — A*)7'B. Since R(2)&(z) = I, this implies R(2)&'(z) = L
It is sufficient to focus on factorization of primed matrices. The problem boils down to
factorization of rational matriz functions, exhaustively dealt in [56]. All the theorems
described in this chapter are taken from [56], proofs are not given here. Here the main
idea is to decompose a minimal system of degree m into a product of minimal systems
with smaller degrees.

If £'(2) is a minimal realization then the McMillan degree® of £'(z), denoted by §(&'),
is the size of matrix A in the minimal realization. There are several equivalent definitions
of McMillan degree given in control texts [51].

Consider the factorization

£(z) = El(2)E)(2) - E)(2) (2.19)

where, for j = 1,2,---,p, £(z) are M x M rational matrix functions with minimal

realizations 5]’(2) =1+ C;(2I1— A;)"'B;. Then realization for £'(z) is

A, B,C, B,C, o
0 A, B,C, '
B
E()=T+[Ci Cy -~ Cl|2I=| 0 0 ’ (2.20)
B
0 0 A, L

This realization is not necessarily minimal, and in general

S(E') < 6(EL) +5(EL) + -+ 6(E).

5

minimum number of delays required to realize the system
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The factorization given in the equation (2.19) is minimal if the equality is satisfied. Mini-
mality of the above factorization means that zero-pole cancellation does not occur between
the factors £;(z). The McMillan degree of a rational matrix function (with I at infinity)
and its inverse are same [56], so if the above factorization is minimal then the correspond-

ing factorization for the inverse matrix function is also minimal.
E(2)7 =RI(z) =&(2)7E ()7 E(2)7

Now a question arises that on what conditions do a larger system, which is minimal, can
be decomposed into product of several smaller minimal systems. For lossless systems,
which are orthogonal on the unit circle, a specific factorization based upon projections is
given by Gohberg et al [50], and a different approach is followed by Vaidyanathan et al
[4]. The following proposition gives the conditions under which a minimal system can be

factorized into several minimal systems.

Proposition 1 Let m be the size of A in E'(2), and let
C"=Li+---+L, (2.21)

where the chain

Lycly+L,Cc---CLy+Ly+---4+L,4 (2.22)

consists of A-invariant subspaces ® whereas the chain
L,cL,+L,yC---CL,+ L,y +---+Ly (2.23)
consists of A*-invariant subspaces. Then E'(z) admits the minimal factorization

E(z)=[I+Cm(z2I-A)'mB]---[I+ Crmp(zI - A) 'x,B] (2.24)

6 A subspace W is A-invariant if for any x € W, Ax € W
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where m; is the projector ” on L; along Ly + -+ + Ly + Ly + - + L.

Conversely, for every minimal factorization
E'(2) = E(2)E(2) - E)(2) (2.25)

where E(2) are rational M x M matriz functions with E(oo) = 1, there exists a unique
direct sum decomposition (2.21) with the property that the chains (2.22) and (2.23) consist

of invariant subspaces for A and A*, respectively, such that
g]{(Z)ZI—I_CW](ZI_A)_Iﬂ-]B? ]:1,,}?

Detailed proof of the above theorem is given in [56] . The factorization (2.24) implies the

minimal factorization for 5’(2)_1 as

£'(z)"" = [I-Crm,(:I-A")"'7,B] [I-Crmp_y (z2I-A*)"'7,_B] - - - [[-Crm; (z:I-A*) " 'm, B]

2.4.2 Factorization to degree one systems

The problem of factorizing a minimal system £'(z) with §(£’) = m into degree one systems

is considered, i.e.

€'(z) = &1(2)&(2) - - €,,(2) (2.26)

The sufficient condition (not a necessary condition) for the existence of the above minimal

factorization is given by the following lemma and proposition.

Lemma 2 Let A, A* : C* — C™ be transformations and assume that at least one of

them is diagonable. Then there exists a direct sum decomposition

Ch=Li+---+L, (2.27)

" A matrir P is a projector onto a space W, if P2 =P and R(P) =W
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with one dimensional spaces L;, 7 =1,---,m, such that the complete chains
LicLi+L,C---CLi+Lo+---+Lpy (2.28)
and
L,CL,+L,1C---CLy+Lpi+---4+1L, (2.29)

consist of A-invariant and A*-invariant subspaces, respectively.

Proof of the lemma is given in [56]. A sufficient condition for minimal factorization of a
rational matrix function £'(z) into the product of degree 1 nontrivial factors is given in

the following proposition.

Proposition 2 Let £'(2) be a rational M x M matriz function with a minimal realization
E'(z) =1+ C(z1 — A)"'B and assume that at least one of the matrices A and A — BC

is diagonable. Then E'(z) admits a minimal factorization of the form
)=+ (z—2z1)""Ry]- - [T+ (2 — 2,,) 'R,,.] (2.30)

where zy, -+, z, are complex numbers and Ry,---, R, are M x M matrices of rank 1.

Proof: The proof is obtained by combining proposition (1) and lemma (2). If at least
one of A and A* is diagonable then from lemma (2), there exists a unique direct sum
decomposition and complete chains of A-invariant and A*-invariant subspaces. From
proposition (1) and from the above conditions a minimal factorization of a rational matrix
function exists. O

In the propositions discussed above no assumptions were made regarding B, C and

size of state space matrix A except that £'(z) is a minimal system.

2.5 Proposed factorization based design

The analysis polyphase matrix £(z) = D(I+ C(zI — A)~'B) is assumed to be a minimal

system, so the matrices A, B and C must satisfy the conditions for minimality discussed
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earlier. Rank deficient B and C can make the system minimal and can have a minimal
factorization. This case is clearly explained with an example in [56] (ref. ch7 pp.230).
In the present design, matrices B and C are assumed to be full rank and m < M.
The analysis polyphase matrix £(z) = D&'(z) with a McMillan degree () = m is to
be factorized into degree 1 terms. From proposition (1), that if there exists a direct
sum decomposition (2.27) with each component space being one dimensional, and if there
exists A-invariant and A*-invariant chains (2.28) and (2.29), then minimal factorization is
given by equation (2.30). From lemma (1) diagonable matrix A will satisfy this condition,
but this is just a sufficient condition. In order to simplify the calculation of invariant

subspaces, matrices A and A* are constrained to be triangular.

2.5.1 Construction of invariant subspaces

In this section we discuss the design method for decomposing a minimal system into
degree 1 systems. In the previous sections it was discussed that the factorization requires
information regarding the chain of invariant spaces with respect to A and A*. Now it will
be shown that the choice of the matrix A being upper triangular eases the calculation of

invariant subspaces.

Theorem 4 If A is an m x m upper triangular matriz and e; is an m dimensional vector
with 7" element as unity and others being zero, then there exists an A-invariant chain of
subspaces

Se, CSe; +Se, C-+- CSe; +Se, + -+ Se,, (2.31)

where Se, is the space spanned by the vector e;.

Proof: Let A be an m x m upper triangular matrix of the form

MoOEOE kT
0 X K - kP
A=10 0 X - k7 (2.32)

0 0 0 - A,



Chapter 2. Design of M channel causal stable IIRPRFB 36

Here the diagonal elements, which are the eigen values, need not be distinct. Let x € M,

where M is the Span{e;, ey, -, e;}, then
J=
X = Zafef where a; € C
=1

Now the vector

where a;, the j'* column of the matrix A, can be written as

m=j5—1

a; = Z kﬁnem + )\]‘e]‘

m=1,j#1
Using this in the previous expression

Ax = ]z: Aoje; + Z Z kfnozjem
=1 =1 m=1#1

It was assumed that M; is the Span{e;,ey,---,e;}, and Vx € M; it was shown that
Ax € M;, so M; is A-invariant, and this is true Vi = 1,2,---.m. So, if A is an
m X m upper triangular matrix, then there exists an A-invariant subspace of the form
Span{e;, ey, -, e} Vi = 1,2,---,m. Since the space Se, + Se, + --- + Se, is the
Span{ei,ey,---,e;} V j=1,---,m, Se, + Se, + -+ + Se, is an A-invariant subspace.
Thus there exists a chain of A-invariant subspaces Se, C Se, + Se, C --- C Se, + Se, +
e Sem_l‘ O

It can be shown with the similar principles that if A* is a lower triangular matrix, then
there exists an A*-invariant subspace Span{en,,e(,—1),---,e;} Vi=m,m—1,---,1and

a chain of A*-invariant subspaces Se,, C Se,, +Se,,_, C -+ C Se,, + Se,,_, + - + Se,.
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Using propositions (1) and (2) and above choice of matrices A and A*, there exists
projector matrices m; on the space Sej along the space Se, +- - -—I—Sej_1 —I—SeJJrl +---+Se,,.
Since the spaces Se; are defined on the standard ordered basis, the projector matrix m;

is given by

{ﬂ-j}k,m = 1 1fk:m:]

= (0 otherwise. (2.33)

Thus 7; has all the elements as zeros except element in the 5% row and j column as 1.

2.5.2 Construction of matrices B and C

All the eigen values of the upper triangular A are assumed to be inside unit circle. Lower
triangular A* is selected such that all it’s eigen values are also inside the unit circle leading
to causal stable synthesis polyphase matrix R(z), and rank(A — A*) lies in the bounds
specified by theorem (1). If matrices A, A* are known, matrices B and C are constructed

using the theorem (2) as follows,

B =UxB

C ="V}

where Uy and V, are the unitary matrices obtained by taking the SVD of A as A =
UAEAVZ; and the matrices B and Y o are similar to the ones described in theorem (2)
and understood from the context.

If {M, A, A} are the eigen values (need not be distinct) of A (here diagonal
elements), and {A}, A}, -+, A/} are the eigen values (need not be distinct) of A* then the

analysis polyphase matrix can be decomposed as

£(z) = D(I+C(:1—A)"'B)

= DI+ Cm(zI—A)"'mB)(I+ Cry(21— A) 'myB) -+ (I+ Crrpp (21— A) ', B)
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— &u(x) & ()= - - SR D —=

Figure 2.2: Factorization structure of £(z)

The factorization structure for £(z) is given in figure (2.2). From the structure of projector

matrix given in equation (2.33), each factor can be simplified as

E(z) = (I+Cm(zI—A) 'm,B)
= (I + CZ'(Z — Az)_lbz)

where ¢; is the " column of matrix C and b; is the i"" row of matrix B. The analysis

polyphase matrix is then given as
E)=DI+ci(z—X)"'b) T+ ca(z—A) 'by) - (T+cn(z— M) 'by)  (2.34)

The synthesis polyphase matrix R(z) is decomposed as

R(z) = (I-Cm(2I—A*)"'mB)(I-Cmy(2I—-A*)"'mB) - (I - Crp(2I — A*)" 7, B)D™!

— (T enlz = X BT = (2 = Ny )" bycy) -+ (T = ea(z = X)) 7'by)D™!

The factors £/(z) and R!(z) are represented as shown in the figures (2.3) and (2.4)

respectively.

(2.35)
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b; —=®— 7! ¢ b; —~®— 7! —C;
N IV
Ai A
Figure 2.3: Realization of £/(z) Figure 2.4: Realization of R}(z)

2.5.3 Case with diagonal matrix

The matrices A and A* are to be selected such that rank(A — A*) lies within the bounds
given by theorem (1) because (A — A*) has to be written as the product of two full rank
matrices B and C. There exist some pairs of {A, A*} which satisfy the above condition,
but there is no easy way to characterize all such pairs. One possible case is assuming one

of the matrices A or A* to be diagonal, such that the rank(A — A*) may be easily found.

2.5.4 Case with triangular matrix

If A* is taken such that \; = Al Vi =1,2,--- m, then

g;(Z) =1 + CZ'(Z — )\i)_lbi
R;(Z) =1- CZ'(Z — )\i)_lbi

i.e. each factor in the factorization of R(z) is just a sign changed version of £(z). The
diagonal elements in the difference matrix (A — A*) are zero, which implies b;c; = 0 Vi =
1,2,---,m. So, the i row of matrix B is orthogonal to i*" column of matrix C. Thus if

A is upper triangular with the structure shown in the equation (2.32) and A* is a lower
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triangular matrix with the following structure

A O 0 - 0
I A 0 -+ 0
A" = 2 X - 0
oz B,

then matrix BC = A — A* has all the diagonal elements as zero and the elements

bie; = kI Vj>i
=0 Vj=i
= -l Vj<i

So, full rank matrices B and C with b;c; =0 and ||A\]| <1 Vi=1,2,---,m is enough to

design this special case. The design method is as follows.

2.5.4.1 Choice of matrices B and C

In the present design B and C are full rank for minimality of £(z). Condition b,e; = 0
implies b; (i"* row of B) is in the space which is orthogonal complement to ¢;. If a
full rank matrix C is assumed and b;’s are constructed with the above condition, it is
not guaranteed that the constructed matrix B will be full rank, and there is always a
possibility for B to be rank deficient. If an M x M matrix C, = [¢1, *+,Cp, -+, Cp] 18
assumed to be orthogonal, and it’s first m columns are taken as matrix C, then b; will

JF#i ,
be in span ofch’s forv#£7 Yi=1,---,;mand y=1,---, M, i.e. b; :E;nzl ozfch, where
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ozf is a constant. Then matrix B has the following structure.

2 3 m m+1 M
0 al al .. al al .. al
O{% 0 O{% .. O{;n O{/;n-l_l .. ajzw T
B=y - . . . . |C% (2.36)
1 2 3 .. m+l . M
| O O 0 o O |
B.

rank(B) = rank(B,CL) = rank(CI) — dim(N(B,)NR(CL)). Since CT is an orthogonal
matrix rank(CL) = M. So, rank(B) = M — (M — rank(B,)) = rank(B,). If B, is
full rank, then B is also full rank. Characterizing B, to be full rank is difficult, and in
simulations it was observed that most of the times it ends up to be full rank matrix.

Free variables: For invertible matrix D in £(z) M x M free variables are required.
M(M — 1)/2 are required for orthogonal matrix C,, and Mm — m are for B,, and
m parameters are required for the diagonal elements of matrix A. When the number
of channels increases the free variables required increases, thus optimization becomes
difficult. So, a sequential method of building the cascade structure is discussed. In this
method, first a single block is taken and optimized for the given response, then another

block is added keeping the previous optimized values unchanged, and so forth.

2.5.4.2 Sequential design

When the parameter space increases it is highly unlikely that a good filter bank can be
designed. So, it is better to first optimize a small parameter space, and then to optimize
the remaining keeping the previous ones constant. This type of procedure is adopted for
design of TIR filter banks with factorization approach.

In case of factorization approach, the filter bank can be realized as a cascade of blocks.
So, first block is optimized for the desired response. Then the next block is cascaded and
the parameters for this block are optimized to reduce the error achieved with the previous
stage intact. This process is done till the desired number of blocks are added.

In the present design, analysis polyphase matrix £(z) = DE&'(z). First matrix D is
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optimized, then the first block of £'(z) are optimized, i.e. vectors ¢;, by and A; for the
feedback are optimized, such that bycy = 0. The design method is as follows.

First the invertible matrix D is optimized to the desired response, and then for first
and subsequent vectors matrix C, is constructed, from which m columns are selected for

C, and from (2.36) vector by is constructed as

T
by=10 a? af-o oo 0/1\4 C,

B,

Thus vector by is constructed and the free variables are optimized for desired response.
By the above assumption matrix C is fixed by taking the first m columns of C,. For next
stage by is constructed by appending a row al 0 al--o ap - 0/2\4 to the matrix
B! such that the composite matrix B? is full rank ( most of the times from the structure
of the matrix, the composite matrix becomes full rank), and the feedback variable for
this block Ay is seen not be equal to the previous one, A;. This procedure is repeated till
last row is appended to form full rank B”'. Thus from the above construction, full rank
matrix B is obtained. Here except for first optimization step, each step requires M — 1
free variables. Free variables included in the process is M x M for D, M(M —1)/2 for C,

and mM — m for construction of B, i.e. construction of vector b;’s where . =1,---,m.

Y

2.6 Simulation results

In this section the simulation results are presented. The cost function used in the opti-
mization is based on passband and stopband shaping. Cost function is given explicitly

as:

M-1
o [ =@l e [ )
;=0

¢ Passband; Stopband;

where H;(w) is the i analysis filter, and «a, and a, are appropriately chosen passband

and stopband error weights. Matlab constrained optimization routine fmincon is used
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Figure 2.5: 4 channel design based on function of a matrix approach

to constrain the eigen values of A and A* inside unit circle. All the full rank matrices
required in the design are generated using SVD. Simulations are done for the first design
method based on the concept of function of a matrix discussed in section (2.3.1). Here
4 channel case with m = 3 is considered, then the bounds on r are 2 < r < 3. Figen

values of A are assumed to be {A, A{, A2}, i.e. two distinct eigen values are assumed with

Jordan form

A 10
jA - 0 )\1 0
0 0 X

A mapping function f(x) = 2z — Ay is taken using Lagrange interpolation method ( refer

Example -1 in Appendix - A), then

N2 0
fIa)=1 0 X\ 0
0 0 2\ — )\

Here (Ja — f(Ja)) has a rank 2 if Ay # Ay, so in optimization it is made sure that
—1 < A, A2 < Tand Ay # Ay. Matrices B and C are constructed as per the method given
in section (2.3.1.2). Figure (2.5) shows the optimized filter responses. Both analysis and
synthesis filters are of order (15/12).
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Figure 2.6: Comparison of 2 channel design based on Phoong et al [6] (left) and the
proposed similarity transformation approach (right)

Next simulations are done for 2 channel and 3 channel cases for the second design
scheme discussed in section (2.3.2) based on similarity transformation method. The case
of section (2.3.2.1) where rank(Aa) = m is considered. T is assumed to be a circulant
matrix and A is assumed to be a diagonal matrix with distinct real eigen values. For the
2 channel case m = 2 is assumed, so for the proposed method low pass and high pass
filters are of same order (5/4). Figure (2.6) shows a comparison of 2 channel TIR causal
stable FB design by Phoong et al [6] and the proposed method. The orders of low pass
and high pass filters are 4/2 and 7/4 respectively for the former design. While there is a
4dB bump in the passband of the high pass filter of [6], for the proposed method the filters
have flat passband. Further, the filters designed in [6] are of different orders, while the
proposed design leads to equal orders. The number of multipliers and adders required for
both the methods are nearly same. For 3 channel case m = 3 is assumed and simulations
are done. Figure (2.7) shows the analysis filter responses, where the third filter is almost
the mirror image of the first one. Both analysis and synthesis filters have order (11/9).

Simulations are done for the factorization method discussed in section (2.5). First the
case in section (2.5.3) with diagonal matrix is considered. 3 channel case is considered
with m = 3. A is assumed to be upper triangular matrix and A* is assumed to be a
diagonal matrix with distinct eigen values. For this case the rank bounds are 3 < r < 3.

Matrices B and C are constructed as per the design methods given in section (2.5.2).
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Figure 2.7: 3 channel design based on similarity transformation approach
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Figure 2.9: 3 channel design based on factorization with triangular matrix case

Figure (2.8) shows the analysis filter responses for this case.

Simulations are done for the case with triangular matrix of section (2.5.4), where the
diagonal elements of A and A* are same. 3 channel case with m = 3 is assumed. Both
analysis and synthesis filters are of order (11/9). Figure (2.9) shows the analysis filter
responses for this case. The designed filters have flat pass band and stop band attenuation
of -20dB, which is better than the design method given by [5]. To reduce the optimization
time, simulations were repeated for 3 channel using sequential method discussed in section
(2.5.4.2). Figure (2.10) shows the analysis filter responses during various stages. It can
be seen that the filter responses are becoming better with the cascade of more blocks.

To summerize, after doing simulations following observations are made. The optimiza-
tion time increases with the number of channels and with the number of free variables. 2
channel design is faster than the 3 and 4 channel design. As the number of free variables
increases the filter performances are good, so the 3 channel design based on factorization
with triangular matrix case gives good filters compared to the 3 channel design based on
similarity transformation approach. It was observed in simulations that all the designs
are robust to initialization for optimization. With the sequential design approach good
filters are obtained at a faster rate of convergence, but at the cost of filter responses,
which is evident from the figures (2.10) and (2.9). In the former case all the free variables

are optimized at once, but in the later case few variables are optimized keeping others
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Figure 2.10: 3 channel design based on factorization with triangular matrix case with
sequential design

constant. The stop band attenuation is -20 dB for the former case and -15 dB for the

later case.
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Design of M channel FIRPRFB

3.1 Introduction

In this chapter some characterizations for FIR bi orthogonal perfect reconstruction filter
banks are discussed. If £(z) and R(z) are the M x M analysis and synthesis polyphase
matrices, then for perfect reconstruction R(2)€(z) = cz~Iys, where ¢ and [y are the
constants. Given the analysis polyphase matrix, the synthesis polyphase matrix may be

expressed as

R(z) = czlogt (2)

i, adi(E(2))
det(E(z))

= Cz

Even if £(z) is of finite degree, R(z) can be rational. FIR synthesis polyphase imposes
a condition that det(&(z)) = cz~*, which is obvious from the above equation. Since it is
known from system theory that any matrix polynomial [51] can be realized in the state

space form, £(z) can be written as
g(Z) = DM + CMXm(ZIm - Ame)_lexM-

For £(z) to be of finite degree, the state transition matrix A must be nilpotent [1]. Since

R(z) involves the inversion of a matrix polynomial, explicit inversion formula given £(z)

48
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involves calculation of spectral information of the matrix polynomial £(z) [48] [58]. For
FIR systems with FIR inverse, the synthesis polyphase matrix has a similar state space
form with the state transition matrix being nilpotent.

If Eq,Eq,---,E; are M x M complex matrices, then the matrix valued function de-
fined on the complex numbers by £(p) = Ei’:o E;p' is called a matriz polynomial. Such
polynomials are encountered while studying systems of ordinary differential equations
with constant coefficient, particularly while studying theory of vibrating systems [54].
The development of the theory of matrix polynomials is due to the significant work by
Lancaster [52] on vibrating system problem being analyzed using the theory of matrix
polynomials. Quite independent of application of the theory of matrix polynomials to
vibration problem, the Russian mathematician M. V. Keldysh viewed the vibration prob-
lem as an operator polynomial solution to a class of non self adjoint linear operators and
relied heavily on the theory of analytic functions [53]. Subsequently, rapid progress was
made following the work by Lancaster, Gohberg and Rodman [54] [55]. A complete book
evolved in 1982 [48]. Much of the work discussed in the following sections are from the
sections of this book. Another book relating factorizations of matrix polynomials evolved
in 1986 by the same authors [56]. Similar kind of work can be seen in linear multi variable
control scenario. Significant work by Vardulakis on polynomial matrix dynamics can be
seen in [58].

For FIR bi orthogonal filter banks with FIR inverse, the analysis polyphase matrix
is treated as a matrix polynomial of finite degree. The synthesis polyphase matrix in-
volves the inversion of the analysis polyphase matrix. Matrix polynomials with non zero
determinant are termed as regular. In the following sections some theorems concerning
the spectrum of matrix polynomials are presented. Explicit inversion formula of a regular
matrix polynomial, given the spectral data, is given. The inverse problem of construction
of a regular matrix polynomial, given spectral information, becomes the basis for the
characterization of FIR bi orthogonal filter banks with FIR inverse, as discussed in this

chapter.
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3.1.1 Inversion of regular matrix polynomials

In this section the inversion formula for a regular matrix polynomial is given. The problem
of inverting a matrix polynomial is a well known one [58] [57], and dealt in the case of

finding the solutions of linear matrix differential equations of the form

E(p)x(1) = Blp)u(1) (3.1)

d

=, E(p) is an M x M regular matrix polynomial, B(p) is an M x N matrix

where p =
polynomial and x(¢) is a vector valued function to be found out, given N x 1 vector valued

input function u(t). Special case of (3.1) with the from
(pE — A)x(t) = Bu(¢) (3.2)

is called generalized state space system (GSSS). The solution for GSSS is well known from
the work of Gantmacher [59] and Verghese et al [60]. Most of these results are based on
Gantmacher’s [59] analysis of the canonical form of the matriz pencil pE — A, called the
Weierstrass canonical form. More recently the solution of (3.1) was given by Gohberg et
al. [48] and Vardulakis [58]. The solution of the above equation involves the inversion of
the matrix polynomial £(p). It was shown in [48] [58], that solution space of (3.1) is the
sum of smooth and impulsive parts which are controlled by the spectrum of the matrix

polynomial. Mainly the solution at ¢ = 0, impulsive behavior, is controlled by the zeros

at infinity of E(p).

3.1.2 Jordan chains and solutions of matrix differential equa-

tions

If £(p) = Eo+Eip+ -+ Eip' is a regular matrix polynomial, and if Ao is a zero of &(p),
i.e. the root of det(E(p)), then the homogeneous solution is [58] [48] [53]

tko—l tkg—?

o= =2

Aot

x(t) =

pXe e TR + Xpo—1]| €
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and xq # 0 satisfies equation (3.1), iff the condition

];0 %5<1>(A0)Xi_j =0, i=0,1,---,k—1, (3.3)
is satisfied. The sequence xg, Xy, -+, Xp,—1 for which the equalities in (3.3) hold is called
a Jordan chain of length ko for E(p) corresponding to the number A\g. It can be seen
from (3.3) that xq € ker(E(Xg)). The length of the Jordan chain kg depends upon
the multiplicity of the eigen value Ag in det(E(p)) and on the dim(ker(E(Xg))). The
information regarding the Jordan chains and the eigen vectors of £(p) is called the spectral
data of E(p). The vector xq is called eigen vector corresponding to the eigen value g,
and the vectors xy,Xa,- -+, Xg,—1 are called generalized eigen vectors. These may not be
linearly independent. If the above vectors in the Jordan chain satisfy equation (3.3), then
U(t) = [Xo, X1,y Xpo_1]e ! satisfies equation (3.1), where Jy, is the kg x ko Jordan
block, corresponding to the eigen value M. If dim(ker(E(Ng))) = ro then there exits
ro eigen vectors, and there may exist generalized eigen vectors for each eigen vector.
If the multiplicity of Ao in det(E(Xo)) is ko then there exists ro Jordan blocks of sizes

kg, k3, -+, ki such that 22021 ké = ko. Corresponding to eigen value Ay there exists

vectors
_ 0 kg —1 0 kg—1 0 k0 —1
X()‘O) — [X/\olv"'vx/\ol s Xdoos s X2 5 Uy X/\Orov"'vx/\wg ]
: — 1 ro 0 0 0
and the matrix Jy, = diag(J, ,---,J ). Here the vectors xy,{,Xx,5, Xy, are the

eigen vectors and are linearly independent. These chains of vectors which satisfy equation
(3.3) are called the canonical set of Jordan chains.

Here X(Xg) is an M X ro matrix and J,, is a 1o X ro matrix. The pair of matrices
(X(Xo),J,) is called the Jordan pair of E(p) corresponding to the eigen value Ag. The
following statement [58] [48] holds good for the Jordan pair.

Let (X, J) be a pair of matrices, where X is an M x g matrix and J is an g x g matrix
with unique eigen value Ag. Then the following conditions are necessary and sufficient in

order that (X,J) be a Jordan pair of £(p) corresponding to A.
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e det(E(p)) has a zero of multiplicity u
o rank col(XJj)é;B =/
¢ EXJ +E_ XJ'4+...+EX=0

Taking the Jordan pair (X(A;),Jy,) for every eigen value A; of £(p), and defining a finite
Jordan pair (X, ) of £(p) as Xy = [X(h), X(\ ), -+, X0 )], 77 = diag(@ngsTns 13,
it is found out that X, is M x py and J; is py X iy matrices, where py is the degree of
det(E(p)) ( Chrystal’s theorem [54]). Having defined the finite Jordan pair, the M x pu;
matrix valued function W(¢) = X e/*! is called a basis matrix for the solution space of
the homogeneous matrix differential equation (3.1) [58]. Here the finite Jordan pair sat-
isfies the conditions given for a Jordan pair for Ag. The solution space obtained by the
finite Jordan pair is called the smooth solution space. It was showed in [58] and [48]
that the smooth solution space of equation (3.1) is invariant under the unimodular mod-
ular transformations of the matrix polynomial £(p). Since a unimodular modular matrix
polynomial (say U(p)) has constant determinant, smooth solution space due to U(p)E(p)
and E(p) are same. In order to find out the unique solution space by E(p) the concept
of spectrum at infinity is introduced. Literature on the structure of spectrum at infinity
of a matrix polynomial can be found in [51] [58]. It was shown in [58] that spectrum at
infinity affects the behavior of impulsive solution space of a matrix polynomial.

In order to find the infinite spectrum, the dual polynomial matrix g'(p) = p'&(1/p)
is defined. By definition [48], a Jordan chain of matrix valued function £(p) at infinity
is just a Jordan chain of the matrix valued function £(p~!') at zero. Then an additional
Jordan pair (X, Joo) of E(p) is defined as

Xoo = [y oy oyl ey iy
Teo = diag[Jeor,Jooz,+ Joog]
(i)

where J.; is the Jordan block of size s; with eigenvalues zero and y; "’ are the eigenvectors
and generalized eigen vectors of g'(p) for zero eigen value. This Jordan pair is called infinite

Jordan pair. 1t should be noted that (X, 7 ) is the Jordan pair of the matrix polynomial
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E(p) = p'€(1/p) corresponding to the eigenvalue A = 0. The following conditions must
be satisfied by a pair (X,j) to be an infinite Jordan pair of £(p).

o det(p'€(1/p)) has a a zero at Ao = 0 of multiplicity fio,
e rank COl(ij)é_:B = floo
e EXJ +EXJ'4.--+E =0

Having defined the concepts of finite and infinite Jordan pairs, linearization of matrix

polynomials is discussed in the next section.

3.1.3 Linearizations and decomposable pairs

If £(p) is a regular M x M matrix polynomial, an M x M/ linear matrix polynomial
So + Sip is called the linearization of &(p) if

Ep) 0

0 Iaa-n

=U(p)(So+ S1p)V(p)-

The structures of U(p) and V(p) are given in [48] [58]. If block companion polynomial
Ce(p) of E(p) can be taken as the linearization, then

‘10 .- ol [o -1t o - o ]

01 -~ 0 0 0 -1 - 0
Ce(p) = p+

00 I 0 0 0 T

(0 0 0 E/| |E E o B

The matrix Cs(p) is a matrix pencil. The main idea of linearization is to find the equiv-
alence of £(p) to a linear matrix polynomial Cg(p). Since matrices U(p) and V(p) are
unimodular, det(E(p)) = det(Cs(p)), i.e. spectrum is preserved.

Next the concept of decomposable pairs, which generalizes the concept of Jordan pairs,

is discussed. A pair of matrices (X, T) is called admissible of order p if X is n x p and T
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is p X p. The admissible pair (X, T) of order M is called a decomposable pair (of degree

[) if the following conditions are satisfied:

T, 0
e X =[X; Xy], T= ! where Xy is an M x g matrix, and Ty is a p X p

0 T,
matrix, for some p, 0 < p < Ml, Xy and Ty are of sizes M x (M — p) and

(M1 — ) x (Ml — u) respectively.

e The matrix

X, X, T
X, T, X,T,?
S, = L (3.4)
X, T X,

is nonsingular.

The pair (X, T) is called the decomposable pair of the regular matrix polynomial
Ep) = Ei’:o E.p', if in addition to above conditions the following are satisfied.

¢ Yo EXiTi =0, T EX,Ty =0

It is shown in [48] that if £(p) is a regular matrix polynomial with (X, J;) and (Xeo, JToo)
as the finite and infinite Jordan pairs, respectively, then ([X; X.],J; @ Je) is a de-
composable pair for E(p). Detailed proof is given in [48]. If ([X; X3], Ty & T3) be a
decomposable pair, let S;_; is as in (3.4) and let S;_y =col(X T}, X,To 279122 then the

following conditions are true.

e S;_» has full rank, with rank M(/ —1).

I
e The Ml x Ml matrix P = (I & Ty)S; S,;_5 is a projector matrix with
0

ker(P) = ker(S;_3).

3.1.4 Decomposable linearization and a resolvent form

After discussing the concepts of Linearizations and decomposable pairs, their role in

finding the structure of inverse of a regular matrix polynomial is discussed with the
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following propositions.

Proposition 3 Let E(p) be a regular matriz polynomial, and let ([X1Xz], T1 @& T2) be its
decomposable pair. Then T (p) = (Ip — T1) & (Ta2p — 1) is a linearization of E(p) and

Ce(p)Si—1 = T(p) (3.5)

where V. = [EleTll_l, — Ei;é EngTé_l_i] and Ce(p) is the companion polynomial

discussed earlier.

Using the above decomposable linearization theorem, resolvent form of the inverse for

a regular matrix polynomial is given by the following proposition.

Proposition 4 Let E(p) be a matriz polynomial with decomposable pair ([ X; Xs], Ty &
T,) and corresponding decomposable linearization T (p). IfV = [E; X, T}, —Ei;é E;X, T, ',
-1
Si—2

Sy =col(X T, XoT5 222 and 7 = 1@ T [0 -+ 017, then inverse
\%

of E(p) is given by,
E7Np) = [Xi X T (p)Z. (3.6)

Proofs of above propositions are given in [48], and the second proof can also be found in
[58]. The decomposable linearization given in the above proposition is the generalization

of Kronecker canonical form or Weierstrass canonical form of reqular matriz pencils [59]

[51].

Proposition 5 Fvery regular pencil (pE — A)nyn can be reduced to a canonical quasi-
diagonal form

(PE = A) =Pr[(pl = N;) & (I - Noop)lQr (3.7)

where (N — K) x (N — K) matriz N, corresponds to infinite elementary divisors and
K x K matriz Ny is uniquely determined by the finite elementary divisors of the given

pencil.
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Py and Qg are matrices with constant entries. Detailed information regarding elementary
divisors is given in [59]. In case of Kronecker canonical form the matrices Ny and N, are

the matrices corresponding to finite and infinite spectral data, i.e. Jy and J, respectively.

3.1.5 “Inverse problem”— construction from decomposable pair

Given a regular matrix polynomial £(p), the spectral data, i.e. the Jordan pairs can be
found out and the inversion formula is given in equation (3.6). But the inverse problem,
i.e. given the spectral data, construction of the a regular matrix polynomial is the issue of
current interest. If (X, T) is the decomposable pair (of degree [), then the inverse problem
is to find all regular matrix polynomials of degree [ with (X, T) as the decomposable pair.
Such regular matrix polynomial is constructed with (X, T) as the decomposable pair from

the following proposition [48].

Proposition 6 Let (X, T) = ([X1Xz], Ti®Ts) be a decomposable pair of degree |, and let
Si—2
v

S, = col(XlTli,XgTzl_Q_i)i;%. Then for every M x MI matriz V such that

is nonsingular, the matriz polynomial

E(p)=V(I=P)[(Ip—T) & (T2p — D](Uo+ Usp+---+ Uip'™")  (3.8)

|
0

has (X, T) as the decomposable pair, where P = (I@Tz)[col(XlTli, XzTgl_l_i)ﬁ;é]_l

and [UO U1 e Ul—l] = [COl(XlTli,XQTQl_l_i)ﬁ;é]_l.
Conversely, if E(p) = Ei’:o E.p' has (X, T) as its decomposable pair, then £(p) admits

representation (3.8) with

-1
V=V(I-P)= |EX,T{", -) EX,T;'7|. (3.9)
1=0

Si—2
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3.2 Proposed FIRPRFB design

The M x M analysis polyphase matrix £(z) of degree [ is given by

Here p, the variable used in the previous sections, is replaced by z7!. For FIRPRFBs
with FIR inverse det(E(2)) = z7%, where £(2) is M x M polyphase matrix [1]. All the
eigenvalues of £(z) are zero, i.e. the Jordan matrix corresponding to finite spectrum (7y)
is nilpotent. It was shown in the earlier discussion that the finite and infinite Jordan pairs
are going to define a matrix polynomial uniquely. The Jordan chains are highly nonunique,
but the number of eigen vectors are decided by dim(ker(£(0))). The multiplicities of the
eigen value (zero in this case) will decide the matrix polynomial uniquely. If £(z) is of
degree [, and det(E(z)) = z7%, then X; and J; are MI x k are k x k matrices. Now it
will be shown that det(é(z)) = z~(MI=k) where g’(z) is the dual polynomial of £(z).

Theorem 5 For FIR £(z) with FIR inverse, if degree of det(E(z)) = k then for the dual
polynomial g’(z) the degree of det(é(z)) = Ml —k.

Proof: From the concept of linearization of matrix polynomials discussed in section (3.1.3)
det(E(z)) = det(A + Bz_l)

where structures of A and B are discussed in section (3.1.3). From the Kronecker canon-
ical form of matrix pencils discussed in proposition (5), the pencil matrix A + Bz~" can
be written as

I:7' — Nf 0

A+B: ' =Pg Qx
0 I—27'N,

where Ny and N, are Jordan nilpotent matrices because the matrix polynomial is FIR.

If A is a Jordan nilpotent matrix, det(I—z7'N') is 1 because N is upper triangular with
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diagonal elements equal to zero. Therefore,

det(A + Bz_l) = cdet(IZ_l — Ny)det(I— 2_1./\/00)
= cdet(IZ_l — Ny)

— ez F

where ¢ = det(PxQg). For the dual polynomial EN(Z),

det(é(z)) = det

= det(z ' Tyy)det(A + Bz)
= det(z_l(A + Bz))
= edet(Iz™' — N)

_ CZ_(Ml_k).D

Since the finite spectral data of £(z) is same as the infinite spectral data of £(z), Jo, and
X are (Ml —Fk) x (Ml —k) and M1 x (MI — k) matrices. So, given the Jordan matrices
J; and J, and if the matrices X and X, are constructed such that S;_; is invertible,
then pair (X, J) = ([X; X, 5 b T ) satisfies the conditions of a decomposable pair (of
degree [). Using the above proposition (6), a regular matrix polynomial can be constructed
with (X, J) as the decomposable pair of degree [. Now it will be shown that rows of the

matrix V used in the above proposition (6) span the null space of S;_s.

Theorem 6 The rows of the matrix 'V used in the construction of matriz polynomial

E(z) in (3.8), span the null space of Si_s.

Si—2

Proof: From proposition (6) matrix V is selected such that the composite matrix
v

is invertible. If Xy and X, are taken such that ([X; X..], Js @ Js) is the decomposable

pair of a regular matrix polynomial £(z), i.e. then matrix S;_; is invertible, then it was
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shown from the additional properties of a decomposable pair that M ([l — 1) x M matrix,
Si—2 is full rank (with rank M(l — 1)). So, V must be an M x M] full rank matrix
for the composite matrix to be invertible. If the rows of matrix S;_5 span a M(l — 1)
dimensional space, say W, rows of S;_, are taken as the basis vectors of W;. Since each
row of S;_o is 1 x M, W; can be taken as the M(l — 1) dimensional subspace of the
M dimensional vector space V. The remaining M basis vectors of the space V are taken
from ker(S;_3), which is M dimensional and orthogonal complement to W;. If Ng,_,
represents the matrix whose rows are the basis of ker(S;_2), rows spanning V may be

taken as linear combinations of the basis of Wy and ker(S;—2), i.e.

S/
VA A | 0. (3.10)
NSl—z

From the concept of rank of product of matrices [59],

rank(AB) = rank(B) — dim(ker(A) N range(B)). (3.11)

So, applying the above rank equality to (3.10) we have

Si—2 . Si—2
rank(V) = rank — dim | ker([A1 As]) Nrange
NSl—z NSl—z
, Si—2 Si—2 ,
Since rank = MI, range =V, and V being full rank we
NSl—z NSl—z

have,

dim(ker([A1 Ax))NV)=MI - M

which happens only when [A; A,] is full rank.
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In the expression for the construction of matrix polynomial from equation (3.8), the

term V(I — P) can be written as:

V(I-P) = (A;S_,+A,Ng,_,)(I-P)
= AS,(I-P)+A,Ng,_,(I-P)

I
AS L | T-(Ia joo)sl__ll Si—2 | + A;Ng, (I -P)
0

|
- A1 Sl_g - Sl_Q(I @ joo)sl__ll 0 Sl_g —|— AQNSZ_2(I — P)(312)

The term S;_»(I & Jo.)Si, can be written as:

Xf }(oonyool_2
X; T XoJw'™? I 0 g1

-1

SI—Q(I S, joo)sl__ll =

0 Js
ijfl_2 XooToo
= [Lug-n 0] S8,
= [IM(I—1) 0] (3.13)

Now using (3.13) in (3.12), V(I — P) is written as:

Tnra-yy

V(I-P) = A, |Si—2— [Tvg-1y 0] .

Si—2 | + AxNg,_,(I-P)

= A;Ng, ,(I-P)
Form the above it is obvious that V. = A;Nyg,_,, thus the rows of matrix V span the null
space of §;_,.0

Matrix A, is full rank for V to be full rank. Having obtained V. the explicit repre-

sentation for £(z) and R(z) is given by:

€(2) = AsNs_,(T=P)[(:7'T = T7) & (7' T = DS ol (7T (3.14)



Chapter 3. Design of M channel FIRPRFB 61

R(z) = ylgt (2)

3.2.1 Length of synthesis filters

In this section it will be shown that for FIR £(z) with FIR inverse, the reconstruction
delay introduced by the cascade of £(z) and R(z) is equal to the number of finite spectral

points.

Theorem 7 The minimum delay introduced for synthesis section to be causal is equal to

27 where py is the index of nil potency of J;.

Proof: Recall that the matrix R(z) = z70&€71(2), where the delay 27" is introduced to

make the synthesis section causal. Using the explicit expression of £7'(z),

0
-1
7' — 77! 0 I 0 Si_
R() = x| -
0 (T —Tt | |0 gt \% 0
I
_ ZI+ZQJf+---+Z“fJf“f_1 0
-7 lo[Xf Xoo] -1 171 ! 1
0 (T T T e e T
0
-1
Si—2
A\Y 0
I

The above matrix is causal when p; — lo = 0, thus the minimum delay introduced is
equal to z7#/.0
While the synthesis polyphase matrix R(z) = z7#&(z), the degree of the synthesis

polyphase depends upon s, .
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o If 1oy < [, then the term (Joz™' —I)7'7..""" = 0 in the expression of £7'(z), so
the degree of the synthesis polyphase matrix is [ — 1 and the length of the synthesis
filters is M1,.

o If yioo > [, then the degree of the synthesis polyphase matrix is Iy + pioo — { and the
length of the synthesis filters is M (lp + poo — [+ 1).

Free variables: Since the matrix S;_; must be full rank given J; and J.., character-
ization of X; and X, such that S;_; is full rank is very difficult. It was observed in
simulations that in most of the cases the matrix S;_; becomes invertible for arbitrary
selection of X and X, which requires Mk and M(M![ — k) free variables. The full rank
matrix used in the construction of matrix V, given by V.= A,Ng,_,, requires M? free
variables for A,. So, for characterizing an M channel degree [ analysis polyphase matrix,

we require to optimize M?*(l 4 1) free variables.

3.3 Linear phase filter bank design

The conditions for £(z) to be linear phase is given by
E(z)=2""DECI (3.16)

where D is an M x M diagonal matrix with diagonal elements as +1 and —1 depending
upon the number of symmetric and antisymmetric filters, J is an M x M exchange matrix.
From the reconstruction theorem the structure of £(z) is given by equation (3.14). Now
using this structure the conditions on finite and infinite spectra and Jordan chains are

derived.

Theorem 8 For an M channel linear phase FIR filter bank with FIR inverse, following

conditions are true:
1. The product M is always even.

2. deg(det(E(z))) = MI/2.
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3. The number of points in the finite and infinite spectrum are equal to MI/2.

Proof: From the linear phase condition given in the equation (3.16),
E(z) = DE(2)T (3.17)

where £(z) is the dual polynomial of £(z). Taking the determinant on both sides of

equation (3.17), and since D and J are have constant determinants,

deg(det(E(z))) = deg(det(fj(z))) (3.18)

If deg(det(E(2))) is k, then from theorem (5) deg(det(E(z))) is M{—k. Then from equation
(3.18) k = MI — k implies, k = M[/2. Since k € Z, M] must be even. k is the size of
finite spectrum and is equal to M[/2. So, both finite and infinite spectrum have M{/2

points. O

Theorem 9 For an M channel FIR filter bank with FIR inverse with J; = J to be

linear phase the following conditions must be satisfied.
1. Xy =JX

0 I
2. V(I-P)=-DV(I—P)J,, where J, = Mz
Ivigpe O

Proof: From the structure of £(z) from (3.14) and linear phase condition of equation

(3.16), assuming Q(z) = col(z~'T)!Z} we have,
V(I-P)T(2)S,Q(2) =DV(I - P)z"T ()8, ="V Q(:7)J (3.19)
where T(2) = [(z7'T = J;) & (7' Too — I)]. The term 27T (27") is analyzed as follows.

I:—J;, 0
I A |

2_17(2_1) = 1
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1-:'7, 0
0 Too — 21

i R 0
- —J2 J2
0 VT =1

Taking le to be an M x MI exchange matrix, the term Sl__llz_(l_l)Q(z_l)J is ana-

lyzed as follows.

Sl__llz_(l_l)Q(z_l)J = J2(leSl_ng)_lelZ—(l—l)Q(Z—I)J

(000 o0 J|[ 01
00 ---J 0 P |

= (TS J)™ | N |
0 J 0 0 1
(Jo0 00| I

= Jo(TnSimiJ2) 71 Q(2)

Using the above equalities in the linear phase condition and cancelling the common terms

we have

) 0
V(I-P) / S
0 A |
2_11 - joo 0 x -1
— _DV(I-P)J, (TS Ta)
0 T~ 1

For the above equation one possible solution is obtained by assuming J; = J.. This
assumption is valid because in this case the Jordan forms of finite and infinite spectra
are assumed to be same, which is a special case of a more general condition — determi-
nant equality— that does not give information regarding the Jordan structure of finite

and infinite spectra. With the above assumption, the above equation leads to following
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equalities.

V(I-P) = —DV(I-P)J, (3.20)
(Sl_l)_l - (jM[S[_lJQ)_l (321)
The last equation can be simplified as follows.
St = JwiSisids
X, X J! 00 --0J]||X X, J!
X Tr XeJS? 00 - J0 XeTr  XeoJd? .
0
N I 0
X T XeoJw 0J -~ 00 XTI XeoJw
X7 Xo J o 00 || X/ T Xo
IX., IX; 7,
IXooToo  IXpT)7°
IX T2 JX Ty
IX. ! IX,

From the above matrix equality X = JX, and X, = JX; which are equivalent. O

3.3.1 Length of synthesis filters

From section (3.2.1), the degree of the synthesis polyphase matrix is ptf + ftoo —[. Since we
assumed p; = pio,, the degree of the synthesis polyphase matrix is 2/ — [, so the length
of the synthesis filters is M (2u; — [+ 1).
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3.3.2 Near linear phase filter banks

Characterizing V satisfying the conditions V(I — P) = —DV(I — P)J, and full rank
Si—2

v
already discussed in theorem (6), V is the span of null space of S;_5. So the norm of the

is difficult because there is no easy way of solving the above equality for V. As

error matrix eV = V(I - P)+DV(I - P)J, , |[eV]], is reduced in the optimization while
designing the filter bank. ||eV|| — 0 if all the elements in the matrix eV are zero. This
leads to the minimization of M?[ elements of the matrix eV to zero. Instead if SVD of eV
is considered i.e. eV = PD.vQ, where P and Q are M x M and M?[ x M?| orthogonal
matrices whose norms are unity, and Dey is a diagonal M x M?[ matrix with M diagonal
elements. As ||[eV| = |PDevQ|| = ||Dev]|, by taking SVD of eV, minimization of M
elements is enough, and this is irrespective of the degree of analysis polyphase matrix.

Free variables: The construction of linear phase £(z) involves the inversion of matrix
Si—1, which is formed from the matrices X; and J;. Since Jy = Joo and X = IX, X
and J., are known once X and J; are fixed. So, £(z) is a regular matrix polynomial with
([X; IXy], T & Jy) as the decomposable pair. Different £(z) are possible for different
J; for a given M and [. Constraining Xy, given J;, such that S;_ is full rank is very
difficult. Depending upon the Jordan structure of J;, columns of X; are taken to be
linearly independent for the canonical Jordan chain condition to be satisfied. In the
simulations, all the elements in X, are assumed to be arbitrary and in most cases the
matrix S;_; is seen to be invertible. So, M? free variables for matrix V and M?*([/2) free

variables for X are required to be optimized.

3.4 Low delay filter bank design

3.4.1 Matrix polynomials with invertible [J

In this chapter a class of matrix polynomials called comonic matrix polynomials with
nonzero finite spectrum is discussed. This leads to the construction of unimodular matrix

polynomials. If J; is invertible, its eigenvalues take nonzero values. Then det(E(z)) is a
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polynomial with nonzero roots, i.e. £(0) = Eq is invertible. Then taking & =1, £(z) is
called comonzc.

Let(X s, Js) and (Xoo, Joo) be the finite and infinite Jordan pairs of the comonic poly-
nomial £(z). Since Eq = I and J; is invertible, taking J = jf_l BT and X = [X; X ],
the pair (X, J) can be taken as comonic Jordan pair, which is a convenient representation
of comonic matrix polynomial. Linearization of the comonic matrix polynomial is defined

I-R:™" = B(z) diag[E(2),1,---,1] D(z)

where the structures of B(z) and D(z) are given in [48], and R is called the comonic

companion matrix whose structure is given by

0 I 0 0 |
0 0 I 0
R =
0 0 0 - I
| -E, —-E; -Ei, - -F |

The matrix pencil I — Rz~! has a canonical form [59] [48] given by
col(XTNZL T =R col(XTHZE.
and the above equation is equivalent to
XJT'+EX +EXJ 4+ EXJ™ =0

The pair (X, J) is taken as the decomposable pair if the matrix col(X.7%)\Z} is nonsingu-

lar. The above equation leads to the construction of a comonic matrix polynomial given
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the spectral data (X, 7). The matrix polynomial £(z) is given by
E(2)=T—=XT(Viz7 4+ Vo =D 4 4 v h

where [V -+ V|| = [eol(XT)!Z]7". If (X, J) is the comonic Jordan pair and if £(2)

has the structure given above then the inverse of the matrix polynomial is given by

EMN) = XTI M- Tz eo(XTHIZH]THO0 -+ T)7. (3.22)

3.4.2 Construction of unimodular matrix polynomials

If the analysis polyphase matrix is unimodular then delay due to analysis and synthesis
sections is zero, and the filter bank delay is due to the delay chain only. It was shown
previously that for an unimodular matrix polynomial, finite spectrum is absent and has
spectrum at infinity only, i.e. J is Jordan nilpotent [62]. So, J = [J.. Assuming
Teo = diag(Teot, -+ s Took), With Jordan blocks having sizes my,---,my such that my; >
me > - > my and Ele m; = M, the M x M matrix X has the structure

— 0 m1—1 0 mg—l 0 mk—l
X_[le"'vxl )Xoyt Xy Xyt Xy ]
and the eigen vectors x,x9. - -+, x{ are linearly independent. Now the requirement for the

construction of a unimodular matrix polynomial is, (X, J) must be a decomposable pair,
or matrix col(X.7%)!Z} must be nonsingular. Now the inverse problem reduces to finding
X, given J, such that col(in)i»;é is nonsingular. Closest possible solutions are given in
[61], in the context of finding Y for the pair (Y, T) to be controllable. The controllability
matrix Cp = [Y TY T?Y ... TF1Y] is assumed, where Y is M x M matrix and T
is Ml x MI matrix. Structures of the matrix Y are given in [61] if the controllability
index & [61] lies in the bounds (I,%.). ts is the nilpotent index of T. If col(XJ%)'Z} is
invertible, then it’s transpose [XT X777 ... XT(77)'=1] is nonsingular. Taking Y = X7
and T = J7T, the pair (XT, J7T) must be controllable with the controllability index always

achieving the lower bound [. The structure for Y given in [61] is valid if | < k < .., but
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the inverse problem demands k = [. So, for simulations X is taken arbitrarily with eigen
vectors linearly independent and it was seen in simulations that in most of the cases the

matrix C; becomes nonsingular.

3.4.2.1 Degree of the inverse polynomial

If oo is the nilpotent index of J then the term jl_l(I — Jz"Y7! in equation (3.22) is

given by

jl_l(I—jZ_l)_l :Jl_1(1+j2_1 4. —|—jk2_k)

where k is the degree of the inverse polynomial. The highest degree of the above polyno-
mial is [ + k& — 1, which must be equal to u., — 1, which implies k& = u., — [, so the degree

of the inverse polynomial is p., — (.

3.5 Simulation results

3.5.1 Simulation results for FIR design

The design procedure is briefly recalled below. Given number of channels M and analysis
polyphase order [, some p; and some corresponding possible case of J; and J., are
assumed. The finite and infinite Jordan chains X; and X, are taken arbitrarily as free
variables to be optimized, because constructing them with the constraint that S;_; is full
rank is difficult. In simulations it was seen that S;_; is invertible for most of the cases. The
regular matrix polynomial £(z) with ([X; X ], diag{J;, T }) as the decomposable pair is
constructed from proposition (6). V.= AyNg,_, is optimized. The full rank A, is obtained
from SVD method, A; = UDVT, where U and V are the real orthogonal matrices and
D is a diagonal matrix. The orthogonal matrices are obtained form Givens rotations [1].
Optimization may be run for any appropriate cost function, such as frequency selectivity.
Once £(z) is obtained from optimization, R(z) is found as mentioned with [y, the delay,

taken such that the synthesis filters are causal. Simulations are done 2 channel and 4
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channel cases. Matlab unconstrained optimization routine fminunc is used for optimizing
the filters.

For 2 channel case the analysis polyphase matrix is considered to be of order 4. Some
possible cases of J; and J., are assumed. Design results are tabulated in table (3.1).
The notations used are, [, and [; correspond to length of analysis and synthesis filters,
LAsp and HAgp correspond to the low pass and high pass stop band attenuation (in dB,
taken for first side lobe), NPrp and N Pgp represent the first null position of low pass
and high pass filters. As the degree of the determinant of £(z) increases from 1 to 4, the
filter responses improve, especially the stop band attenuation is improved. But for further
values of the degree of the determinant, the results are not consistent. For example, for
degree 5 the stop band attenuation is better compared to degree 4, but transition band
is more when compared to former one. For degree 6, two cases are possible. First one
is having a finite Jordan structure [5, 1], which leads to [y = 10 and better stopband
attenuation at the cost of transition band performance when compared to degree 5 case.
For the latter case (having a finite Jordan structure 6) [, = 12, and the transition band
performance is good compared to [5, 1] case. The reason for the performance of the filters
becoming bad after degree 5, could be because the term (Joz™" —I)7'7.""" becomes zero
in the synthesis polyphase expression for ., < [, so this leads to zeroing of coefficients in
synthesis filters. Since the FB is PR, the effects on synthesis section can be seen in the
analysis. The zeroing of coefficients in synthesis filters has been clearly observed. The
responses for different Jordan structures are shown in figure (3.1).

For 4 channel case, simulations are done for [ = 2. Regarding the spectral data,

following cases are taken.
e J; and J. have same Jordan structure, i.e. [2,2], such that [, =1, = 12.

e J; and J., having [3,1] and [2,2] as Jordan structures, such that [, = 12 and
[, = 16.

For the former case, analysis filter coefficients are shown in table (3.2). It can be seen

that the fourth filter is approximately a flipped and modulated version of the first one,
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Figure 3.1: 2 channel analysis filter responses for different (J¢, Jw)
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Tp | Too | la| s LAsp HAsg | NPrp | NPgp
(dB) (dB) | max.7w | max.w

1 7110 | 10 | -14.5000 | -15.0234 | 2.9044 | 0.8875

2 61010 | -15.6700 | -15.7938 | 2.2532 | 1.0788

3 511010 | -16.8147 | -16.2723 | 2.0310 | 1.0788

4 411010 |-16.8147 | -16.8381 | 2.0310 | 1.1423

5 3110110 |-19.1705 | -15.4600 | 2.0628 | 1.0788
[5,1] 2110 | 10 | -21.3450 | -16.5097 | 2.4231 | 0.8250
6 2110 | 12| -21.2583 | -16.2208 | 2.1262 | 0.9871

Table 3.1: Comparison of 2 channel filters for different delays.

Magnitude Response (dB)

Frequency

Figure 3.2: Magnitude responses of analysis filters of 4 channel filter bank
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ho(n)

hi(n)

ha(n)

hs(n)

0.11213728509219
0.19013060467551
0.26296147394038
0.25887231104063
0.18336772540933
0.09807788074062
-0.00109759645188
-0.08202164924866
-0.06965350844238
-0.01640815624907
0.01029010177065
0.03123653503479

-0.04298586041109
-0.01754633683769
-0.02236899046822
-0.09708148443751
-0.05005092133824
0.19390668366595
0.21558088446386
-0.03576214764423
-0.27999832846542
-0.15454142398085
0.10381854905884
0.12664762153764

0.12665769631184
-0.10383208113384
-0.15453616756111

0.27999987670062
-0.03577015776387
-0.21557421007789

0.19390402404537

0.05004380212950
-0.09707979680717

0.02236454691044
-0.01754917748475

0.04298418248956

0.03123787884481
-0.01029271357353
-0.01640574304014

0.06965281023631
-0.08202426091665

0.00110570000830

0.09806704131317
-0.18336249719728

0.25887323876379
-0.26295978785254

0.19014549193729
-0.11214125172197

Table 3.2:

Analysis filter coefficients of 4 channel filter bank.

and similar behavior is displayed between the third filter and the second. This behavior
is seen in synthesis case also, which are shown in table (3.3). This behavior is expected
because same weightage is given for all the filters in the optimization. The analysis filters

are shown in figure (3.2). If M is even, the condition
hM_i_l(n) == (—1)nh2(N —n — 1) \V/ = 0, s ',M —1
is satisfied if £(z) satisfies the condition

JE(z) = E(2)T (3.23)

where J' is an M x M exchange matrix with alternate sign change and J’; 5y = 1. Taking

the determinant on both sides of the equation (3.23)

deg(det(JE(2))) = deg(det(E(2)T"))

k= M-k

Form the above expressions it is evident that both finite and infinite spectrum have same
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fo(n)

fi(n)

fa(n)

fa(n)

0.12868974904658
0.04462934270879
-0.06826233784958
-0.28599988740900
-0.34863865716744
-0.01997052794912
0.41481125927659
0.77029298024320
1.06949077039530
1.09165358937507
0.78269817601883
0.45651366592867

0.55517631406401
0.46558503335321
-0.68150180727814
-1.21793880825980
-0.16890381065029
0.93721477087846
0.83869225900633
-0.23158667290195
-0.42392092121605
-0.09838880675805
-0.07453897862460
-0.18708611562677

0.18709076368596
-0.07454670831303
0.09838196825780
-0.42390119530081
0.23154810513185
0.83868294043326
-0.93720376456514
-0.16896434558828
1.21795246837691
-0.68147744961239
-0.46560467311364
0.55520328738344

-0.45658262322867
0.78273158015719
-1.09165612507282
1.06945328574356
-0.77026610744241
0.41477161936311
0.01998655851073
-0.34863407842791
0.28599021500691
-0.06825306219248
-0.04463158309743
0.12868460762566

Table 3.3: Synthesis filter coefficients for 4 channel filter bank.

number of points, implying J; and 7., are of same size, i.e. M{/2. For the present case
J; and J., are of same size. It is seen that after optimization both the analysis and
synthesis filters satisfy the condition (3.23), if J; = Jw.

For the latter case, the finite Jordan structure is changed from [2,2] to [3,1]. The
analysis filters show the same behavior. Synthesis filter coefficients for the latter case are
shifted version of the former by a factor of 4, padded with zeros for first 4 coefficients.
The cost function for optimization for both the cases depends on the magnitude response,
so the optimized cost value is same for both the cases. It was clearly observed that for
synthesis filters phase responses are different, whereas the magnitude responses are same,
for the above cases.

When the length of analysis and synthesis is constrained to be the same, the delay
value after which the filter responses become worse is equal to M ([ — 1), because the term
(Jooz™' = I)7'T7."7" in the synthesis section goes to zero for iy, < [, leading to zeroing

of filter coefficients.
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Figure 3.3: Magnitude response of analysis filters of 2 channel near linear phase filter

bank

3.5.2 Simulation results for near linear phase design

Simulations are done for 2 channel and 3 channel case and the matlab unconstrained
routine fminunc is used for optimizing the free variables. For 2 channel case the analysis
polyphase matrix with order 4 (I = 4) is taken, and the length of the synthesis filters are
determined by the Jordan structure of J;. For simulations all the free variables are taken
unconstrained and in optimization it is observed that the matrix S;_; is invertible in most
cases. Norm of SVD of the error matrix is reduced for near linear phase condition. For
2 channel case, the analysis and synthesis coefficients are given in table (3.4) for a choice
of Jy = 4. It can be seen from the filter coefficients that the filter bank is indeed near
linear phase. The responses are shown in figure (3.3).

For 3 channel case, order 2 analysis polyphase matrix is considered. For reducing the
number of free variables, the finite Jordan chain matrix, which becomes a square matrix
in this case, is considered to be diagonal. Two possible Jordan structures are taken,
i.e. [2,1] and 3. For the former case the analysis and synthesis are of same length, i.e.
l, =1, =9, and for the latter case, [, = 9 and [, = 12. Filter coefficients for the two
cases are tabulated in tables (3.5) and (3.6) respectively. In figure (3.4) it is clearly seen
that analysis filters are better if the index of nil potency of J; is more, i.e. greater length

synthesis filters.
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ho(n)

hi(n)

fo(n)

fi(n)

-0.02604587183775
-0.02064955544161

0.10555274673549
-0.10576241242400
-0.47591109009956
-0.47581352281502
-0.10578367074698

0.10553144534750
-0.02065003179864
-0.02604647268042

-0.00288480790935
-0.00228711871246
-0.10235252183210
-0.10212942752748
0.46880725795212
-0.46873436568339
0.10214562977100
0.10233635496466
0.00229028183399
0.00288879764453

0.00589584654412
-0.00467431502568
0.20918368955188
-0.20872773899080
-0.95812814527420
-0.95797917118504
-0.20876085244045
0.20915064840234
-0.00468077967765
0.00590400059359

-0.05323143456644
0.04220267481018
0.21572417180581
0.21615267753786

-0.97264665240974
0.97244724858269

-0.21619612438560

-0.21568063694362

-0.04220364836822
0.05323266254290
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o
o
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with jordan structure [2,1]

with jordan structure 3

0.5

1 1.5

2 2.5

Frequency

Table 3.4: Coefficients for 2 channel near linear phase filter bank with J; having a Jordan
structure 4.

Figure 3.4: Comparison of magnitude response of analysis filters of 3 channel near linear

phase filter bank for the cases ) (Jy, Jx) having a Jordan structure (3,3) b) (77, T)
having a Jordan structure ([2,1],[2,1])
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ho(n)

hi(n)

ha(n)

0.00000000000000
-0.12503034587400
0.00000000000000
0.28955860130023
0.44045166694806
0.28955006260033
0.00000000000000
-0.12502665889459
0.00000000000000

0.00000000000000
0.16698913300922
0.00000000000000
-0.38673123271382
-0.00000591123829
0.38672914765297
0.00000000000000
-0.16698823268757
0.00000000000000

0.00000000000000
0.12505221460313
0.00000000000000
-0.28960924723400
0.44040152046106
-0.28960127718868
0.00000000000000
0.12504877316668
0.00000000000000

Figure 3.5: Magnitude response of analysis filters of 5 channel low delay filter bank with
J having a Jordan structure [12, 3]

Table 3.5: Coefficients for 3 channel near linear phase analysis filters with J; = J.
having a Jordan structure [2, 1].
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ho(n)

hi(n)

ha(n)

0.00000000000000
0.11306115575886
-0.11557835446308
-0.24353238388602
-0.36016154098692
-0.24353331512708
-0.11557835446308
0.11306158809229
0.00000000000000

0.00000000000000
0.16141960246122
-0.00000001225421
-0.34769590253577
-0.00000003818619
0.34769736931061
-0.00000001225421
-0.16142028341894
0.00000000000000

0.00000000000000
0.11305906522716
0.11557750020210
-0.24352788090561
0.36015887896642
-0.24353066907049
0.11557750020210
0.11306035964697
0.00000000000000

Table 3.6: Coefficients for 3 channel near linear phase analysis filters with J; = J.
having a Jordan structure 3.

3.5.3 Simulation results for low delay filter bank design

Based on the section (3.4), simulations are done for 5 channel case with order 3 analysis
polyphase with J having a Jordan structure [12,3]. Here [, = 20 and [, = 50, but as
shown in figure (3.5) the filters have a stop band attenuation at —15dB. This result
justifies the observation done by [32], that low reconstruction delay leads to poor filter
responses.

To summerize, as the Jordan chains are taken to be arbitrary (because of difficulty
in characterizing X and X, for S;_y to be full rank), the free variable space increases.
The optimization time is more and very sensitive to initialization. Especially for the near
linear phase case, optimization time is more for minimizing the norm of SVD error matrix

Dev.
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Conclusion and future work

In this dissertation, first the problem of design of M channel causal stable TIR perfect
reconstruction filter banks in terms of polyphase matrix was considered. The following

approaches were proposed.
e Function of a matrix approach where A* is obtained as f(A)
e Similarity transformation approach where A* is obtained as T~'AT

e Factorization based approach where E£(z) is expressed as the product of degree 1
factors, with the diagonal matrix case where one of A and A* is diagonal and the

other is triangular

e Factorization based approach with the triangular matrix case where A is upper

triangular and A* is lower triangular

e Factorization based approach with triangular matrix case and a sequential design

method where each degree 1 factor is sequentially optimized.

We derived some theorems, which play crucial role in the design. In the factorization
structure, where simple change of sign in the analysis side gives the synthesis was dis-
cussed. For this case the poles of analysis and synthesis polyphase matrices are same. The
sequential design method is introduced to reduce the optimization burden. The design

examples show better results than existing designs.

79
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In function of a matrix approach, there may exist more than one function for the
rank criterion to be satisfied. Better filters are obtained when good functions are taken,
therefore work may be done in exploring a class of these interpolating functions. In
similarity transformation technique, there exists more than one pair of matrices {A, A}
for the rank criterion to be satisfied. Work may be done to characterize these pairs, which
demand sound linear algebra concepts.

In the second part, design of M channel FIR perfect reconstruction filter banks in terms
of polyphase matrix was considered. The analysis polyphase matrix must be invertible
with its determinant being monomial. As the determinant information was known, spec-
tral theory of matrix polynomials was used, and the design problem was viewed as the
inverse problem of construction of a regular (invertible) matrix polynomial when spectral

data is provided. The following design approaches were proposed.

e General M channel FIRPRFB design. It was proved that the delay needed to
make the synthesis filters causal is the index of the nil potency of matrix correspond-
ing to the finite spectrum of the matrix polynomial. The length of the synthesis

filters can be varied in the design.

e Near linear phase FIRPRFB design. Conditions on the spectrum of the matrix
polynomial were given, so that it becomes the analysis polyphase matrix of a linear
phase filter bank. Near linear phase filters were designed by reducing the error

corresponding to one of the linear phase conditions.

e Low delay FIRPRFB design. Filter banks that offer minimum delay were de-

signed using construction theorems of unimodular matrix polynomials.

For a given degree of the determinant of analysis polyphase and order of synthesis
polyphase, there exists lot of PR structures because more than one Jordan structure may
exist. To find a better PR structure among this, simulations have to be done for all cases.
Moreover, there is no simple way to initialize the free variables for optimization. Work

may be done to reduce the free variables by restricting to some structures.



Appendix-A

If f(.) is any analytic function, and A is an m x m matrix then from matrix theory [59], if
spectrum of A is completely known then the values of f(A) on the spectrum of the matrix

A determines f(A). If A = P,'JaPa is the Jordan decomposition of A, then function

of a matrix is given by the expression
f(A) =P f(Ta)P (4.1)

Let the Jordan matrix Ja has the form diag(Jq,J2,---,J), where J; is the Jordan
matrix corresponding the eigen value \;, with the structure diag(J:*,J?2,--- J'™), where

Vap € Z, ay > ag > -+ > dy,. J?J has the structure

N 1 0 0
0 N1 0
aj .
JZ _— '.
0 0 N1
0 0 0

ay Xa]

Now the function of the matrix is f(Ja) = diag(f(J1), f(I2),---, f(Ix)) [59] and each
term matrix f(J;) = diag(f(J?), F(I?2), -, f(I?™)) where the matrix f(J!’) has the

structure
[ 100 200 £ 00 ]
f(A,) 11 21 (aj—l)'
1 a;—2
o oy LR L £
I = :
1
0 g L
0 0 0 FO9) 1 aa,
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So, the values of the function and its higher order derivatives at the spectra of A completes
the matrix f(A). If {1, Ag, -+, Ax} are the eigen values of A then {f(A1), f(X2), -, f(Ax)}
are the eigenvalues of f(A). So, if the eigen values of A and f(A) are known and A is

known, then f(A) can be determined once the interpolating function is known.

Construction of f(.)

If A and eigen values of A and f(A) are given, f(.) can be constructed as follows. Since \;
are the eigen values of A, equate f()\;) to the i’ eigen value of f(A). However, there can
exists more than one function which passes through the points {f(A1), f(X2),- -+, f(Ax)}.
Now out of these the one with minimum degree is constructed, using the function values
at points {A1, Az, -+, A}, by Lagrange interpolation technique. f(.) is given as f(\) =
Y o FOG)Li(N), where L;()) is given by

(A=) (A= Ac)(h = A (3 = &)

Li(A) = i = A1) (= M) = At ) (O — M)

The general solutions for the functions of type f(.), that require information regarding

the derivatives of f(.) at the spectral points, are exhaustively discussed in [59].

EXAMPLE - 1 If Ay and Ay are distinct eigenvalues and f(.) be an analytic function
that maps A\ f—(}) Ay and Ay f—(}) 23 — Ay, such that Ay # Ay then f(.) can be constructed
as follows:

Here derivatives of f(.) at the points A; and Ay are not given, so an analytic function

with minimum degree can be constructed using Lagrange interpolation.

FO) = OO+ ) e
(A= A2) (A= A1)
- /\17()\1 — ) + (2A2 — /\1)7()\2 W

- 2)\—)\1
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