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ABSTRACT

KEYWORDS: Continuous-time; analog-to-digital; oversampling; delta-sigma;

opamp nonlinearity; harmonic distortion; assisted opamp; audio

This research addresses the need to understand the effects of opamp nonlinearity on the

performance of a class of oversampled analog-to-digital converters called continuous-

time delta-sigma modulators. Nonlinearity in the opamps used to build continuous-time

filters are one of the crucial factors determining the power consumption of these modu-

lator. In modulators employing multi-bit quantizers, opamp nonlinearity is found to de-

grade the modulator performance by increasing the in-band noise. Analytical relations

quantifying the increase in the in-band noise spectral density are developed for various

integrator architectures and different opamp topologies. The analysis is also extended

to quantify the harmonic distortions observed in modulators with single-bit quantizers.

Macromodel simulation results are used to prove the accuracy of the derived analytical

results.

A power efficient technique that can mitigate the effects of opamp nonlinearity

in continuous-time delta-sigma modulators is also proposed. Termed as the ‘assisted

opamp technique’, it can be used to achieve low power, low distortion operation in

single-bit modulators. The efficacy of the technique is demonstrated through two single-

bit audio modulators - one using a Non-Return-to-Zero (NRZ) feedback DAC and the

other using a Switched Capacitor Resistor (SCR) feedback DAC. With the help of the



proposed technique, the modulator with an NRZ DAC is found to achieve a dynamic

range of 92.5 dB in a 24 kHz bandwidth, with a power dissipation of 110 µW from a

1.8 V supply. The second design employing an SCR DAC, achieves a dynamic range

of 91.5 dB and dissipates 122 µW of power. The performance thus achieved with these

modulators is comparable to that of the best multi-bit modulators reported in the litera-

ture.

xx



CHAPTER 1

INTRODUCTION

Advancements in the field of integrated circuits over the last few decades has made elec-

tronics an indispensable part of human life. With extensive computational capabilities,

robustness, repeatability and long-term stability, digital signal processing techniques

are becoming increasingly preferred over traditional analog processing. However, the

world surrounding us is analog in nature and therefore, there is a need to interface the

real world with digital processors. As depicted in Fig. 1.1, Analog-to-Digital Convert-

ers (ADCs) and Digital-to-Analog Converters (DACs) form a vital part of the interface

electronics that bridge the analog and digital world.

DSPSensors Actuators

Continuous-time,
Continuous-amplitude

Continuous-time,
Continuous-amplitude

Discrete-time,
Discrete-amplitude

Interface electronics
ADC DAC

Figure 1.1: Functional view of the role played by ADC and DAC

As the name suggests, the function of ADCs is to convert the continuous-time analog

signals to digital signals that can be suitably processed by a Digital Signal Processor

(DSP). DACs perform the inverse operation of converting the processed output from the



DSP back to the continuous-time domain. The focus of this thesis is a popular ‘oversam-

pled’ ADC architecture called the Continuous-Time Delta Sigma Modulator (CTDSM).

This chapter is aimed at providing some of the basic concepts that can aid better un-

derstanding of the ideas and models presented in this thesis and has been organized as

follows. Beginning with the fundamentals of analog-to digital conversion, the discus-

sion is carried over to popular ADC architectures that are currently being used. Subse-

quently, the reader is introduced to delta sigma modulators, of which continuous-time

modulators form a sub-class. Operational details and various implementation issues in-

volving these modulators are then described, eventually bringing about the motivation

behind the problem addressed in this thesis. The chapter is concluded by describing the

organization of the thesis and contributions of this research work.

1.1 Fundamentals of ADC - Sampling and Quantization
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Figure 1.2: Illustration of sampling and quantization operations occurring in an ADC

The conversion from the analog to digital domain achieved in an ADC involves two

fundamental operations - sampling and quantization. As illustrated in Fig. 1.2, sampling

involves the conversion of the continuous-time analog signal to a discrete-time signal,

sampled every Ts secs. The next process involves quantization of these samples to have

discrete amplitude levels (in steps of ∆ as shown in Fig. 1.2). The discrete-levels are

2



then appropriately mapped to the digital format to be able to be processed by a DSP.

In a nutshell, ADCs can be perceived as performing discretization in both time and

amplitude domains. Such discretizations can be expected to lead to potential loss of in-

formation contained in the analog signal. Information loss during the sampling process

is averted by adhering to Shannon’s sampling theorem according to which ‘any analog

signal with a bandwidth of fb can be completely reconstructed from its samples, if the

sampling rate (fs) is more than 2fb’. The critical sampling rate of ‘2fb’ is termed as the

Nyquist-rate.
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Figure 1.3: (a) Model of an ADC along with anti-aliasing filter (b) Illustration of alias-
ing into the signal band from components around multiples of ±fs (c) Re-
sponse of ideal and practical anti-aliasing filters

Since not all signals are band-limited in nature, a low pass filter (called the ‘anti-

aliasing’ filter) is always required to precede the sampling operation of an ADC, as

shown in Fig. 1.3(a). Aliasing of frequency components around multiples of ±fs into

the signal band (as illustrated in Fig. 1.3(b)), can be prevented by the anti-aliasing filter.

Though an ideal brick-wall response is desired out of an anti-aliasing filter, practical

realizability issues force the use of filters with finite transition bands (fT ) as shown in
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Fig. 1.3(c). The order and the transition band requirements on the filter are determined

by the nature (or the frequency content) of the continuous-time signal and the sampling

rate used. Naturally, such specifications are the most severe when signals are sampled

at the Nyquist-rate.

While discretization in the time-domain can be shown to be lossless, the same can-

not be said about the subsequent operation of quantization. Discretization in the ampli-

tude domain inherently introduces ‘permanent’ errors called the quantization error or

quantization noise, thereby resulting in a lossy conversion. Such errors can be reduced

by increasing the number of discrete-levels a quantizer can resolve into, or in other

words, by reducing the step size (∆) that separates each of these discrete-levels.

3∆/2

 7∆/2

 -3∆/2

 -7∆/2

 ∆  2∆  4∆ 3∆
 −4∆  -3∆  -∆ -2∆

 ∆

Output

∆/2

 -∆/2

 4∆
 −4∆

Input Input

Quantization
error

Full-scale range

Figure 1.4: Typical input-output characteristic of a 8-level quantizer along with the
quantization error profile

Illustrating these two design parameters of a quantizer is Fig. 1.4, where the input-

output characteristic of a 8-level quantizer and the corresponding quantization error are

shown. The quantization error can be seen to be bounded between −∆/2 and ∆/2 for

inputs in the range [-4∆, 4∆]. This input range, beyond which the quantization error

can be seen to grow without bounds is called the full-scale range of the quantizer. The

quantizer is said to be saturated or over-loaded for inputs above this range.
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Figure 1.5: (a) Linear representation of a quantizer (b) Probability density function,
P (e) and Power Spectral Density, Se(f) of the quantization noise

Though quantization is a nonlinear operation, dynamic performance of quantizers

(and ADCs) has been traditionally analyzed by adopting a linearized, stochastic model

as shown in Fig. 1.5(a). The quantizer is perceived as an independent additive source

that introduces the quantization noise sequence, e[n]. As shown in Fig. 1.5(b), e[n] is

assumed to be uniformly distributed (Bennett (1948)) in the range [-∆/2, ∆/2], with a

white Power Spectral Density (PSD), under the following conditions1

• The quantizer input is within the full scale range

• The number of quantizer levels is large and the step size, ∆ is very small

• The input is random in nature

Under such assumptions, the quantization noise can be shown to have a variance

of ∆2/12 and a PSD given by ∆2/(12fs). Though the white noise approximation be-

comes invalid for sinusoidal inputs (since the quantization noise becomes periodic), the

quantization noise power is found to be close enough to ∆2/12. Therefore, the dynamic

performance of an ADC is measured by the Signal-to-Noise Ratio (SNR) observed for

a sinusoidal input, assuming a variance of ∆2/12 for the quantization noise. For a
1While these conditions serve to provide a general outlook on the cases when the above assumption is

valid, more specific conditions on the characteristics of the input signal can be found in Widrow (1956)
and Sripad and Snyder (1977).
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full-scale input signal, the resulting peak SNR can be shown to be

SNR = (6.02N + 1.76) dB (1.1)

where N denotes the number of bits used to represent the discrete levels of the quan-

tizer2. The above equation is often used in the reverse sense to define the resolution of

an ADC, as the value of N determined by the peak SNR achieved with the ADC. The

resolution increases by one bit for every 6 dB increase in the peak SNR.

1.2 ADC architectures

Various ADC architectures have been proposed to accomplish the conversion from

analog to digital domain based on the principles discussed above. Based on the sam-

pling rate, they can be broadly classified into Nyquist-rate and oversampled converters.

A. Nyquist-rate Converters : Nyquist-rate converters sample the input signal at twice

the signal bandwidth (2fb). Some of the popular architectures are (Johns and Martin

(2009))

• Flash ADCs

• Successive Approximation Register (SAR) ADCs

• Pipeline ADCs

The building block behind all these architectures is the comparator, which decides

whether the input signal is above or below a threshold and accordingly generates a

binary ‘1’ or ‘0’ as the output. Each architecture employs the comparator in an unique

manner to facilitate the required analog to digital conversion.

2In effect, an ADC with 2N discrete levels of quantization has N bits in its digital output.
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For instance, a N-bit flash ADC employs 2N-1 comparators that act in a concurrent

fashion, to achieve the conversion. Fig. 1.6(a) shows a typical 2-bit flash ADC built

with 3 comparators, with each of the thresholds tapped from the resistive ladder shown.

The comparators together provide a thermometer coded output3 which is then decoded

to obtain a 2-bit binary output.
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Figure 1.6: (a) 4-bit Flash ADC (b) Functional block diagram of a SAR ADC

Due to the exponential increase in the number of comparators with increasing resolution

(N), flash ADCs are not used to achieve resolutions higher than 8 bits. For some appli-

cations requiring higher resolutions, SAR ADCs can be used. As shown in Fig. 1.6(b),

SAR ADCs employ a single comparator in an iterative fashion. They use the binary

search algorithm to systematically reduce the difference between the input signal (u(t))

and its estimate given by the fed back DAC signal (v(t)). Such a digitization process

requires N clock-cycles to generate a N-bit digital output. This clearly shows that speed

is traded off to have reduced complexity (area), when adopting SAR ADCs over flash
3Similar to the dipping of mercury level of a thermometer, the comparators whose thresholds are

lower than the input signal, generate a logic high (or ‘1’) at their outputs.
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ADCs. For applications that require higher data rates than supported by SAR ADCs,
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Figure 1.7: (a) Individual stage of a pipeline ADC (b) Functional block diagram of a
pipeline ADC having M stages

Pipeline ADCs can be used. As the name suggests, this architecture utilizes the princi-

ple of pipelining to engage M stages of conversion, in a concurrent fashion. As depicted

in Fig. 1.7(a), each stage employs an ADC (typically a flash) and a DAC to generate a

N-bit digitized output along with the quantization error, e[n]. As shown in Fig. 1.7(b),

the quantization error generated by each stage (ei[n]) is then passed on to the subse-

quent stage, for digitization in the ‘next’ clock cycle. The digitization of a given input

sample is completed after M clock cycles (stages), when a digital block appropriately

combines the output of each stage to generate the desired digital output. Except for the

initial latency period4 of typically M clock cycles, very high conversion rates can be

achieved with this architecture, thanks to the parallel conversion operations occurring

in each of the M stages. It can be seen that circuit complexity has been traded off to

achieve higher speeds with a pipeline architecture.
4This refers to the number of clock cycles needed before the first digital output can be obtained

corresponding to the first input sample.
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B. Oversampled converters : While Nyquist-rate converters can be said to be strictly

following the sampling theorem, analog signals can be digitized at a much higher sam-

pling rate as is done in oversampled converters. Oversampling results in several benefits

such as

• The requirements on the anti-aliasing filter are relaxed due to oversampling, as
they can have less-steeper roll-off characteristics with fs/2 � fb.

• More importantly, the quantization noise (with variance ∆2/12) is now spread
across a wider bandwidth. This effectively reduces the quantization noise power
in the desired signal bandwidth5 (fb), as shown in Fig. 1.8(a).
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Figure 1.8: (a) Comparison of quantization noise PSD (single-sided) with Nyquist-rate
sampling and oversampling (b) Noise shaping achieved in delta-sigma mod-
ulators

In essence, oversampling is an useful technique that can increase the effective res-

olution of an ADC. The output of an oversampled converter can be filtered to remove

the noise outside the signal band of interest and then re-sampled at the Nyquist rate to

achieve the desired improvement in resolution. Defining a factor called Over-Sampling

Ratio (OSR = fs/(2fb)), increasing the OSR by a factor of 2 can be seen to result in

a 3 dB reduction in the in-band quantization noise power. However, observe that for
5The desired signal band will henceforth be referred to as the in-band region
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every half a bit of improvement in the effective resolution, the sampling rate has to be

increased in an exponential manner. Thus, it should be mentioned that additional tech-

niques have to be employed along with oversampling, to obtain significant improve-

ments in the resolution of a converter. Delta-Sigma modulators are one such sub-class

of oversampled converters that can achieve very high resolutions, by employing the

technique of ‘noise shaping’ (as depicted in Fig. 1.8(b)). While pipeline architectures

can be said to increase the speed of conversions, delta-sigma modulators are seen as

suitable choices to achieve high resolutions, that are hard to achieve with a SAR ADC.

The following sections have been organized to provide a more detailed overview about

this architecture.

1.3 Basics of Delta-Sigma modulation

v[n]

DAC

ADC
-

+
Σ

u[n]
z-1

y[n]1
L(z)

Figure 1.9: Functional block diagram of a first order Delta-Sigma modulator

Fundamentals of delta-sigma modulators can be best understood by considering the

first-order modulator as shown in Fig. 1.9. The modulator comprises of an accumula-

tor6, described by L(z) = 1/(z − 1) and an internal, low resolution quantizer (ADC-

DAC) that together form a negative feedback system. Analysis of such closed loop

systems is in principle complicated due to the presence of the nonlinear quantizer. Nev-

ertheless, a qualitative understanding of the modulator operation can be achieved by
6typically implemented using switched-capacitor integrators (Norsworthy et al. (1997)).
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assuming the traditional linearized model for the quantizer, as shown in Fig. 1.10.

v[n]

-

+
Σ

u[n] y[n]

e[n]

1
z-1

L(z)

Figure 1.10: Linearized model of a first order delta-sigma modulator

As before, the quantization noise e[n] is assumed to be an independent, uniformly

distributed, white random process7. Thus, the modulator can be perceived as a system

with two inputs, u[n] and e[n] and its output can be expressed in the frequency domain

as

V (z) =
L(z)

1 + L(z)
U(z) +

1

1 + L(z)
E(z) (1.2)

By defining two independent transfer functions namely, the Signal Transfer Function

(STF) and the Noise Transfer Function (NTF), we have

STF (z) =
L(z)

1 + L(z)
= z−1 (1.3)

NTF (z) =
1

1 + L(z)
= 1 − z−1 (1.4)

While |STF | is one for in-band signals (fb � fs), the NTF can be seen to be high pass

in nature with a transmission zero at DC. Such a shaping of the quantization noise is

achieved because of the negative feedback around the quantizer. In conjunction with

oversampling, this specifically helps in achieving very high effective resolution. The
7Modulators with multi-bit quantizers largely satisfy the conditions needed for such an assumption

(Gray (1990))
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high resolution thus obtained can be visualized as the modulator’s ability to closely

track the input signal, thanks to the high gain provided by the accumulator in the in-band

region. Illustrating this close tracking is Fig. 1.11, where the input-output waveforms

of a first order modulator (with a 4-bit internal quantizer) have been plotted. Due to the

oversampled operation, delta-sigma modulators trade off speed to achieve very high res-

olution, similar to a SAR ADC. However, it can be seen that the improvement achieved

with delta-sigma modulators is manifold, because of the noise shaping achieved using

negative feedback.
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Figure 1.11: Input and output waveforms of a 4-bit modulator employing an accumula-
tor as the loop filter. The inset is a zoomed in version showing how well
the output signal tracks the input. The quantizer step size is 2.

Though the above discussion explained delta-sigma concepts with a first order mod-

ulator, better noise shaping and higher resolutions can be achieved by using higher

order modulators. In general, higher order modulators can be represented as shown
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in Fig. 1.12, where the loop filter has two inputs (u[n] and −v[n]) with the respective

transfer functions being L0(z) and L1(z).

v[n]
u[n]

y[n]

e[n]
L0

L1

Loop
Filter

-1

Figure 1.12: Linearized model for higher order delta-sigma modulators

The corresponding STF and NTF are given by

STF (z) =
L0(z)

1 + L1(z)
(1.5)

NTF (z) =
1

1 + L1(z)
(1.6)

In practice, a suitable choice for the noise and signal transfer functions is the starting

point for the design of delta-sigma modulators. Given the desired NTF and STF, the

required loop filter transfer functions can be determined as

L0(z) =
STF (z)

NTF (z)
(1.7)

L1(z) =
NTF (z) − 1

NTF (z)
(1.8)

From the above equations, it can be seen that the zeros of the NTF are the poles of

both L0 and L1. Therefore, circuitry is generally shared when realizing the two transfer

functions of the loop filter. Two such loop filter architectures that are commonly used

are as shown in Fig. 1.13(a) and (b). They are termed as the
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a.) Cascade of Integrators Feedforward (CIFF) architecture8

b.) Cascade of Integrators Feedback (CIFB) architecture

a2

Σ+

-

v[n]

u[n] y[n]
Σ

-
Σ

-

a1

a2

Σ+

-

v[n]

u[n] y[n]

an

Σ

(a)

(b)

a1

z-1
1 1

z-1

1
z-1

1
z-1

Figure 1.13: (a) Cascade of Integrators Feedforward (CIFF) architecture (b) Cascade of
Integrators Feedback (CIFB) architecture

While each of the loop filter architectures has its own advantages and disadvantages

(as elaborated in Schreier and Temes (2005a)), it should be mentioned that the funda-

mental operation of the modulator is solely determined by the NTF, STF and the number

of the levels in the quantizer, regardless of the loop filter architecture. In general, in an

Lth order modulator, the magnitude response of the NTF in the in-band region will be

of the form |1 − e−jω|L. With such an NTF, the in-band ‘shaped’ quantization noise

power can be shown to be, (Norsworthy et al. (1997))

σ2
q =

∆2

12

[
π2L

2L + 1

(
1

OSR

)(2L+1)
]

(1.9)

where ∆ denotes the step size of the internal quantizer. From the above equation, it

can be observed that the in-band noise decreases by (6L+3) dB for every doubling of
8Notice that with a CIFF architecture, L0(z) = L1(z).
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the OSR. This is equivalent to an improvement of L+0.5 bits in the effective resolution.

With a first order modulator having a 4-bit internal quantizer, an estimate indicates that

the OSR needs to be 256 to be able to achieve 16-bits of effective resolution9. The

required OSR can be lowered to as low as 32 with a second order modulator, which

clearly indicates the significant improvement possible with higher-order architectures.

0 0.1 0.2 0.3 0.4 0.5
−160

−140

−120

−100

−80

−60

−40

−20

0

20

Normalized frequency (f/f
s
)

M
ag

ni
tu

de
 r

es
po

ns
e 

(d
B

)

L = 1
L = 2
L = 3

10
−3

10
−2

−150

−100

−50

0

f/f
s

Low frequency magnitude response

Figure 1.14: Variation in the magnitude response of an all zero NTF ((1 − z−1)L) for
different orders. The inset compares the low frequency responses.

However, the reader must be informed of the potential signal dependent instability

that could be observed with higher order modulators. Such stability considerations can

be easily understood by considering an all-zero NTF of the form (1− z−1)L. As shown

in Fig. 1.14, when the order is increased, the in-band noise shaping improves at the cost

of an increased out-of-band response for the NTF. In particular, at ω = π, it can be seen

that |NTF (ejω)| is 2L for an Lth order modulator. This can lead to stability problems
9When only oversampling is used, the required OSR should be as high as 224.
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in the modulator operation due to the following reason. The input to the quantizer can

be seen to be

Y (z) = V (z) − E(z) (1.10)

= STF (z)U(z) − (NTF (z) − 1)E(z) (1.11)

Since the quantizer input consists of the input signal plus the ‘shaped’ quantization

noise, there exists a Maximum Stable Amplitude (MSA)10 for the input signal, beyond

which the quantizer gets saturated. Being a feedback system, the over-load condition

of the quantizer only gets worsened further, ultimately forcing the modulator into an

‘unstable’ region. Physically, for inputs beyond the MSA, the modulator can be thought

as having lost its ability to track the input signal. As a result, it is observed to exhibit an

unstable behavior, that is marked by some repeatedly failed attempts to track the input

signal.

Though discussed with an all-zero NTF, the enhancement of |NTF (ejω)| at higher

frequencies and the subsequent reduction in the MSA can in general be observed with

higher order modulators. With these modulators, though the in-band quantization noise

can be as expected for smaller inputs, for higher inputs (beyond the MSA), the in-band

noise can increase due to instability. This leads to a reduction in the maximum achiev-

able SNR, clearly indicating the potential drawback with higher-order modulators. An-

other implication of eq. 1.11, worth noting, is the possible reduction in the MSA with

reducing number of quantizer levels. The enhancement of the quantization noise, e[n]

can be attributed to such a reduction in these cases.
10Understandably, the MSA will be smaller than the full-scale range of the quantizer.
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While the above discussion suffices to provide an intuitive explanation to the po-

tential issue of stability in delta-sigma modulators, the reader should bear in mind that

the analysis was carried out with a linear model for the quantizer. Accurate predictions

of the MSA cannot be achieved with such a linear analysis and as often is the case,

unforeseen instability conditions can be encountered in practice, at smaller input signal

amplitudes. This is especially true when the number of quantizer levels is small (for

instance, a single-bit quantizer), since the linear approximation fails in such cases.

Several works have therefore focused on the issue of stability in delta-sigma mod-

ulators (as discussed in Schreier and Temes (2005a)), in an attempt to demystify the

concepts involved in designing stable higher-order modulators. For the benefit of de-

signers, certain thumb-rules have been proposed to successfully utilize the improvement

in resolution provided by the higher order modulators. The rules are based on a prop-

erty of the NTF called the Out-of-Band Gain (OBG), which signifies the maximum

gain achieved in the out-of-band region of the NTF. For ensuring stability in modula-

tors with a single-bit quantizer, the OBG is to be restricted to 1.5 (known as Lee’s rule

-Chao et al. (1990)). This condition is relaxed for multi-bit modulators, wherein OBGs

typically used are in the range of 2-3. The choice of OBG in such cases depends on

various factors including the trade-off between better noise shaping and reduced MSA.

The above conditions on OBG can be satisfied in higher order modulators by ap-

propriately placing the poles of the NTF11. Suitable (high pass) filter responses that

can be used to meet such requirements are the Butterworth and inverse-Chebyshev type

responses. Both these responses exhibit a maximally flat out-of-band region, with the
11The poles are realized using the coefficients a1, a2, a3 · · · , with both CIFF and CIFB loop filters

shown in Fig. 1.13.
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OBG given by the gain of the responses at ω = π. The location of the complex trans-

mission zeros in an inverse-Chebyshev response can be optimized to result in better

noise shaping and thereby minimize the in-band quantization noise power. Standard

routines are available to synthesize the NTF (Schreier’s toolbox in MATLAB -Schreier

and Temes (2005a)), given the loop filter’s order, OSR, OBG and the presence/absence

of complex in-band zeros. Fig. 1.15 shows the magnitude response of a typical third

order NTF realized for an OSR of 128, with complex zeros and an OBG of 1.5.
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Figure 1.15: Magnitude response of a typical third order NTF with an OBG of 1.5. The
inset shows the presence of in-band complex zeros.

The NTF thus obtained can be realized through an appropriate loop filter built using

conventional switched-capacitor techniques (Norsworthy et al. (1997)). Alternatively,

the loop filter can also be implemented in continuous-time. This leads us to a separate

class of modulators called Continuous-Time Delta Sigma Modulators (CTDSMs), as

shown in Fig. 1.16. With CTDSMs being the focus of this thesis, the rest of the chapter

is dedicated to discussions involving their operation, advantages and disadvantages.
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y(t)

u(t)
L0(s)

L1(s)

-1

Figure 1.16: Functional block diagram of a Continuous-Time Delta-Sigma Modulator

1.4 Continuous-Time Delta-Sigma Modulators

Historically, delta-sigma modulators were first reported by Inose et al. (1962) with

a continuous-time loop filter. However, with the advent of switched capacitor circuits

in the 1980s, discrete-time implementations were preferred over their continuous-time

counterparts for the following reasons

• Switched-capacitor integrators can provide accurate gains, as they are purely de-
termined by capacitor ratios. This is in contrast to the process dependent time
constants in continuous-time integrators. As will be explained later, this is ob-
served to lead to stability issues in CTDSMs.

• From a design perspective, since the loop filter in discrete-time is independent
of the clock rate, a discrete-time modulator can be operated at different clock
frequencies. However, similar to the sensitivity to time-constant variations, a
given CTDSM design is only functional over a narrow range of sampling rates.

1.4.1 Advent of continuous-time delta-sigma modulators and their advantages

Attention to continuous-time implementations has gradually increased in the recent

past, with the urge to increase the speeds at which delta-sigma modulators work. This is

due to the reduced speed requirements on the active circuits of a continuous-time loop

filter when compared to that of a switched-capacitor (SC) filter. With an SC integrator,

the speed is limited by the settling error which grows exponentially as fu/fs (Schreier

and Temes (2005a)), where fu is the unity gain frequency of the opamp. In comparison,
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the dependency on the fu/fs ratio is found to be lesser in continuous-time integrators,

thus enabling CTDSMs to operate faster than their discrete-time counterparts. Such a

renewed interest has actually thrown light on many other significant advantages offered

by CTDSMs. Such advantages seem to have missed the attention of designers, when

discrete-time modulators were being preferred. For instance, due to the relaxed speed

requirements, CTDSMs consume lesser power than their discrete-time counterparts, to

achieve the desired resolution in a given signal bandwidth (fb). In addition, by virtue of

the position where the input is sampled, CTDSMs offer other important benefits like

• Sampling errors at the internal ADC input are shaped away by the loop filter’s
gain at low frequencies, similar to the quantization noise (van der Zwan and Di-
jkmans (1996)).

• The loop filter serves as an inherent ‘anti-aliasing filter’, attenuating any potential
aliasing frequencies before they get sampled at the input of the ADC (Candy
(1985)).

• The input impedance offered by the modulator is resistive, thus making them
easier to drive.

It can be seen that accurate sample and hold (S/H) circuits, buffers and anti-aliasing

filters are not required when implementing CTDSMs. Realizing the various system-

level and architecture-level advantages accrued by adopting continuous-time modu-

lators, CTDSMs are now being increasingly preferred over discrete-time modulators.

Thanks to some extensive research carried out over the recent years, several ways have

been devised to tackle various issues associated with their design. This has enabled

successful implementations of high-performance CTDSMs, as can be seen from some

of the designs reported in the recent past (Mitteregger et al. (2006), Ouzounov et al.

(2007), Reddy and Pavan (2008), Pavan et al. (2008)). Before discussing some of the

important research works concerning CTDSMs, let us briefly look into the typical de-

sign methodology adopted for CTDSMs.
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1.4.2 Design methodology of continuous-time modulators

Continuous-time modulators differ from their discrete-time counterparts in the way

the loop filter is implemented. However, isolating the loop around the ADC, an equiva-

lence can be found between the continuous-time and the discrete-time system as shown

in Fig. 1.17. Simply put, for a given sequence v[n], if the two systems produce the same

output sequence y[n], they are said to be equivalent.

L1(s) L1(z)
v[n] y[n] v[n] y[n]

HDAC(s)

Figure 1.17: Equivalence between continuous-time and discrete-time loop filter
(HDAC(s) denotes the Laplace transform of the DAC pulse shape).

Such an equivalence between the two systems can be obtained using the Impulse-

invariant transformation (Gardner (1986)). With this technique, a stable discrete-time

loop filter (with poles inside the unit circle) can be transformed to a stable continuous-

time equivalent and vice-versa12. Taking note of the possibility of such an equivalence,

conventional design strategies for CTDSMs have been primarily based on equivalent

discrete-time modulators. This is done to take advantage of the extensive stability anal-

ysis carried out for their discrete-time counterparts.

In essence, the first task performed while designing a CTDSM is the prototyping

of the Noise Transfer Function (NTF), using the widely popular Schreier’s toolbox in

MATLAB (as done for a discrete-time design). The discrete-time loop filter, L1(z)

that can realize the NTF is then determined using eq. 1.8. The next step is to apply

the Impulse-invariant transformation to determine the equivalent continuous-time filter,

L1(s) for a given shape of the DAC pulse. The equivalence shown in Fig. 1.17 can be
12The DAC has been explicitly included in the continuous-time case, as the DAC pulse shape can affect

the equivalence.
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mathematically expressed as

Z−1 {L1(z)} = L−1 {HDAC(s)L1(s)} |t=nTs
(1.12)

where HDAC(s) denotes the Laplace transform of the DAC pulse shape.

0 Ts 0 TsTs

2

Vo

2Vo

0 TsTs

2

Vo,exp

NRZ RZ Exp.
hDAC(t)

Figure 1.18: Commonly used DAC pulse shapes

Some typical DAC pulse shapes used in practice are shown in Fig. 1.18. They are called

Non-Return-to-Zero (NRZ), Return-to-Zero (RZ) and Exponentially decaying (Exp.)

pulse shapes. HDAC(s) for the respective pulse shapes are given by

HDAC(s) =
1 − e−sTs

s
Vo , NRZ DAC (1.13)

=
1 − e−s0.5Ts

s
2Vo , RZ DAC (1.14)

≈
τ

1 + sτ
Vo,exp , Exp. DAC (1.15)

where Vo is the output voltage of an NRZ DAC, Vo,exp is the peak output of the ex-

ponential DAC and τ denotes the exponential decay constant with τ � 0.5Ts and

Vo,expτ = VoTs.

The desired discrete-to-continuous time transformation can be done by solving eq. 1.12

with a symbolic analysis program like MAPLE. Useful transformation tables for modu-

lators with NRZ DAC can be seen in Cherry and Snelgrove (1999b) and Shoaei (1996).

22



a2

Σ+

-

v(t)

u(t) y[n]
Σ

-
Σ

-

ω1
s

a1

a2

Σ+

-

v(t)

u(t) y[n]

an

Σ

(a)

(b)

s
ω2

ω1
s s

ωn

a1

Figure 1.19: Implementation of the continuous time loop filter using (a) Cascade of
Integrators Feedforward (CIFF) architecture and (b) Cascade of Integrators
Feedback (CIFB) architecture

Alternatively, a numerical technique provided in Pavan (2010b) can be adopted to

determine directly the loop filter coefficients that can realize L1(s) (and L0(s)). Shown

in Fig. 1.19 are the CIFF and CIFB loop filter architectures that can be used to imple-

ment the continuous-time loop filter. To illustrate the numerical method for the case of

the CIFF loop filter, all the integrators can be assumed to have a gain of unity13 (ωi = 1).

The sampled responses of each integrator’s path (li[n]) are then obtained through ideal

block level simulation. From the knowledge of li[n], the sampled response of the loop

filter (l[n]) can be determined as

l[n] =
n∑

i=1

aili[n] (1.16)

Defining h[n] to be the impulse response obtained from the desired NTF, the solution
13For simplicity, the sampling rate, fs is assumed to be 1 Hz
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to the time domain equation14,

h[n] + h[n] ∗ l[n] = δ[n] (1.17)

helps in determining the coefficients a1, a2, · · ·an and thereby realizing the loop filter.

Since no assumptions need to be made on the DAC pulse shape, this technique can be

used to determine the required loop filter, for any arbitrary DAC pulse shape.

The realized loop filter is then appropriately node scaled to ensure the swings at

each of the integrator outputs are well within the limits set by the supply and the opamp

swing constraints. Frequency scaling is then done to modify the loop filter suitable to be

operated at the required sampling frequency. Note that such a frequency scaling is re-

quired as the impulse-invariant transformation (eq. 1.12) is specific to a given sampling

rate (or sampling period).

The rest of the design process involves building the circuits necessary to implement

the integrators, ADC and DAC. While the ADC is typically implemented with a flash

architecture, the DAC can either have a resistive or current-steering topology. With

regards to the integrators, several ways of implementation can be found in the litera-

ture, with each topology having its own merits and demerits. Fig. 1.20(a) shows the

implementation of the first integrator of a CTDSM using the Gm-C architecture15. It

can be seen that the transconductor’s current gets integrated by the capacitor (C), thus

realizing the transfer function −ω1/s, where ω1 = gm/2C. Another popular technique

widely used is the active-RC implementation, as shown in Fig. 1.20(b) with a resistive
14This is the time-domain equivalent of eq. 1.8, where ‘∗’ denotes the convolution operation.
15A resistive network has been used in this depiction to accomplish the summation of the input and

fedback DAC signals. Alternately, a current-steering DAC can also directly drive the capacitor.
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DAC. The high gain provided by the active circuit maintains virtual ground at vd, thus

enabling the current, (u − v)/R to be integrated by the capacitor, C. Possible choices

for the active-circuit include

• Single-stage transconductor

• Two-stage Miller compensated opamp (see Fig. 1.20(c))

• Two-stage feedforward compensated opamp (as shown in Fig. 1.20(d))
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Figure 1.20: Input stage of a CTDSM implemented using (a) Gm-C integrator (b)
active-RC integrator. Small-signal circuit models of (c) Miller compen-
sated opamp (d) Feedforward compensated opamp

After the successful completion of the design process, the last and significant step

involved in a CTDSM design is a process called design centering. The aim of this step is

to tune the coefficients of the loop filter (a1, · · ·an), so that the desired NTF is obtained

even in the presence of circuit nonidealities. The numerical technique as mentioned
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before can be best used for this purpose. The reasons for deviation of the NTF include

nonidealities like finite gain, finite bandwidth and parasitic poles of the opamps, which

are used to implement the integrators. Another fundamental reason could be excess

loop delay. It is defined as the delay between the sampling instant of the ADC and the

time when the DAC is able to produce the pulse corresponding to the sample. It should

be mentioned here that the problem of excess loop delay is one of the design issues

specifically encountered with a CTDSM unlike its discrete-time counterpart.

1.4.3 Design issues in continuous-time modulators

Several issues arise when implementing continuous-time delta-sigma modulators.

This section is aimed at providing a comprehensive overview of the works that have

focused on these issues and in summarizing the various solutions that have been pro-

posed.

A. Excess loop delay : Excess loop delay in CTDSMs has been investigated well

by several authors over the years, as it can be a serious issue especially in high-speed

CTDSMs. Due to excess loop delay (denoted by τ and modeled as e−sτ ) the equivalence

between the continuous-time and the discrete-time loop filter gets modified, as depicted

in Fig. 1.21.

L1(s) L1(z)
v[n] y[n] v[n] y[n]

HDAC(s)e-sτ

Figure 1.21: Equivalence between continuous-time and (the modified) discrete-time
loop filter (L̂1(z)) in the presence of delay (τ )

Cherry and Snelgrove (1999b) show that the modified loop filter (L̂1(z)) can have an

increased order with an NRZ DAC. As a consequence, the stability of the modulator is
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reduced, thereby resulting in lesser MSAs with increasing loop delay. Shoaei (1996)

illustrates this trend with the movement of the poles of NTF towards the unit circle, as

the delay is increased. It is observed that modulators with lower OBG are more immune

to the problem of excess loop delay.

The problem of delays upto half a clock cycle can be addressed by using RZ DACs.

When using NRZ DACs, an intuitive solution is to bypass the slower path involving

the feedback DAC and loop filter. This can be done by having a direct path around the

ADC, through an additional DAC (Benabes et al. (1997)). A power efficient way of

implementing this direct path can be found in Pavan et al. (2008). The desired NTF can

as well be obtained by design centering the loop filter (Gao et al. (1997)).

L1(s)esτ L1(z)
v[n] y[n] v[n] y[n]

HDAC(s)e-sτ

L1(s)

Figure 1.22: Conceptual model to compensate for excess loop delay

As conceptualized in Fig. 1.22, an intuitive technique for design centering has been pro-

vided by Pavan (2008), wherein the design centered loop filter is modeled as L1(s)e
sτ .

Such a model results in a simpler method to determine the modified loop filter coeffi-

cients (â1, â2, · · · ân). A comparative study of all the existing compensation methods

can be found in Keller et al. (2008). In short, the effect of excess loop delay has been

well investigated and proven methods are available for addressing it.

B. Time constant variations : As mentioned earlier, the disadvantage with continuous-

time implementation of the loop filter is the variation of time constants of the integrators

(RC or C/gm). Note that any variation in the loop filter transfer function, L1(s) mod-

ifies the equivalent discrete-time loop filter and correspondingly results in a modified
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NTF. To elaborate, let kp denote the relative change in the time constants of the inte-

grators, that results in a modified loop filter transfer function16, L1(s/kp). Assuming a

third order NTF with an OBG of 3 (and OSR of 64), the observed variation in the NTF

is illustrated in Fig. 1.23, for extreme cases of kp (1.3 and 0.7).

0 0.1 0.2 0.3 0.4 0.5
−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (f/f
s
)

M
ag

ni
tu

de
 R

es
po

ns
e 

(d
B

)

k
p
 = 0.7

k
p
 = 1

k
p
 = 1.3

Figure 1.23: Magnitude response of the NTF for different values of kp

When kp > 1, the unity gain frequency of the loop filter is increased, which in-turn

pushes the poles in the NTF to higher frequencies. Such a movement of the poles can

be expected to result in a higher out-of-band gain, with a corresponding improvement

in the in-band noise shaping. While on one hand this can be beneficial due to lesser

in-band quantization noise, on the other, it can drastically reduce the MSA of the mod-

ulator due to an increased OBG. Equivalently, the case of kp < 1 leads to an increased

stability of the modulator at the expense of an increased in-band noise. Thus, it can

be seen that both extremes of variations in time constants can cause problems in the

performance of CTDSMs.
16assuming the variation is the same in all the integrators implementing the loop filter
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Parallels can be drawn at this juncture between the time constant variations and

the variability in the sampling rate. It can be seen that reducing the sampling rate

is equivalent to a reduction in the time constants (kp > 1) of the loop filter, akin to

frequency scaling. Thus, CTDSMs with a given loop filter become unstable when the

sampling rate is reduced beyond a limit. More importantly, it is for this reason that

CTDSMs have satisfactory operation only over a narrow range of sampling rates.

The conventional way of addressing the problem of time constant variations is to

tune the time constants to make sure they are within tolerable limits. The entire process

involves the determination of the variation in the time constants, followed by relevant

tuning of the loop filter to bring back the time constants closer to the nominal values.

Several methods have been proposed to automate this procedure. The authors in Xia

et al. (2004) make use of a replica oscillator to estimate the time constant on-chip and

apply the required tuning to the modulator’s loop filter. Loke et al. (2005) utilizes the

knowledge of the gain of a replica integrator at a given frequency to fix the tuning

required in the modulator. An ‘in-situ’ or direct tuning method has been devised by

Pavan and Krishnapura (2007), where they make use of a digital technique to determine

the variance of v[n] − v[n − 1] and use it as a measure to estimate the variation in

time constants. Since the technique is largely developed on a linearized model for the

quantizer, it is found to have limited accuracy when quantizer levels fewer than four are

used. A tuning technique that can be applied to single-bit modulators has been proposed

by Saxena et al. (2009). It is based on measuring the variance of the output of the first

integrator, to determine the change in the time constants. In summary, the problem of

time constant variations can be taken care by choosing a suitable tuning algorithm, to

get back the time constants to within tolerable limits.
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C. DAC clock jitter : One of the advantages of CTDSMs is that they can tolerate the

timing errors that occur at the input of the ADC, as they get shaped by the NTF. How-

ever, the same tolerance cannot be found with timing errors in the DAC, as they appear

directly at the input of the modulator. These timing errors can be either pulse-width

errors (random or accumulated jitter) or pulse-delay errors. Pulse-delay jitter can be an

issue with RZ DACs. However, it does not affect the modulator performance as much

as pulse-width jitter, since the error is first-order noise shaped (Oliaei (1999)).

t/Ts

I

-I

NRZ DAC

0 1 2 3 4

t/Ts

2

-2

RZ DAC

0 1 2 3 4

∆Ts2

∆Ts1

∆Ts

Figure 1.24: Pulse width timing errors seen in NRZ and RZ DAC waveforms of a
single-bit CTDSM

The effect of pulse-width jitter (as shown in Fig. 1.24) is to change the effective pulse-

widths of the feedback DAC waveforms in each clock cycle. Since such errors get

integrated by the following loop filter, the effect on the modulator performance is de-

termined by ‘averaging’ the error introduced in each clock cycle. The averaged error

sequence thus obtained, can be modeled as an additional input to a jitter-free modulator

and is given by

ej[n] = (v[n] − v[n − 1])
∆Ts

Ts
, NRZ DAC (1.18)

= 2v[n]

(
∆Ts1

Ts

+
∆Ts2

Ts

)
, RZ DAC (1.19)

where ∆Ts1 and ∆Ts2 are the respective timing errors of the two edges in a clock pe-
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riod, as shown in Fig. 1.24. Interpreting the above equations in the frequency domain,

the spectrum of the additional random input (ej[n]) can be seen as resulting from the

‘modulation’ of the output sequence by the jitter noise sequence. Due to the presence of

high out-of-band components in the output spectrum, this can lead to increased in-band

noise for the CTDSM. Cherry and Snelgrove (1999a) were among the first to study this

effect of clock jitter on the performance of single-bit CTDSMs. They concluded that

modulators with NRZ DAC can have better performance than with an RZ DAC. As ev-

ident from eq. 1.18 and 1.19, this can be attributed to the dependency of the jitter noise

sequence on the timing errors of both the clock edges (∆Ts1 and ∆Ts2), in case of the

RZ DAC. It is also due to the fact that an error is introduced with an NRZ DAC, only

when there are transitions (v[n] − v[n − 1]) in the modulator output. This is in contrast

to an RZ DAC where transitions occur every clock cycle.

Observing that the demodulation of the out-of-band noise is a key contributor to the

performance degradation due to clock jitter, Hernandez et al. (2004) pointed out that the

effect of clock jitter can be minimized by optimizing the shape of the NTF around fs/2.

This was later analyzed mathematically by Reddy and Pavan (2007) through the use

of Bode’s sensitivity integral. It was shown that a trade-off is required while choosing

OBG, as modulators with higher OBG are more prone to the effects of clock jitter.

Several ways have been proposed to counter the issue of clock jitter. An obvious

solution as evident from eq. 1.18 is to increase the number of levels in the quantizer.

This reduces the height of the transitions occurring in each clock cycle, thereby resulting

in better immunity to clock jitter. Since the use of multi-bit quantizers necessitates

the use of Dynamic Element Matching (DEM) techniques (to shape away the DAC
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mismatch errors)17, other solutions have been proposed to overcome the effect of clock

jitter in single-bit modulators.

One such solution is to use an exponentially decaying DAC pulse (Ortmanns et al.

(2005)), generated as shown in Fig. 1.25. This type of DAC pulse generator has been

referred to as the Switched-Capacitor-Resistor18 (SCR) DAC in the literature.

   Vref φ2φ1

gnd gnd

φ2 D.φ1
CD RD X

Opamp
Virtual Ground

Vref

  RD

t/Ts
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i

φ1 φ2

τ=RDCD

Io=

I1
1

Equivalent NRZ pulse

0.5

INRZ

vd
Vref

 (Opamp
virtual ground)

φ1

φ2

Ts

Figure 1.25: SCR DAC schematic and the exponentially decaying pulse produced by
the DAC

To briefly describe its operation - in clock phase φ1, the capacitor CD (which has been

previously charged to Vref during φ2) discharges into the virtual ground of the opamp

through a resistor RD with a time-constant τ = CDRD. The initial (peak) current

injected by the DAC is Io = Vref/RD, decaying to I1 = I0 exp(−Ts/(2τ)). If I1 <<

I0, the average current is given by CDVreffs (the height of the equivalent NRZ DAC

pulse) and I1 < CDVreffs. With this DAC, the noise introduced due to clock jitter is

proportional to I1 and is controlled by Ts/τ . Smaller the value of τ (small RD or CD),

smaller is the value of I1 and thus, smaller is the sensitivity to clock jitter.
17Blocks such as DEM in the feedback path can increase the excess loop delay of the modulator, thus

creating issues in high-speed CTDSMs. The use of the inherently linear single-bit quantizer can alleviate
such delay problems.

18The given implementation assumes that the first integrator is implemented with active-RC technique
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An alternative solution to the SCR DAC is to use a FIR DAC in the feedback path

(as in Oliaei (2003) and Putter (2004)), to convert the output of the single-bit ADC to

multi-level signals. Thanks to the multi-level nature thus obtained, the system is more

tolerant to the effects of clock jitter. Very recently, Colodro and Torralba (2009) have

applied this concept to a multi-bit modulator. They convert the internal multi-bit ADC

output to a single-bit pulse-width modulated signal and feed it back to the loop filter

through an FIR DAC. In doing so, they show that the same immunity to clock jitter as

provided by a multi-bit DAC can be achieved, without the need for DEM techniques. In

summary, similar to the excess loop delay, several techniques have been proposed for

mitigating the effects of DAC clock jitter.

1.4.4 Issue of integrator nonlinearity in continuous-time modulators

ioutvin 

vin vin

= f(vin)iout iout

imax

-imax

(a) (b)

= gmvin

gm

vmax

-vmax

Figure 1.26: Input-output characteristic of (a) a linear transconductor and (b) a nonlin-
ear transconductor

Another nonideality that is critical to the performance of CTDSMs, is the nonlin-

earity of integrators. An important source of this nonlinearity are the transconductors

(gm) used to implement the opamps in the integrators. While an ideal transconductor

exhibits a linear relation between its output current (iout) and its input voltage (as in

Fig. 1.26(a)), a practical transconductor is observed to have a nonlinear relation, f(vin).
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With a differential implementation, the nonlinear relation19 can be expressed as

iout = f(vin) = gmvin − g3v
3
in , (|vin| < vmax) (1.20)

Further, for very high input voltages (> vmax), the output current of the transconductor

invariably gets limited to a value of imax, as can be seen in Fig. 1.26(b)20. When the

output current is saturated, the transconductor is said to be operating in a ’slewing’

mode. In a CTDSM, slewing can result in errors in the integrator output, leading to

performance degradations in the form of increase in the in-band noise and harmonic

distortion in the modulator output (Cherry (1998)).
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Figure 1.27: (a) Block diagram of the input stage of a CTDSM including the first inte-
grator, along with typical swings observed for u(t)-v(t) for different num-
ber of quantizer bits (b) N = 1 (c) N = 2 (d) N = 3. (Full scale range of the
quantizer is 2)

19We restrict our attention to third order nonlinearities
20For instance, in a typical differential pair implementation of the transconductor (Razavi (2005)),

imax is given by the tail current used.
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Therefore, the primary task while designing integrators for CTDSM is to ensure that

the specification called Slew-Rate (SR) requirement is satisfied. SR is defined as the

maximum rate of change of the output voltage possible in a given circuit, with a given

transconductor. In case of the first integrator of a CTDSM (as modeled in Fig. 1.27(a)),

the slew-rate needs to be greater than the expected rate change of voltage at the first

integrator output (w(t)). Thus, we have

SR ≥

∣∣∣∣
d w(t)

dt

∣∣∣∣
max

=

∣∣∣∣
d

dt

(
ω1

∫ t

0

(u(t1) − v(t1)) dt1

)∣∣∣∣
max

(1.21)

= ω1

∣∣u(t) − v(t)
∣∣
max

(1.22)

The above equation indicates that the slew-rate requirement is controlled by the ‘peak’

of
∣∣u(t) − v(t)

∣∣. Recall that SCR DAC implementations have very high initial peak

outputs, mainly intended to enhance the immunity to clock jitter. This translates to

higher slew-rate requirements imposed on the first integrator of the CTDSM. For the

same reason, such requirements are also higher with an RZ DAC21, when compared

to its NRZ counterpart. While a brute-force way of avoiding slewing conditions is to

increase the current sourcing capabilities of the transconductors, it can be seen that an

alternate power efficient design choice is to adopt NRZ pulse shapes.

Given an NRZ implementation, power consumption of the first integrator can be

further minimized through proper choice of the number of quantizer levels. As can be

seen from Fig. 1.27(b), (c) and (d), increasing the number of quantizer bits can help in

reducing the peak value of
∣∣u(t)−v(t)

∣∣ and thereby the slew-rate requirement. Further,

as seen from eq. 1.22, an appropriately smaller ω1 (achieved through node scaling) can

also help in controlling the slew-rate requirements placed on the first integrator. In a
21since the height of v(t) is twice of that with an NRZ DAC

35



nutshell, the critical issue of slewing can be avoided and power consumption can be

optimized through proper architectural design choices.

Even when the current levels are high enough to prevent slewing in the integrators,

the performance of a CTDSM is not guaranteed. This is due to the nonlinear nature of

the transconductor’s current, as defined by f(vin). Of particular interest is the effect of

the transconductor operating in a weakly nonlinear region, where gmvin � g3v
3
in. Re-

ferred to as opamp nonlinearity or integrator nonlinearity henceforth, such a nonideality

increases the current requirements of the opamp22. This makes integrator nonlinearity a

critical consideration while designing low power, high resolution CTDSMs. To demon-

strate this, consider a CTDSM with a 4-bit internal quantizer and a third order maxi-

mally flat NTF. A sampling rate of 3.072 MHz is chosen which translates to an OSR of

64 for a signal bandwidth of 24 kHz. As shown in Fig. 1.28, let the first integrator be

implemented with a nonlinear Gm-C integrator. The transconductor is assumed to have

a current function, iout = gmvd − g3v
3
d. The nonlinearity is such that the transconductor

is ensured to operate in the weakly nonlinear region (gmvd � g3v
3
d).

vd 
C

R

R

-v

u
gm

iout 

iout = gmvd - g3vd
3 

Vo

Figure 1.28: A nonlinear Gm-C implementation of the first integrator

Despite the fact that the transconductor never slewed, a significant increase in the in-
22even more than that is sufficient to avoid slewing
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band noise floor (when compared to a linear modulator) can be seen from the Power

Spectral Density (PSD) of the modulator output shown in Fig. 1.29.
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Figure 1.29: Simulated PSD of a third order CTDSM with and without nonlinearity in
the Gm-C integrator. Comparison of the in-band noise floor is shown in
the inset.

An interesting observation is that, for the same nonlinearity, the in-band noise in-

creases with increasing OBG, as shown in Fig. 1.30. Similarly, it is observed that a 3-bit

modulator is affected more by integrator nonlinearity than a 4-bit modulator (as shown

in Fig. 1.31). Recognizing the trend of increasing in-band noise floor with reducing

number of quantizer levels, the modulator was simulated with a single-bit quantizer23

to observe the performance degradation. Fig. 1.32 shows the PSDs of the modulator

output observed for two-different input amplitudes. Unlike its multi-bit counterpart,

the performance of the single-bit modulator is seen to be largely dented by harmonic

distortion observed in its output.
23For this simulation, the modulator was modified to have a maximally flat NTF with an OBG of 1.5.

Also, an OSR of 128 was used resulting in a sampling rate of 6.144 MHz.
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Figure 1.30: Simulated PSD of a third order CTDSM with a nonlinear transconductor
for different OBGs.
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Figure 1.32: Simulated PSD of a third order single-bit CTDSM showing the harmonic
distortion limited performance for two different input amplitudes

In summary, the severity of integrator nonlinearity on the performance of CTDSMs

should be evident from the above discussion.

1.5 Prior work and Motivation

A survey on the studies that have been carried out on analyzing the effect of integra-

tor nonlinearity in CTDSMs, points to the works of Breems et al. (1999) and Leuciuc

(2001). Breems et al. (1999) quantified the harmonic distortion observed in single-bit

CTDSMs (with an RZ DAC) employing a single-stage active-RC integrator. Leuciuc

(2001) has shown through behavioral simulations the relative significance of integrator

nonlinearities. He concludes that the first integrator of the loop filter is the dominant

contributor to harmonic distortion, in both CIFF and CIFB modulators.

On closer observation, it is seen that the works mentioned above have focused on
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particular integrator topologies and DAC pulse shapes, leaving much to be investigated

for other design choices. Moreover, to the author’s best knowledge, there has been

no work explaining the increase in the in-band noise of multi-bit modulators, due to

integrator nonlinearity24.

Due to the limited understanding of the effect of integrator nonlinearity, design-

ers have to depend on time-consuming simulations to determine the power required to

meet the performance specifications. This often involves a “trial and error” approach

of increasing the bias currents of the transconductors, till the desired performance is

achieved. Further, the power efficiency achieved with such designs is debatable, given

the lack of proper understanding of this issue.

From our discussions so far, it must be clear that all other implementation issues

of a CTDSM have been well addressed except for the effect of integrator nonlinearity.

From a designer’s perspective, a model that can quantify the performance degradation

due to such nonlinearities can be very useful in designing low power, high-resolution

CTDSMs. A thorough understanding of the issue can also throw light on methods that

can mitigate the observed performance degradations. This research work is aimed at

addressing the above mentioned needs.

1.6 Contributions

Two major contributions of this research are the following. The effect of nonlinear-

ity in the first integrator of a CTDSM has been analyzed, when a multi-bit quantizer

is used. Analytical expressions have been developed to quantify the increase in the
24A similar phenomenon was briefly pointed out by Steensgaard (1998) for ‘single-bit discrete-time’

modulators
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in-band noise (IBN) spectral density, relating it the nonlinearity in several integrator

topologies. Such relations have been obtained by assuming the shaped quantization

noise to be approximately Gaussian. Results from macromodel simulations have been

found to correlate well with the theory.

Another contribution is a power efficient technique to achieve low distortion opera-

tion in CTDSMs, especially with single-bit quantizers. Termed as the “assisted opamp

technique”, its efficacy has been demonstrated through two single-bit audio modula-

tor designs - one using an NRZ feedback DAC and the other using an SCR feedback

DAC. With the help of the proposed technique, the performance achieved with these

modulators is comparable to that obtained with the best multi-bit designs reported in

the literature. Designed in a 0.18 µm CMOS technology, the modulator with an NRZ

DAC achieves a dynamic range of 92.5 dB in a 24 kHz bandwidth, with a power dissi-

pation of 110 µW from a 1.8 V supply. The design employing an SCR DAC achieves

a dynamic range of 91.5 dB and dissipates 122 µW of power. A detailed description

of these contributions along with details of the fabricated designs form the rest of the

thesis, which has been organized as described below.

1.7 Organization of the thesis

Chapter 2 focuses on the analysis of the effect of integrator nonlinearity in multi-bit

CTDSMs. Analytical relations quantifying the increase in the IBN of multi-bit modu-

lators will be derived for different integrator topologies, considering both NRZ and RZ

feedback DACs.

Chapter 3 builds on the fundamentals developed in the previous chapter to analyze
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the effect of integrator nonlinearity in specific active-RC integrator topologies. It shows

how the models derived in Chapter 2 can be suitably modified to be applied to these

integrator topologies.

Chapter 4 discusses as to how the concepts derived in the Chapters 2 and 3 can be

applied to determine the harmonic distortion observed in single-bit modulators.

Chapter 5 introduces the circuit technique of assisted opamp integrator that can

enable power efficient design of CTDSMs, especially single-bit modulators.

Chapter 6 then provides the design details of the two audio modulators designed to

demonstrate the effectiveness of the assisted opamp technique. The relevant simulation

and measurement results will also be provided in this chapter.

Chapter 7 summarizes the contributions and the results achieved through this re-

search and also gives suggestions for future work.
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CHAPTER 2

ANALYSIS OF INTEGRATOR NONLINEARITY IN
CONTINUOUS-TIME DSMs : THE MULTI-BIT CASE

The effect of integrator nonlinearity has been shown to increase the in-band noise floor

of multi-bit continuous-time delta-sigma modulators. In this chapter1, we analyze this

effect and show how it can be related to the NTF of the modulator and the number

of quantizer levels, among other parameters. The analysis will be carried out for a

CTDSM having a CIFF loop filter as shown in Fig. 2.1(a)2. Since the first integrator is

the dominant source of nonlinearity (Leuciuc (2001)), the rest of the loop filter L′(s)

is considered to be linear. Without loss of generality, the DAC is assumed to be of the

resistive kind, thus resulting in the input stage as shown in Fig. 2.1(b).

Vout [n]Vin (t)

Vdac (t)

-

+
Σ

NRZ
DAC

ω1
s L’(s) ADC

Vin (t)

-Vdac (t)

R

R

ω1
s L’(s) ...

(a)

(b)

Figure 2.1: (a) Block diagram of a modulator with CIFF loop filter and (b) the input
stage with a resistive DAC implementation.

1The contents of this chapter have appeared (in condensed form) in Sankar and Pavan (2007).
2In the rest of the thesis, the input signal will be denoted as Vin(t) instead of u(t).



Considering an NRZ feedback DAC, we proceed with the analysis in the following

manner. First it is shown how a unified model can be used to account for the nonlin-

earity in integrators employing various opamp topologies. Using this model, analytical

expressions are derived for the in-band noise of multi-bit modulators, relating it to the

shape of the NTF. The analysis is then extended to modulators employing RZ feed-

back DACs. The efficacy of the proposed models is finally verified by comparing the

analytical expressions with behavioral simulation results.

2.1 Modeling nonlinearity in Gm-C and active-RC integrators

In this section, the weak nonlinearity in integrators implemented using Gm-C and

active-RC techniques will be modeled. The discussion has been structured in a way to

bring about the best suited integrator topology that can be employed to design power

efficient, linear integrators for use in CTDSMs.

2.1.1 Gm-C integrator

vd 
C

iout = gmvd - g3vd
3 

(a)

Vin

-Vdac

R

R

Vo

(b)

Vin f(x)
ω1
s

Vo

Vdac-

+
iout 

Figure 2.2: (a) Circuit of the input stage of a CTDSM using a nonlinear Gm-C integrator
and (b) its equivalent model.

The input stage of a CTDSM using a Gm-C integrator is shown in Fig. 2.2(a). The

transconductor is assumed to be weakly nonlinear, with the output current being related

to the input voltage as iout = gmvd−g3v
3
d. The output voltage of the nonlinear integrator
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is

Vo = −
1

C

∫ t

0

iout dt (2.1)

= −
1

C

∫ t

0

(gmvd − g3v
3
d) dt (2.2)

With vd = (Vin − Vdac)/2, we have

Vo =
−1

C

∫ t

0

gm

2
(Vin − Vdac) −

g3

8
(Vin − Vdac)

3 dt (2.3)

=
−gm

2C

∫ t

0

(Vin − Vdac) −
g3

4gm
(Vin − Vdac)

3 dt (2.4)

Thus, as shown in Fig. 2.2(b), the nonlinear integrator can be modeled with a nonlinear

function preceding a linear integrator, where

f(x) = x −
g3

4gm

x3 (2.5)

ω1 =
gm

2C
(2.6)

2.1.2 Active-RC integrators

vd 

R
iout 

iC

Vin

-Vdac

R

Vo

C1/gm

Vin f(x)

Vdac-

+ s
ω1 Vo

(a) (b)

Figure 2.3: (a) Circuit of the input stage of a CTDSM using a nonlinear single-stage
active-RC integrator and (b) its equivalent model.

1) Active-RC integrator using a transconductor: A popular CTDSM input

stage using a zero-compensated active-RC integrator is shown in Fig. 2.3(a) (see for
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example, van der Zwan and Dijkmans (1996), Breems et al. (1999), Yan and Sanchez-

Sinencio (2004), Breems et al. (2004)). The transconductor is weakly nonlinear with

iout = gmvd − g3v
3
d . The output voltage of the integrator can be determined by solving

the nonlinear equation involving vd. The equation in question can be formed by writing

the nodal equation at the transconductor input,

Vin − Vdac

R
−

2vd

R
= iC = gmvd − g3v

3
d (2.7)

vd,linVin

-Vdac

R

R

C1/gm

iout = gmvd

vd,inj

R/2

C1/gm

iinj = g3(vd,lin)
3

Step 1 Step 2

iC,lin iC,inj

iinj

[from Step 1]vd,lin + vd,injvd ~~

Figure 2.4: Circuit topologies in each step of the current injection method

The solution (vd) for this equation can be obtained using the method of current injec-

tion3 (for weakly nonlinear systems) proposed by Bussgang et al. (1974) as follows,

• Step 1: First, a solution (vd,lin) is obtained by assuming a linear transconductor
(g3 = 0), as shown in Fig. 2.4. We thus have

vd,lin =
(Vin − Vdac)

2 + gmR
(2.8)

• Step 2: The next step is to find a solution for vd with the same linear transcon-
ductor but after nullifying the input and ‘injecting’ a current g3v

3
d,lin as shown in

Fig. 2.4. Termed as vd,inj , it can be given by

vd,inj =
R

(2 + gmR)
iinj (2.9)

3The reader can refer to Appendix A for a detailed description about the method. While the method
is originally intended to solve nonlinear differential equations, it has been recently applied to efficiently
simulate delta-sigma modulators (Pavan (2010a)).

46



• The solution to the nonlinear equation is approximately the sum of the two com-
ponents thus derived.

vd ≈ vd,lin + vd,inj = vd,lin +
g3v

3
d,linR

(2 + gmR)
(2.10)

The capacitor current (iC ) can now be determined using eq. 2.7 or equivalently,

iC ≈ iC,lin + iC,inj = gmvd,lin −
2vd,inj

R
(2.11)

= gmvd,lin −
2g3v

3
d,lin

(2 + gmR)
(2.12)

=
gm(Vin − Vdac)

2 + gmR
−

2g3(Vin − Vdac)
3

(2 + gmR)4
(2.13)

Expressing the output voltage as a function of iC , we have

Vo = −
1

C

∫ t

0

iC dt −
iC
gm

+ vd (2.14)

= −
1

C

∫ t

0

iC dt +
g3v

3
d

gm
(2.15)

≈ −
1

C

∫ t

0

iC dt , (since gmvd � g3v
3
d) (2.16)

=
−1

C

∫ t

0

(
gm(Vin − Vdac)

2 + gmR
−

2g3 (Vin − Vdac)
3

(2 + gmR)4

)
dt (2.17)

From the above equation, it is apparent that the integrator can be modeled by a nonlinear

function (f(x)) preceding a linear integrator as shown in Fig. 2.3(b), with

f(x) = x −
2g3

gm(2 + gmR)3
x3 (2.18)

ω1 =
gm

C(2 + gmR)
(2.19)

When compared to eq. 2.5, observe that the negative feedback around the transcon-

ductor has effectively reduced the nonlinearity by a factor (2 + gmR)3, where gmR/2

47



denotes the loop gain. Physically, the improvement can be attributed to the reduced

swing at the transconductor input (see eq. 2.8), which correspondingly reduces the in-

jected nonlinear currents. The linearity of a given active-RC integrator can thus be seen

to be improved by either increasing the transconductance (gm) or by increasing the re-

sistance, R. While the former choice leads to an increased power consumption, the latter

increases the thermal noise contribution of the resistors.

2) Active-RC integrator with a two-stage Miller opamp: The input stage of a

CTDSM with an active-RC integrator built with a two-stage Miller compensated opamp

is shown in Fig. 2.5. The input transconductor is assumed to be weakly nonlinear, with

i1 = gm1vd − g31v
3
d. The second stage is assumed to be a linear transconductor, gm2. c1

and c2 denote the parasitic capacitances.

Vo

1/gm2

vd

C

Cc

c1

gm2gm1

iC

r1 c2
r2

Vin R

-Vdac

R

iCc

i2i1 v1

Figure 2.5: Circuit of the input stage of a CTDSM using an active-RC integrator with a
two-stage Miller compensated opamp.

Analyzing nonlinearity in this integrator can be accomplished through the Volterra

series. Unfortunately, this results in complex expressions that give little circuit intu-

ition. We employ a simple, intuitive approach and apply Bussgang’s method of current

injection to model the nonlinearity as described below.
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For simplicity, we begin with the assumption that the output conductances at each

stage of the opamp is zero (r1 = r2 = ∞). With an NRZ DAC, the input to the

integrator can be perceived as a series of step-like signals given by,

Vin(t) − Vdac(t) =
∑

n

x[n] (u(t − nTs) − u(t − (n + 1)Ts)) (2.20)

where u(t) denotes the Heaviside step function and x[n] = Vin(nTs) − Vdac(nTs),

since the input signal can also be considered to be sampled and held on the grounds

of oversampling. Note that a practical active-RC integrator (used as the first integrator

in a CTDSM) is designed in a manner such that the parasitic poles lie much beyond

the sampling frequency (fs) used. In other words, it is fair to assume that the opamp

is fast in a well-designed integrator. Understandably, the initial transients at the virtual

ground node (vd) can then be seen to quickly die in each clock period. This suggests

that the response at vd can also be considered as step signals, similar to the integrator

input. Fig. 2.6 illustrates this scenario, where the responses expected at each node of

the integrator is shown for a step input.

Vo

1/gm2

R/2

vd

C

Cc

c1

gm2gm1

iC

c2

Vth

0 Ts

0 Ts

0 Ts
0 Ts0 Ts

Vth = (Vin - Vdac)/2

v1

iCc

ic2ic1

i2

i1

Figure 2.6: Circuit of the first integrator of a CTDSM with the responses (currents)
shown at each node given a step input. Initial transients are neglected as-
suming a fast opamp.
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With steps in the integrator input, the second stage transconductor (gm2) is required

to supply a constant current (i2) in a given clock period. This implies that the opamp’s

first stage output voltage (v1 = i2/gm2) is also a step signal in each clock cycle, thus

resulting in ic1 ≈ 0. The voltages across C and Cc being approximately the same, we

therefore have

iCc (≈ i1) ≈ iC
Cc

C
or, (2.21)

iC ≈
C

Cc

i1 =
C

Cc

gm1vd (2.22)

With iC = (Vin − Vdac − 2vd)/R, the above relation can be used to express the linear

response at the virtual ground node as

vd,lin =
(Vin − Vdac)

2 + kgm1R
(2.23)

where k = C/Cc. It can be seen that the relation is similar to that in eq. 2.8, though the

swing at the virtual ground node is smaller by a factor C/Cc in a Miller opamp based

integrator. The knowledge of the linear response thus obtained can be used to inject a

step-like current iinj = g31v
3
d,lin as shown in Fig. 2.7.

Vo

1/gm2

R/2 vd,inj

C

Cc

c1

gm2gm1

iC,inj

c2

0 Ts

0 Ts0 Ts

v1

iCc

ic2ic1

i2

i’1

iinj

0 Ts

i1

Figure 2.7: Injection of a step-like nonlinear current (iinj) at the output of the input
transconductor in an active-RC integrator with Miller opamp. Initial tran-
sients have been neglected.
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The resulting step-like capacitive current iC,inj is given by

iC,inj ≈ kiCc (2.24)

= k(i1 − iinj) = k(gm1vd,inj − iinj) (2.25)

With iC,inj = −2vd,inj/R, we have

−2vd,inj

R
≈ k(gm1vd,inj − iinj) or, (2.26)

vd,inj ≈
kR

(2 + kgm1R)
iinj =

R

(2 + kgm1R)
(kg31v

3
d,lin) (2.27)

Comparing the expressions for vd,lin and vd,inj with that obtained with the single-stage

integrator (eq. 2.8 and 2.9), it is seen that gm and g3 of the latter is simply replaced

by kgm1 and kg31 with the two-stage opamp. Thus, similar to the single-stage case,

the nonlinear two-stage integrator can be modeled with a nonlinear function (f(x))

preceding a linear integrator (−ω1/s), where

f(x) = x −
2g31

gm1(2 + kgm1R)3
x3 (2.28)

ω1 =
kgm1

C(2 + kgm1R)
(2.29)

Comparing the nonlinear functions in eq. 2.18 and 2.28, an advantage of using Miller

opamp can be brought about. With a two-stage implementation, an improvement in the

integrator linearity can be obtained by increasing k = C/Cc. This is in contrast to the

need for increasing either gm or R, as in a single-stage implementation.

While the above analysis provides us with valuable insights about the circuit opera-

tion, very large output resistances cannot be guaranteed in all circumstances (especially

r2). Due to finite resistances, the factor k relating the capacitor current (iC ) and the
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transconductor’s current (i1) gets modified in a manner as explained below.

Vo

1/gm2

R/2

vd

C

Cc

c1

gm2gm1

iC

r1 c2
r2

Vth

0 Ts

0 Ts

0 Ts 0 Ts0 Ts

Vth = (Vin - Vdac)/2

v1

iCc

ir2 ic2ir1 ic1

i2

Figure 2.8: Circuit of the first integrator of a CTDSM with finite r1 and r2. The re-
sponses (currents) at each node are shown for a given step input, neglecting
the initial transients.

As shown in Fig. 2.8, a step input to the integrator results in a step-like capacitive

current (iC ), which gets integrated to result in a ramp at the output of the integrator.

With a finite value for r2 , this gives rise to a finite value for the current, ir2 = Vo/r2.

Since the second stage transconductor has to supply this current, the first stage output

voltage can now be expressed as having two components given by,

v1 =
i2

gm2
= v1,res + v1,cap (2.30)

=
−ir2
gm2

+
(iC + iCc − ic2)

gm2
(2.31)

where the component v1,res denotes the linearly increasing voltage with time and v1,cap

represents the constant component required to supply the capacitive currents4. The

time-varying component at v1 can be observed to result in the capacitive currents (iCc

4These capacitive currents are present even when r2 = ∞.
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and ic1) given by

iCc ≈ sCc(v1,res − Vo) = −sCcVo(1 +
1

gm2r2
) (2.32)

ic1 ≈ sc1v1,res = −sc1Vo
1

gm2r2
(2.33)

With iC ≈ −sCVo, we have

iCc ≈ iC
Cc

C
(1 +

1

gm2r2
) (2.34)

ic1 ≈ iC
c1

C

1

gm2r2
(2.35)

These currents are to provided by the first transconductor, gm1. Additionally, with a

finite value for r1, the transconductor also needs to supply the resistive current given by

ir1 =
v1

r1
≈

(iC + iCc − ic2)

gm2r1
(2.36)

≈
iC(1 + Cc/C + c2/C)

gm2r1
(from eq. 2.34) (2.37)

Combining the above equations, the first transconductor current (i1) can be expressed

as

i1 = iCc + ic1 + ir1 (2.38)

≈ iC

(
Cc

C
(1 +

1

gm2r2
) +

c1

C

1

gm2r2
+

1 + Cc/C + c2/C

gm2r1

)
(2.39)

Grouping the terms, we thus obtain

k =
iC
i1

≈
C

Cc +
c1 + Cc

gm2r2
+

C + Cc + c2

gm2r1

(2.40)
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which approximates to C/Cc for high values of r1 and r2, as expected. The expression

thus derived was confirmed through simulations. Fig. 2.9 shows the simulated step

response at the virtual ground node (of a linear integrator) along with the expected

response as predicted using the gain factor in the relation

vd,lin =
(Vin − Vdac)

2 + kgm1R
(2.41)

with k being determined from eq. 2.40. For comparison purposes, the response pre-

dicted by assuming k = C/Cc is also shown. It can be seen that the predicted responses

closely match the simulated ones5. Understandably, better accuracy achieved with k

obtained from eq. 2.40 is more apparent for r2 = 200 kΩ.
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Figure 2.9: Simulated and expected step response at vd for the Miller opamp based
integrator with gm1 = 27.12 µS, R = 100 kΩ, C = 527 fF, Cc =150 fF, gm2

= 60 µS for (a) r2 = 1 MΩ (b) r2 = 200 kΩ. The insets show the zoomed-in
views.

5Note that we have neglected the initial transients in this analysis.
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Thus, using the expression for k = iC/i1 (as given in eq. 2.40), the nonlinear inte-

grator can be modeled with

f(x) = x −
2g31

gm1(2 + kgm1R)3
x3 (2.42)

ω1 =
kgm1

C(2 + kgm1R)
(2.43)

In summary, we have modeled the nonlinearity in a Miller based active-RC integrator

by using a simple, intuitive approach without resorting to complex analysis involv-

ing Volterra series. Neglecting the initial transients generated due to the step inputs

(Vin − Vdac) applied to the integrator, we related the integrating capacitor’s current (iC)

and the first transconductor’s current (i1). This enabled us to easily model the nonlinear

integrator, in a manner similar to that of a single-stage integrator. An important obser-

vation from the analysis is the possibility to control the integrator nonlinearity through

the factor k ≈ C/Cc. This can be achieved by either increasing the value of C or by

decreasing Cc. However, any reduction in the value of Cc will compromise the stability

of the integrator. We shall now investigate an integrator topology that can effect this

reduction without compromising on the stability.

3) Active-RC integrator with feedforward compensated opamp: Consider an

active-RC integrator built with two-stage feedforward compensated opamp as shown in

Fig. 2.10. The feedforward transconductor (gm3) serves to bring stability to the closed

loop system. An advantage of this compensation scheme is that the bandwidth (or

speed) of the opamp is not reduced, unlike with Miller compensation. The parasitic

Miller capacitance of the second stage transconductor, gm2 has been modeled as cp.

This can be used for comparing the nonlinearity with that observed in the case of a

Miller compensated opamp.

55



Vo

C

cp

c1

gm2gm1

iC

r1 c2
r2

gm3

Vin R

-Vdac

R
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3
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vd 
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Figure 2.10: Circuit of an active-RC integrator with a two-stage feedforward compen-
sated opamp.

Since significant part of this integrator topology is similar to that with a Miller

opamp based integrator, the same analysis can be carried over here. With a linear inte-

grator, in response to a step input, the presence of the feedforward transconductor (gm3)

will modify the step-like voltage component at v1 as

v1,cap =
(iC + icp − ic2 − i3)

gm2
(2.44)

where i3 = gm3vd denotes the current from the feedforward transconductor. This results

in the modified resistive current given by

ir1 ≈
v1,cap

r1
(2.45)

=
(iC + icp − ic2)

gm2r1
−

i3
gm2r1

(2.46)

Rewriting the expression for i1,

i1 = icp + ic1 + ir1 (2.47)

≈ iC

(
cp

C
(1 +

1

gm2r2
) +

c1

C

1

gm2r2
+

1 + cp/C + c2/C

gm2r1

)
−

i3
gm2r1

(2.48)
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Denoting k =
C

cp +
c1 + cp

gm2r2
+

C + cp + c2

gm2r1

, we thus have

iC = ki1 +
k

gm2r1
i3 (2.49)

= k

(
gm1 +

gm3

gm2r1

)
vd (2.50)

Comparing the above relation with eq. 2.22, the relevant expressions for the feedforward

opamp based integrator can be simply obtained by replacing gm1 in the expressions for

the Miller opamp case with gm1 + gm3/(gm2r1). The component due to gm3 can be

considered as the current from the feedforward transconductor, as referred to the the

first stage output of the opamp using the factor ‘gm2r1’. Defining the nonlinear currents

to be i1 = gm1vd − g31v
3
d and i3 = gm3vd − g33v

3
d, the nonlinear integrator can thus be

modeled with

f(x) ≈ x −
2g31

gm1(2 + kgm1R)3
x3 −

2g33/(gm2r1)

gm1(2 + kgm1R)3
x3 (2.51)

ω1 ≈
kgm1

C(2 + kgm1R)
(2.52)

where it is assumed that gm1 � gm3/(gm2r1). Two important conclusions can be drawn

from the above analysis - one, the nonlinearity of the feedforward transconductor should

not be as critical as that of the input transconductor due to the scaled down nature of its

current. Secondly, the expression for k indicates that the effect of the input transcon-

ductor’s nonlinearity will be less pronounced with a feedforward compensated opamp,

since cp will always be smaller than Cc used in a Miller opamp. Physically, such an

improvement can be attributed to the fact that the input transconductor does not have

to charge/discharge any compensating capacitor Cc, in case of the feedforward opamp.
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With reduced current requirements on the input transconductor, it can be seen that a

feedforward opamp based active-RC integrator will be more linear than its Miller coun-

terpart, for the same power consumption6.

It has to be pointed out to the reader that an interesting case arises when the out-

put resistances of the feedforward opamp are high and the parasitic Miller capacitance,

cp ≈ 0. With such an opamp, eq. 2.51 predicts that the integrator is linear (with k = ∞),

irrespective of the nonlinearity of the input transconductor. However, this will not be

the case, since the initial transients at the virtual ground node7 will reflect the nonlin-

earity in such integrators. Further, simulations show that the improvement expected

with a feedforward opamp (over the Miller opamp) is slightly reduced due to the pres-

ence of these initial transients. It is thus seen that the initial transients should also be

included while modeling the nonlinearity of such integrators for accurate characteriza-

tions. However, for reasons of brevity, we defer the modeling of the effect of initial

transients till the next chapter.

To summarize the modeling discussed so far, we have shown that a nonlinear in-

tegrator can be modeled as a linear integrator preceded by a nonlinear function, f(x).

Starting with a simple Gm-C integrator, the model has been obtained for active-RC in-

tegrators with different kinds of opamp architectures. We shall now proceed to see how

these models can be used to determine the performance of multi-bit CTDSMs.

6The reader can refer to Appendix B for a detailed comparison between the two opamp architectures.
7neglected in this analysis
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2.2 Effect of integrator nonlinearity in multi-bit CIFF modulators

Based on the discussion in the previous section, the nonlinearity of the first inte-

grator in a CIFF CTDSM can be modeled as shown in Fig. 2.11, where the function,

f(x) = x − βx3 models the weak nonlinearity in the integrator. The zeroth-order-hold

(ZOH) in the feedback path can model the NRZ nature of the feedback pulse shape. Us-

ing the assumptions stated below, we will see how the effect of integrator nonlinearity

can be quantified with this model.

f(x)
Vout [n]Vin(t)

Vdac(t)

-

y(t)x(t)
L(s)

ZOH

Figure 2.11: CTDSM with nonlinearity in the first integrator

Assumptions behind the analysis

1. Quantization noise is white and uncorrelated with the input: This is the usual
assumption, which is largely satisfactory in multi-bit quantizers.

2. Input signal is constant within a clock period: As assumed in the previous sec-
tion, if the input is slowly varying, it is reasonable to approximate it by a wave-
form which is piecewise constant. This simplifies the analysis of nonlinearity in
the modulator and also allows us to express the input to the first integrator as a
sampled and held version of x[n] = Vin[n] − Vout[n].

3. In-band Signal Transfer Function (STF) is 1: If the dc gain of the loop filter is
sufficiently high, the in-band STF is close to unity, implying that the input to the
first integrator (x[n]) is the shaped quantization noise. In reality, there is a small
signal component, which we neglect in this analysis.

4. Shaped quantization noise sequence is jointly Gaussian: Denoting the quantiza-
tion noise and the impulse response corresponding to the NTF by e[n] and h[n]
respectively, we see that the shaped noise sequence is given by e[n] ∗ h[n] (where
∗ is the convolution operation). Since the shaped noise is a filtered version of
e[n], it can be considered as a running sum of independent, delayed samples of
e[n]. By Central Limit Theorem, this can be assumed to result in a Gaussianly
distributed random process.
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To validate our assumptions before analysis, simulations were run8 to observe the

distribution of the input to the first integrator, x[n]. Fig. 2.12 shows the histogram ob-

served with a sinusoidal input for different number of quantizer levels9. The expected

distribution of the shaped quantization noise is also shown for comparison, assuming

uniform distribution for e[n]. It can be seen that there is good accordance between the

observed and expected histograms. Also, the observed distribution tends closer and

closer to the predicted one, with increasing number of quantizer levels. This is because

of the uniform assumption becoming more and more valid for increasing quantizer lev-

els. The effect of varying the OBG was also observed with a 4-bit modulator, as shown

in Fig. 2.13 and 2.14. The histograms follow the predicted distribution more closely for

higher OBG modulators, due to the fact that aggressive NTFs make the quantization

noise more random in nature.
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Figure 2.12: Observed histogram of samples of x[n] for various quantizer levels. Ex-
pected distribution of noise shaped e[n] is also shown for comparison.

8The modulator was assumed to have a maximally flat NTF (OBG = 3) with complex in-band zeros.
9The peaks observed in the distribution around ±0.5 LSB are because of the amplitude of the input

sinusoid. Depending on the difference between the amplitude and the nearest quantizer level, the peaks
can be expected to occur in the range of [-0.5 0.5]LSB
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Figure 2.13: Observed histogram of samples of x[n] for various OBGs. The expected
distribution is shown as dashed-lines.
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Figure 2.14: Observed histogram of samples of x[n] for various OBGs. The expected
distribution is shown as dashed-lines.
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Figure 2.15: Comparison of the expected distribution of noise shaped e[n] having either
uniform or Gaussian distribution. The regions where the two distributions
differ have been indicated.

While the veracity of white noise and uniform assumption for e[n] can be understood

from the distributions shown thus far, Fig. 2.15 can provide further insights on the Gaus-

sian assumption. For comparison purposes, the distribution of the shaped quantization

noise was also obtained by assuming a Gaussian distribution for e[n]. Comparison be-

tween the two distributions clearly shows slight differences in their densities, observed

along the extremes and around the mean value. As a result, the Gaussian assumption

for the shaped quantization noise in a CTDSM can in principle be expected to lead to

errors. Nevertheless, as can be seen from the discussion below, such an assumption

allows the use of classical results on the effect of nonlinear functions of Gaussian pro-

cesses. This enables us to quantify the effect of integrator nonlinearity in CTDSMs.

Further, simulations show that the error incurred is only marginal and the assumption is
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reasonable in practical multi-bit modulators.

f(x)
Vout [n]Vin(t)

-

y[n]x[n]

L(s)ZOH

e[n]

Figure 2.16: Equivalent model of the CTDSM for slow inputs

Using the above mentioned assumptions on the input signal and e[n], the CTDSM can

be equivalently modeled as shown in Fig. 2.16. The quantization noise has been mod-

eled as an additive error and the ZOH block has been brought into the forward path10

as it is now common to both Vin and Vout. For simplicity, we first consider the case

where Vin(t) = 0. Then, the input to the loop filter (x[n]) is the shaped quantization

noise, with an autocorrelation, Rxx[n] = (∆2/12)h[n] ∗ h[−n]. Assuming x[n] to be

a Gaussian process, the autocorrelation function of the sequence, y[n] observed at the

output of the nonlinearity f(x) = x − βx3 can be shown to be (see Appendix C)

Ryy[n] ≈ Rxx[n] + 6β2R3
xx[n] (2.53)

From the above equation, the effect of integrator nonlinearity can be thought of as

adding a random sequence, z[n] to the input of an otherwise linear modulator, as shown

in Fig. 2.17.

Vout [n]
0

-
L(s)ZOH

z[n] e[n]

Figure 2.17: Model for nonlinearity analysis of the CTDSM for the zero input case.
10Note that the nonlinear function and the ZOH have been swapped, without loss of accuracy.
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From eq. 2.53, the autocorrelation function of the random sequence is given by

Rzz[n] = 6β2R3
xx[n] (2.54)

In terms of the power spectral densities11, we thus have

Syy(ω) ≈ Sxx(ω) + Szz(ω) (2.55)

where Szz(ω) is the Fourier transform of Rzz[n]. With the in-band STF being unity, the

output of the modulator thus consists of an in-band noise which is composed of the usual

shaped quantization noise along with Szz(ω) (arising due to integrator nonlinearity).

The PSD of Szz(ω) can be easily determined once the modulator NTF and the details

of the nonlinearity (β) are known, thus enabling us to quantify the effect of integrator

nonlinearity in multi-bit CTDSMs. Physically, this IBN can be perceived as arising

from the “demodulation” of various out-of-band tones due to the nonlinearity, f(x).

With maximally flat NTFs, this demodulation is found to result in a noise, which is flat

within the signal band. This explains the variation in the in-band noise floor observed

in our preliminary simulations (in Chapter 1). To gain more quantitative insights on the

influence of the NTF on the in-band noise due to nonlinearity, a rough estimate of the

IBN spectral density can be obtained by interpreting eq. 2.55 as discussed below.

Simplified expression for IBN and discussion:

ωc0

A
A = (OBG)2.(∆2/12)/2π  
σx

2 = Α . (2π - 2ωc)   and

Sxx(ω)

ωc >> π/OSR
π

Figure 2.18: Assumed PSD of the shaped quantization noise
11The frequency variable ω refers to the discrete-time angular frequency expressed in rad/sample.
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Assuming maximally flat NTFs, the PSD of the shaped quantization noise (Sxx(ω)) can

be approximated by a brick-wall function as shown in Fig. 2.18. With a given OBG

and quantizer step size (∆), Szz(ω) can be obtained by circular convolution of Sxx(ω).

Since the in-band PSD is observed to be flat, the increase in the in-band noise can be

determined by evaluating Szz(ω) for ω ≈ 0 as

Szz(0) = 6β2A3
[
4(π − ωc)

2 − (π2 − ω2
c)
]

(2.56)

The above equation clearly proves our initial observation that increasing OBG results

in an increased IBN (∝ OBG6). Note that this leads to a similar kind of a trade-off

as with the issues of clock jitter and time constant variations for the following reason -

for smaller values of OBG, when the IBN is dominated by shaped quantization noise,

any increase in OBG results in an equivalent decrease in the in-band noise. However, at

higher values of OBG, the IBN is dominated by the noise due to nonlinearity, eventually

causing it to increase as OBG is raised. It is thus seen that there is an optimal OBG

that results in the least IBN. Understandably, this optimum depends on the amount of

nonlinearity, β. Eq. 2.56 also indicates that decreasing the resolution of the quantizer

by one bit causes Szz(0) (and the IBN due to nonlinearity) to increase by 18 dB. This

is exactly the same performance difference seen between a 3-bit and 4-bit modulator,

in our preliminary simulations (see Fig. 1.31). This also confirms the general intuition

that increasing the number of quantizer levels greatly reduces the effect of nonlinearity.

We derived eq. 2.55 based on a zero input into the modulator. However, even when

the input is non-zero, the input to the first integrator is practically the shaped quantiza-

tion noise (since the STF is unity). Thus, it seems reasonable that the results that were
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derived for the zero input case are valid even for a non-zero input. However, as will be

shown in the following discussion, this is not true for modulators with RZ DAC.

2.2.1 Analysis of modulators with an RZ DAC

The effect of integrator nonlinearity in multi-bit CTDSMs with an RZ DAC can be

analyzed similar to the case with an NRZ DAC. Increased tolerance to excess loop delay

(upto half a clock cycle) and mitigation of the effects of asymmetry in the rise and fall

times of the DAC, are reasons for preferring RZ DAC over an NRZ DAC. A multi-bit

CTDSM with an RZ DAC and a nonlinear first integrator is shown in Fig. 2.19, where

the RZ DAC has been depicted in the feedback path along with its impulse-response.

f(x)
Vout [n]Vin(t)

Vdac(t)

-

y(t)
L(s)

0 Ts /2

2

RZ DAC

Figure 2.19: CTDSM employing RZ DAC with nonlinearity in the first integrator

While the assumptions made with the NRZ DAC hold good for an RZ DAC, observe that

the input to the first integrator (y(t)) or the nonlinear function is not simply a sampled

and held version of Vin[n] − Vout[n]. This necessitates a modified approach to analyze

the effect of integrator nonlinearity and we therefore develop the theory by considering

the cases with and without input signal, separately.

A. When modulator input is zero : Assuming zero input to the modulator allows us

to consider the input to the nonlinear function as the shaped quantization noise sequence
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(x[n]) scaled by the RZ DAC. Therefore, the integrator input is given by

y(t) = 2x[n] − 8βx3[n], nTs ≤ t < (n + 0.5)Ts (2.57)

= 0, (n + 0.5)Ts ≤ t < (n + 1)Ts (2.58)

f(x)
Vout [n]

-

y[n]x[n]

L(s)

e[n]

0 Ts /2

20

Vout [n]

-
L(s)

e[n]

0 Ts /2

20

z[n]

(a)

(b)

Figure 2.20: (a) CTDSM employing RZ DAC with zero input (b) Equivalent model for
the CTDSM with a nonlinear first integrator, for zero inputs.

As shown in in Fig. 2.20(a), the RZ DAC can now be equivalently pushed in to the

forward path resulting in a modified nonlinear function (f̂(x)) given by

f̂(x) = x − 4βx3 (2.59)

Similar to the NRZ case, integrator nonlinearity can thus be perceived to introduce

the random sequence, z[n] as a separate input to the linear modulator depicted in

Fig. 2.20(b). Using the Gaussian assumption for x[n], the autocorrelation function of

this random sequence can be found as

Rzz[n] = 96β2R3
xx[n] (2.60)

67



The increase in the in-band noise due to integrator nonlinearity can therefore be quan-

tified by interpreting the above equation in frequency domain, as before. Comparing

eq. 2.54 and 2.60, it can be seen that the IBN due to nonlinearity is 12 dB worse with an

RZ DAC when compared to an NRZ implementation.

B. When modulator input is non-zero : The scenario with non-zero input can be

analyzed by representing the input signal path as shown in Fig. 2.21(a). The input signal

has been assumed to be sampled and held through two RZ DACs - with one of them

being delayed by half a clock cycle. Such a representation permits us to have an RZ

DAC in the forward path, common to both Vin[n]/2 and Vout[n], as in Fig. 2.21(a).

Vout [n]Vin(t)

-

y(t)

L(s)

e[n]

f(x)
0 Ts /2

2

0 Ts /2

2

2

Vout [n]

-

y(t)

L(s)

e[n]

f(x)
0 Ts /2

2

0 Ts /2

2f(x)

yrz,1[n]xrz[n]

yrz,2[n]

Vin(t)
2

(b)

(a)

Figure 2.21: (a) Model for the CTDSM employing RZ DAC with non zero input and
(b)its equivalent representation.

Since the respective outputs of the RZ DACs are interleaved in time, without loss of

accuracy, the nonlinear function (f(x)) can be brought into the respective signal paths

(as shown in Fig. 2.21(b)). The sequence xrz[n], in the path involving Vout[n], can now
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be expressed in terms of the shaped quantization noise (x[n] = Vin[n] − Vout[n]) as

xrz[n] =
1

2
Vin[n] − Vout[n] (2.61)

= x[n] −
1

2
Vin[n] (2.62)

With such a representation, evaluating the output of the nonlinear function results in

yrz,1[n] = x[n] −
1

2
Vin[n] − 4β

(
x[n] −

1

2
Vin[n]

)3

(2.63)

= x[n] −
1

2
Vin[n]

−4βx3[n] +
β

2
V 3

in[n] − 3βx[n]V 2
in[n] + 6βx2[n]Vin[n] (2.64)

yrz,2[n] =
1

2
Vin[n] −

β

2
V 3

in[n] (2.65)

Several observations can be drawn from the above equations.

• From eq. 2.64, observe that the first of the nonlinear terms (−4βx3[n]) is the same
component derived with zero input.

• While the second nonlinear term involving the cube of the input signal has the
potential to lead to third harmonic, such tones in yrz,1(t) and yrz,2(t) will get
combined to result in y(t) given by

y(t) =
β

2
V 3

in[n] , nTs ≤ t < (n + 0.5)Ts (2.66)

= −
β

2
V 3

in[n] , (n + 0.5)Ts ≤ t < nTs (2.67)

It can be seen that the harmonics generated get modulated out of the signal band12.

• It can be seen that the noise due to the last two terms in eq. 2.64 is dependent on
the input signal, Vin. The squaring operation on x[n] in the term 6βx2[n]Vin[n]
can result in the demodulation of out-of-band noise into the in-band region. This
can lead to significant increase in the in-band noise of the modulator. Since there
is no such demodulation process occurring with the component 3βx[n]V 2

in[n], it
can be neglected in the analysis for all practical purposes.

Thus, simplifying the expressions for yrz,1[n] and yrz,2[n] to have only the significant
12The anti-aliasing property of the loop filter can be assumed to attenuate the harmonics generated

about ±fs,±3fs, · · ·
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components, we have

yrz,1[n] ≈ x[n] −
1

2
Vin[n] − 4βx3[n] + 6βx2[n]Vin[n] (2.68)

yrz,2[n] ≈
1

2
Vin[n] (2.69)

Vout [n]

-

y(t)
L(s)

e[n]

0 Ts /2

2

0 Ts /2

2

yrz,I[n]xrz[n]Vin(t)
2

z1[n] z2[n]

Figure 2.22: Equivalent model for the CTDSM employing RZ DAC with a nonlinear
first integrator

The modulator with a nonlinear first integrator can thus be equivalently modeled as a

linear modulator with two additional random inputs, z1[n] = −4βx3[n] and z2[n] =

6βx2[n]Vin[n], as shown in Fig. 2.22. Assuming z[n] = z1[n] + z2[n] and Ain to denote

the input signal amplitude, the PSD of the random sequence arising due to nonlinearity

can be given by (see Appendix C)

Szz(ω) = Sz1z1
(ω) + Sz2z2

(ω) + 2Re (Sz1z2
(ω)) (2.70)

= 96β2 F
[
R3

xx[n]
]
+ 36β2A2

in F
[
R2

xx[n]
]
+ 2Re (Sz1z2

(ω)) (2.71)

where Sz1z1
(ω) and Sz2z2

(ω) are the Fourier transforms of the respective auto-correlation

functions while Sz1z2
(ω) denotes the cross power spectral density component. A quick

interpretation of the above equation using the brick-wall shaped PSD for Sxx(ω) (Fig. 2.18)

can tell us the relative significance of the individual components. From the previous

section, the flat PSD of Sz1z1
(ω) in the in-band region can be approximated to

Sz1z1
(0) = 96β2A3

[
4(π − ωc)

2 − (π2 − ω2
c )
]

(2.72)
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where A = OBG2(∆2/12)/2π. Correspondingly, the PSD of Sz2z2
(ω) can also be

determined through circular convolution of the brick-wall PSD for Sxx(ω). The in-band

noise spectral density thus obtained can be given by

Sz2z2
(0) = 36β2A2

inA2 (2π − 2ωc) (2.73)

For simplicity, the worst case noise densities of Sz1z1
(0) and Sz2z2

(0) can be compared

by assuming ωc ≈ 0. Thus,

Sz2z2
(0)

Sz1z1
(0)

≈
A2

in

4πA
(2.74)

=
A2

in

2OBG2(∆2/12)
(2.75)

With a full-scale range of 2Vref for a quantizer that has 2N levels, ∆ = 2Vref/2N .

Assuming a hypothetical peak signal amplitude of Vref results in

Sz2z2
(0)

Sz1z1
(0)

≈
3

2

(
2N

OBG

)2

(2.76)

For multi-bit quantizers, since 2N > OBG, Sz2z2
(ω) can be observed to be more sig-

nificant than Sz1z1
(ω). Therefore, for peak input signals, Szz(ω) ≈ Sz2z2

(ω), thus

significantly degrading the peak SNR and the effective resolution achieved with an RZ

modulator. It was earlier shown that the performance degradation with an RZ DAC is

12 dB worse than with an NRZ DAC, when only Sz1z1
(ω) is considered. This scenario

is bound to worsen further in the presence of input signal, when the in-band noise is

primarily determined by Sz2z2
(ω). In these cases, the (peak) IBN due to nonlinearity

can be seen to increase by 12 dB when the quantizer resolution is decreased by one bit.
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2.3 Simulation results

A third order CTDSM with a 4-bit quantizer and a maximally flat NTF was used

as a test vehicle to verify the results derived in the previous section. The sampling fre-

quency and signal bandwidth were chosen to be 3.072 MHz and 24 kHz, respectively. A

single-stage active-RC integrator (as in Fig. 2.3(a)) with R = 100 kΩ was used as the first

integrator. All the other blocks of the modulator were assumed to be ideal. Throughout

this section, unless specified otherwise, the feedback DAC is of the NRZ kind.

5 10 15 20 25

−160

−140

−120

−100

−80

−60

−40

−20

Frequency (kHz)

P
S

D
 (

dB
F

S
)

Linear modulator’s output
Nonlinear modulator’s output
Predicted noise 

Predicted noise = 2g
3
v

d,lin
3 /g

m
 

g
m

 = 500 µS, g
3
 = 100 mA/V3 

Figure 2.23: In-band power spectral density of the modulator output with a linear and
nonlinear active-RC integrator. Predicted spectral density obtained using
current injection method is also shown.

As a first step, the accuracy of the current injection method was confirmed by simulating

a 4-bit modulator, assuming gm = 500 µS and g3 = 100 mA/V3 for the transconductor.

Observe from eq. 2.18 that the expected increase in the in-band noise floor can be de-

termined using 2g3v
3
d,lin/gm, where vd,lin = (Vin − Vdac)/(2 + gmR) is obtained by
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simulating the linear modulator. Fig. 2.23 shows how well the predicted noise matches

with the simulated spectral density, thus verifying the method of current injection.
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Figure 2.24: Variation of IBN with varying input signal power.

Fig. 2.24 shows the variation of in-band noise power (IBN ) observed for varying input

signal amplitudes. The IBN is seen to vary for very low amplitudes due to the nonlinear

behavior of the quantizer at such low inputs. Otherwise, the noise power can be ob-

served to be relatively independent of the variation in the signal power. Therefore, all

the analytical estimates of IBN in this section were obtained using eq. 2.55, even though

they were derived for a zero input modulator. Sxx(ω) is obtained as NTF (ejω)σ2
q/(2π),

where σ2
q denotes the quantization noise power given as ∆2/12. Szz(ω) is obtained

through circular convolution of Sxx(ω).

Fig. 2.25 shows the analytically determined and simulated variation of IBN as a

function of the OBG. As expected from the discussion in the previous section, as the

OBG is increased, the total IBN first decreases and then increases, resulting in an op-
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Figure 2.25: Variation of IBN with OBG for different levels of transconductor nonlin-
earity. The solid lines are the analytically computed results, while the
points denote results from macromodel simulations.

timum OBG for a given nonlinearity. When the IBN is limited by noise due to nonlin-

earity (
√

gm/g3 = 0.95 LSB), the predicted IBN is found to deviate from the simulated

noise by around 2 dB. This is a consequence of the deviation of the distribution of x[n]

from being truly Gaussian, as depicted in Fig. 2.15. In particular, the over-prediction

of IBN can be attributed to the fact that x[n] does not assume values as high as a truly

Gaussian sequence would normally do. Further, as discussed before, this deviation in

IBN is found to increase as the OBG is reduced.

Fig. 2.26 shows the variation of IBN with nonlinearity, as a function of the number

of quantizer levels. The x-axis is
√

gm/g3, normalized to the LSB of the 4-bit quantizer.

For this simulation, a maximally flat NTF was chosen to have optimally placed complex

zeros, with OBG = 3. Consistent with our observations and predictions, we see that in-
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Figure 2.26: IBN as a function of nonlinearity for different quantizer resolutions.

creasing the quantizer resolution by one bit results in an 18 dB reduction in noise, when

the performance of the modulator is nonlinearity dominated. When the nonlinearity

is negligible, the performance is quantization noise limited and thus, the IBN reduces

by 6 dB for every extra quantizer bit. While the analytically determined IBN is higher

than the simulated values for reasons explained above, the trend is found to reverse

at very high nonlinearities. This can be attributed to the failure of the assumption of

weak nonlinearity, used while solving the cubic equation involving vd. The condition

gmvd � g3v
3
d gets violated as the nonlinearity worsens, pushing the transconductor into

strong nonlinear regions. This manifests as an unexpected increase in the IBN observed

in simulations. For a given nonlinearity, such a behavior is understandably more evident

with a 3-bit quantizer.

Fig. 2.27 shows the variation of IBN with nonlinearity for two values of gm of the
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Figure 2.27: Variation of IBN with nonlinearity for two values of gm.

transconductor used in the active-RC integrator. Again, for small values of
√

gm/g3, we

see that halving gm results in an increase in the IBN by 18 dB. This makes sense due to

the following. From the discussion on modeling of integrator nonlinearity, if gmR � 2

the value of β ∝ g−3
m . Using this in eq. 2.55, it can be seen that the IBN varies inversely

as g6
m, increasing by 18 dB when gm is halved. As expected, the assumption of weak

nonlinearity (gmvd � g3v
3
d) begins to fail at relatively smaller nonlinearities for the

case where gm = 250 µS, leading to an error in the IBN estimated.

For comparison purposes, the effect of nonlinearity in the single-stage integrator

was observed for a CTDSM with RZ DAC. Fig. 2.28 compares the PSD of the modu-

lator output with RZ and NRZ DAC for an input signal level of Ain=-37.5 dBFS. As

predicted, the IBN is worse for the RZ case by 12 dB. Fig. 2.29 shows the dependency

of the IBN in the RZ modulator with input signal power, for different levels of non-

linearity. The increase in IBN was predicted using eq. 2.71, by computing the power

76



spectral densities of the noise sequences using MATLAB.
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Figure 2.28: Comparison of output PSD of NRZ and RZ modulator with a nonlinear
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Figure 2.30: Variation of IBN with a two-stage Miller compensated opamp due to non-
linearity in the input transconductor.
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Figure 2.31: Variation of IBN with a feedforward compensated opamp.
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Moving on to the results obtained with two-stage active-RC integrators, Fig. 2.30

shows the IBN observed (with an NRZ DAC) when a two-stage Miller opamp based

integrator (see Fig. 2.5) is used. The model parameters of the integrator (gm1, gm2,

C, Cc) are also indicated. Simulation results for two values of the integrating capacitor

have been provided. The IBN determined using analytical expressions (eq. 2.55) closely

matches those from macromodel simulation. Further, as expected from the discussion

before, it is seen that increasing the integrating capacitance results in reduced IBN.

Finally, the performance of the modulator was observed with an integrator built with

a feedforward compensated opamp having the same input transconductor as the Miller

opamp. Fig. 2.31 shows the simulated and expected IBN for different nonlinearities of

the input transconductor, along with the parameters of the integrator. It can be clearly

seen from Fig. 2.30 that for the same nonlinearity, feedforward opamp based integrator

gives better performance, thanks to the smaller value of cp. However, note that there is

significant error in the estimation of IBN for the feedforward opamp case. As briefly

pointed out before, the cause for this under-estimation of the noise is the fact that, while

deriving the nonlinear model for the integrator, the initial transients have been neglected

in the response at the virtual ground node.

Illustrating the approximation, Fig. 2.32(a) shows the approximate and exact step

response at vd for the feedforward opamp based integrator. It can be seen that though

the initial transients quickly die, they span a wider range of values, in comparison to

the response without any transients. In a nonlinear integrator, the input transconductor

can potentially be pushed into nonlinear regions during this period. The estimation of

IBN neglecting the initial transients can therefore be in error, if the nonlinear currents
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Figure 2.32: Response at the virtual ground node of the active-RC integrator with feed-
forward compensated opamp, to a step input. (a) vd(t) (b) v3

d(t)

injected by the input transconductor (iinj) are considerably higher during this transient

period (as seen from v3
d(t) shown in Fig. 2.32(b)). For the same reason, a similar under-

estimation can be seen in Fig. 2.30 for the Miller opamp case with C = 1.05 pF. In

all these cases, because of a large value for k (obtained by increasing C or reducing

Cc or cp), one arrives at a situation where the initial transients13 begin to constitute a

significant part of the response at vd. The aim of the following chapter is to address this

issue, using the intuition developed in this chapter.

13The initial transients largely depend on gm3, gm2, c1 and c2 and hence, are not affected much due to
a change in the factor k.
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CHAPTER 3

MODELING THE EFFECT OF INITIAL
TRANSIENTS

In the analysis of Chapter 2, the initial transients at the virtual ground of a two-stage

opamp based active-RC integrator were neglected. This resulted in an under-estimation

of the in-band noise due to integrator nonlinearity, especially for the case of the feed-

forward opamp based active-RC integrator. This chapter is aimed at modeling the effect

of initial transients on the performance of multi-bit CTDSMs.

In essence, with the input to the first integrator being a sampled and held version of

the shaped quantization noise, the relevant step response at the virtual ground node (vd)

can be considered as having two components - a steady state part of the form G0u(t)

and a transient part, w(t). As shown in Fig. 3.1, we thus have

vd(t) ≈ G0u(t) + w(t) (3.1)

where w(t) can be assumed to decay to zero beyond t = t1, with t1 � Ts in a fast

opamp.

Ts t0 Ts t0

w(t)

G0u(t)

vd(t)

G0u(t) + w(t)

t1

Figure 3.1: Step response at the virtual ground node of an active-RC integrator with
two-stage opamp, considered as having two components - G0u(t) and w(t).



It can be recalled that the gain factor G0 was intuitively derived to be 1/(2 + kgm1R),

where k is appropriately obtained for Miller and feedforward compensated opamps.

Proceeding along similar lines as in Chapter 2, the effect of initial transients can be

modeled for multi-bit modulators in the following manner.

3.1 Modeling of integrator nonlinearity including the effect of initial transients

Consider the case of a feedforward opamp based active-RC integrator used in a

multi-bit CTDSM with an NRZ DAC, as shown in Fig. 3.2. The effect of weak nonlin-

earity in the input transconductor can be analyzed using Bussgang’s method of current

injection.

Vo

C

cp

c1

gm2gm1

iC

r1 c2
r2

gm3

R/2 i1

i3

vd 
i2

icp

v1
Vin-Vdac

2

Vin-Vdac

vd

t/Ts

t/Ts
0 1 2 4

Figure 3.2: Circuit of an active-RC integrator with a two-stage feedforward compen-
sated opamp used in a multi-bit CTDSM with an NRZ DAC.

The first task involves the determination of the linear response at the virtual ground

node, vd. As illustrated in Fig. 3.2, the input to the integrator is a series of step-like
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signals with an amplitude x[n] = Vin[n] − Vout[n] in each clock cycle. Denoting the

first difference of the shaped quantization noise sequence as x′[n] = x[n] − x[n − 1],

the linear response vd,lin(t) is thus given by

vd,lin(t) ≈ G0x[n] + x′[n]w(t − nTs) , nTs ≤ t < (n + 1)Ts (3.2)

The next task is to determine the injected response, vd,inj(t). With a weakly nonlinear

input transconductor (i1 = gm1vd − g31v
3
d), this involves the injection of the current

iinj = g31v
3
d,lin as shown in Fig. 3.3.

C

cp

c1

gm2gm1

iC,inj

r1 c2r2

gm3

vd,injR/2

iinj

Vo

Figure 3.3: Injection of nonlinear current (iinj) due to the input transconductor in an
active-RC integrator with two-stage feedforward compensated opamp.

From eq. 3.2, the injected current in a given clock cycle (nTs ≤ t < (n + 1)Ts) can be

expressed as

iinj(t) ≈ g31

(
G0x[n] + x′[n]w(t − nTs)

)3

(3.3)

= g31G
3
0x

3[n] + 3g31G
2
0x

2[n]x′[n]w(t − nTs)

+3g31G0x[n]x′ 2[n]w2(t − nTs)

+g31x
′ 3[n]w3(t − nTs) , nTs ≤ t < (n + 1)Ts (3.4)
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If initial transients are neglected, the first term in the above expression leads us to the

familiar nonlinear function, f(x) = x − βx3 (as derived in Chapter 2). This is made

possible because of a “memoryless” relation between x[n] and the injected current for

each clock cycle. However, the presence of the initial transients (w(t)) in the above ex-

pression does not permit such a relation, thus complicating the analysis. We overcome

this difficulty as discussed below.

It can be seen that the injected current will appear at the output of the integrator (and

the modulator output) after passing through a linear network1. In essence, there are no

more nonlinear operations in its path that can fold back (or demodulate) the out-of-band

noise into the in-band region. This implies that the knowledge of the “low frequency”

content of iinj(t) is sufficient to determine the in-band noise due to integrator nonlin-

earity.

The spectrum of the injected current can be found by considering it as having four

random components that are filtered versions of the shaped quantization noise (x[n])

and its first difference (x′[n]). For instance, the last term in eq. 3.4 can be perceived as

the output of a filter with impulse response given by w3(t) and whose input is a train

of impulses scaled by the samples, g31x
′ 3[n]. Thus, denoting the PSD of the injected

current as Sii(f), it can be found at low frequencies (f � fs) as (Papoulis and Pillai

(2002))

Sii(f) ≈ Ts(g31G
3
0)

2Sx3x3(f) +
1

Ts

∣∣∣∣3g31G
2
0

∫ t1

0

w(t) dt

∣∣∣∣
2

Sx2x′(f)

+
1

Ts

∣∣∣∣3g31G0

∫ t1

0

w2(t) dt

∣∣∣∣
2

Sxx′ 2(f) +
1

Ts

∣∣∣∣g31

∫ t1

0

w3(t) dt

∣∣∣∣
2

Sx′ 3(f)

+ cross correlation terms , (for f � fs) (3.5)
1With the usual assumption that the quantizer is linear.
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where components like Sx′ 3(f) are periodic replicas of Sx′ 3(ω) repeated every mul-

tiples of fs. Assuming a sampled and held injected current (say obtained from the

samples, iinj,eq[n]), it will have a low frequency PSD given by TsSieqieq
(f). Comparing

this with eq. 3.5, the low frequency content will be same as that of Sii(f), if

Sieqieq
(f) =

Sii(f)

Ts

, (for f � fs) (3.6)

= (g31G
3
0)

2Sx3x3(f) +
1

T 2
s

∣∣∣∣3g31G
2
0

∫ t1

0

w(t) dt

∣∣∣∣
2

Sx2x′(f)

+
1

T 2
s

∣∣∣∣3g31G0

∫ t1

0

w2(t) dt

∣∣∣∣
2

Sxx′ 2(f) +
1

T 2
s

∣∣∣∣g31

∫ t1

0

w3(t) dt

∣∣∣∣
2

Sx′ 3(f)

+
1

T 2
s

[ cross correlation terms ] (3.7)

Thus by defining,

α2 =
1

Ts
3G2

0

∫ t1

0

w(t) dt (3.8)

α3 =
1

Ts
3G0

∫ t1

0

w2(t) dt (3.9)

α4 =
1

Ts

∫ t1

0

w3(t) dt (3.10)

the injected current can be modeled as having four sampled and held discrete-time se-

quences given by2

iinj,eq[n] ≈ g31

(
G3

0x
3[n] + α2x

2[n]x′[n] + α3x[n]x′ 2[n] + α4x
′ 3[n]

)
(3.11)

Physically, the low frequency equivalence can be attributed to the same charge being

injected by both iinj(t) and the above currents, in each clock cycle. The expressions for

αi (i=2,3,4) can therefore be seen as the time-average of the charges transferred by the

respective transient terms present in eq. 3.4, in a given clock cycle.
2The reader can refer to Appendix D for a detailed mathematical proof on the above derivation.
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Given a series of step currents generated from the above sequence, the results de-

rived in the previous chapter (Section 2.1.2) can be used to determine the injected re-

sponse at vd. Since we are only interested in the low frequency content, it is fair to

assume that the step-like injected currents result in a series of step signals3 at vd. Thus,

the equivalent injected response (vd,inj,eq) in a given clock cycle and the resulting ca-

pacitive current (iC,inj,eq) can be found as

vd,inj,eq =
kR

(2 + kgm1R)
iinj,eq and so, (3.12)

iC,inj,eq =
−2vd,inj,eq

R
=

−2k

(2 + kgm1R)
iinj,eq (3.13)

In a linear integrator, the capacitor current in each clock cycle is related to the integrator

input as

iC =
kgm1

(2 + kgm1R)
(Vin − Vout) (3.14)

Using this relation, iC,inj,eq can be generated through an additional input sequence to

the linear integrator given by

z[n] =
−2iinj,eq[n]

gm1
(3.15)

thus resulting in the model for the nonlinear integrator4 as shown in Fig. 3.4.

y[n]x[n]
ZOH

Vo(t)
s

ω1

z[n]

Figure 3.4: Model of the nonlinear active-RC integrator with z[n] =
∑4

i=1 zi[n], that
includes the effect of initial transients in the in-band region.

3neglecting the initial transients
4The model can be used to analyze the effect of integrator nonlinearity in the in-band region.
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Assuming the random sequence (z[n]) to consist of four sequences, zi[n] (i=1,2,3,4),

y[n] is given by

y[n] = x[n] +
4∑

i=1

zi[n] (3.16)

= x[n] − β1x
3[n] − β2x

2[n]x′[n] − β3x[n]x′ 2[n] − β4x
′ 3[n] (3.17)

where,

β1 =
2g31G

3
0

gm1

=
2g31

gm1(2 + kgm1R)3

βi =
2g31αi

gm1

= β1
αi

G3
0

, (for i = 2, 3, 4)

It can be seen that the nonlinear coefficient, β1 is same as that derived in Chapter 2

(Section 2.1.2) with the other coefficients being easily computed from the knowledge

of the time-averages (αi).

Though the nonlinear model for the integrator was derived by considering the non-

linearity of the input transconductor in a feedforward opamp based integrator, a similar

analysis can be done for a nonlinear feedforward transconductor and also for a nonlin-

ear input transconductor in a Miller opamp based integrator. Using the respective β1

and the time-averages, the in-band noise due to nonlinearity can be determined in the

same manner as in eq. 3.20.

3.2 Modeling the effect of initial transients in a multi-bit CTDSM

Vout [n]Vin(t)

-

y[n]x[n]
L(s)ZOH

e[n]z[n]

Figure 3.5: Model of the CTDSM with a nonlinear integrator where z[n] =
∑4

i=1 zi[n]
includes the effect of initial transients. The model can be used to predict the
in-band noise due integrator nonlinearity.
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The in-band noise due to integrator nonlinearity in a multi-bit CTDSM can be de-

termined from the model for the CTDSM as shown in Fig. 3.5, where z[n] is now con-

sidered to have four sequences. The autocorrelation sequence of y[n] is therefore

Ryy[n] = Rxx[n] +
4∑

j=1

4∑

m=1

Rzjzm
[n] (3.18)

where Rzjzm
[n] denotes the cross-correlation computed for the sequences zj[n] and

zm[n]. Equivalently, the corresponding PSD can be expressed as

Syy(ω) = Sxx(ω) +

4∑

j=1

4∑

m=1

Szjzm
(ω) (3.19)

= Sxx(ω) +

4∑

j=1

Szjzj
(ω) +

4∑

j=1

4∑

m=1,m>j

2Re
(
Szjzm

(ω)
)

(3.20)

where Szjzm
(ω) denotes the cross power spectral density and Re

(
Szjzm

(ω)
)

denotes

the respective real part. When compared to the expression in eq. 2.55, the inclusion of

initial transients is seen to have introduced additional spectral components because of

the new sequences z2[n], z3[n] and z4[n]. Given the samples of the shaped quantization

noise5 x[n], the (cross) spectral densities can be determined using tools like MATLAB

to quantify the expected in-band noise of the multi-bit CTDSM.

While such numerical computations can accurately determine the performance of

the modulator, some useful analytical insights can be obtained by approximating the

in-band noise of the modulator as

Syy(ω) ≈ Sxx(ω) + Sz1z1
(ω) + Sz4z4

(ω) (3.21)
5These samples can be obtained by passing uniform/Gaussian quantization noise through the NTF.
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Assuming the sequences x[n] and x′[n] to be Gaussian processes,

Sz1z1
(ω) = F

[
6β2

1R
3
xx[n]

]
(3.22)

Sz4z4
(ω) = F

[
6β2

4R
3
x′x′[n]

]
(3.23)

Defining Sx′x′(ω) = |1 − e−jω|2Sxx(ω), the above spectral components can be de-

termined through circular convolution of Sxx(ω) and Sx′x′(ω). Given the NTF and

the details of nonlinearity (β1 and β4 as computed from g31, gm1, G0 and w(t)), the

in-band noise due to integrator nonlinearity can thus be analytically determined using

eq. 3.21. Understandably, these estimates will be accurate for cases where the initial

transients are negligible (w(t) ≈ 0) or when the operating speed of the modulator (fs)

is small. In such cases, the in-band noise will be purely determined by Sxx(ω) and

Sz1z1
(ω) as derived in Chapter 2. Similarly, in cases where G0 ≈ 0 (like the feed-

forward opamp based integrator), the initial transients become significant. This gets

translated to β1 = β2 = β3 ≈ 0, thus resulting in Syy(ω) ≈ Sz4z4
(ω). In these cases,

due to the enhanced high frequency components of x′[n] (when compared to that of

x[n]), one can expect larger demodulation of the out-of-band noise into the signal band.

This results in greater performance degradation due to integrator nonlinearity.

3.3 Simulation results

The accuracy of the model derived by taking into account the initial transients was

verified using the same third order CTDSM (as in Chapter 2) having a 4-bit quan-

tizer. The validity of approximating the individual transient components by their time-

averages was first confirmed. Fig. 3.6 compares the spectrum of v3
d,lin(t) obtained

through simulation and the spectrum of v3
d,lin,eq(t) (=iinj,eq(t)/g31 from eq. 3.11) de-
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termined using the time-averages. The inset shows good matching between the two

spectra in the in-band region6, thus validating the approximation.
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Figure 3.6: Comparison between the spectrum of the exact and approximate version of
vd,lin(t)3 obtained with a feedforward opamp based integrator. gm1 = 27.12
µS, R = 100 kΩ, C = 527 fF, c1 =45 fF, cp =10 fF, gm2 = 100 µS, c2 =250 fF,
gm3 = 320 µS, r2 = 1 MΩ. The inset shows the matching between the two
spectra in the in-band region.

Having confirmed this, the in-band noise powers expected for the feedforward opamp

based integrator (simulated in Chapter 2) were recomputed and compared with that ob-

tained through simulations. The noise powers were calculated through eq. 3.20, where

each one of the spectral components was computed in MATLAB, using shaped quan-

tization noise samples x[n] obtained from Gaussianly7 distributed e[n]. The relative

values of the nonlinear coefficients (βi/β1) used for calculations are as given in Ta-
6The sampled and held natured of v3

d,lin,eq(t) is the reason for the deviation of the spectrum at higher
frequencies due to the sinc(fTs) function.

7Since we are working with time-samples, a uniform distribution can also be assumed to obtain x[n].
However, for uniformity with the results previously derived, a Gaussian distribution is used. Note that
this results in an over-estimation of the noise by about 2 dB.
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Parameter changed β2/β1 β3/β1 β4/β1

– 0.28 0.65 0.59
gm3 = 640 µS 0.22 0.23 0.09
gm3 = 480 µS 0.25 0.37 0.22

c1 = 90 fF 0.5 1.11 1.02
c1 = 25 fF 0.17 0.42 0.36
c2 = 400 fF 0.34 0.95 1
c2 = 100 fF 0.21 0.4 0.3

gm2 = 200 µS 0.14 0.34 0.29
gm2 = 150 µS 0.19 0.45 0.4
C = 1.05 pF 0.5 2.05 3.32
C = 790 fF 0.39 1.26 1.6
R = 200 kΩ 0.28 0.68 0.64
R = 150 kΩ 0.28 0.67 0.62

Table 3.1: Relative nonlinear coefficients in feedforward opamp based integrator with
gm1 = 27.12 µS, R = 100 kΩ, C = 526.73 fF, r1 = 20 MΩ, cp =10 fF, gm2

=100 µS, gm3 = 320 µS, c1 =45 fF, r2 = 1 MΩ

ble 3.1. Fig 3.7 compares the simulated IBN observed for the case of gm3 = 320 µS

with the IBN predicted with and without including the initial transients (w(t)). It is

apparent that the IBN is more accurately predicted after including the effect of initial

transients. Alternatively, the in-band noise can also be analytically estimated (using

eq. 3.21) in terms of the components Sz1z1
(ω) and Sz4z4

(ω) (computed through circu-

lar convolution of Sxx(ω) and Sx′x′(ω)). For illustrative purposes, the IBN estimated

through this analytical method is also shown. It can be seen that the estimation is better

than the case where w(t) is completely neglected, though with a small inaccuracy with

the simulation results. As seen from Table 3.1, this is because of the appreciable values

of β2 and β3 arising due to the comparable significance of w(t) and G0u(t) for the given

integrator.

To ensure that the modeling is not limited to a specific combination of opamp pa-

rameters, exhaustive simulations were carried out for different combinations. Since
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Figure 3.7: Comparison of the IBN estimated with and without including the effect of
initial transients for the feedforward opamp based integrator.

w(t) is not the only significant response in these integrators, the numerical computa-

tion method was used to predict the IBN in all these cases, for better accuracy. Fig. 3.8

shows the variation observed in the IBN for two values of gm3. The performance im-

provement observed with increasing gm3 can be attributed to the reduction in the initial

transients, as is evident from the trend shown in Table 3.1. Fig. 3.9 and 3.10 show the

observed and predicted variation in the IBN for different values of c1 and c2, respec-

tively. Intuitively, an increase in these capacitors can be expected to worsen the initial

transients and therefore, the IBN is found to increase with increasing values of c1 and c2.

The corresponding variation in the IBN with different integrating capacitors is shown

in Fig. 3.11. It can be seen that the predicted results match closely with that obtained

from simulations. Due to the presence of the initial transients, a marginal improvement

is only seen when C is doubled, as against the expected reduction of 18 dB.
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Figure 3.8: Variation in IBN with a feedforward opamp based integrator for two values
of gm3.
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Figure 3.9: Variation in IBN with a feedforward opamp based integrator for two values
of c1.
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Figure 3.10: Variation in IBN with feedforward opamp based integrator for various c2.
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Figure 3.11: Variation in IBN with a feedforward opamp based integrator for two values
of integrating capacitors.
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Figure 3.12: Variation in IBN with Miller opamp based integrator for two values of C.

The derived results were also verified for the Miller opamp based integrator used in

Chapter 2. Fig. 3.12 shows the observed and predicted variation in the IBN for different

integrating capacitors. The ratios βi/β1 have also been provided in the figure. As was

shown in the previous chapter (Fig. 2.30), the effect of initial transients is negligible

with C = 526.73 fF. However, the modeling of initial transients can be seen to predict

the IBN more accurately for the case where C = 1.05 pF.

3.4 Extensions to the analysis

The discussions so far have analyzed the effect of integrator nonlinearity in multi-bit

CTDSMs. Comparison of various integrator topologies showed that two-stage active-

RC integrators, in particular those with feedforward compensation, are a good choice

to adopt in high resolution CTDSMs. Though such comparisons were done by as-
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suming a resistive feedback DAC, the reader can easily see that the corresponding

nonlinear model with a current-steering DAC will in general be of the form f(x) =

x −
g3

gm(1 + gmkR)3
for active-RC integrators. This signifies a 6 dB improvement in

the overall performance with the use of a current-steering architecture. The final call

on the choice of the DAC, however, also depends on others factors like noise, area and

speed (as discussed in Appendix E).

The effect of initial transients can also be analyzed for modulators employing RZ

DAC, similar to the NRZ case. However, the modulator performance with an RZ DAC

is worse8 than with an NRZ DAC by about 12 dB. As discussed in the previous chap-

ter, such performance degradations further worsen with increasing input amplitudes.

Moreover, as illustrated in Appendix F, the slew-rate requirements can be considerably

higher in multi-bit CTDSMs when an RZ DAC is employed. In addition, even when

slewing conditions are avoided, the increased magnitude of transitions in the integrator

input9 can enhance the initial transients at the virtual ground node. In such cases, the

condition for weak nonlinearity assumed for the transconductors can be violated, which

further increases the performance degradation. Given the increased severity of integra-

tor nonlinearity with RZ DACs, the analysis with initial transients has not been shown

in this chapter, for the sake of brevity.

So far, we have neglected the nonlinearity of the second stage transconductor in the

analysis involving two-stage active-RC integrators. It turns out that the effect of such

nonlinearities gets attenuated by the gain of the first stage. Though not shown in the

chapter, simulations run with the two-stage integrators considered so far reveal that the
8even without considering the initial transients
9With an RZ DAC, the transition in each clock cycle is 2Vout[n]. In contrast, the transitions span only

2 or 3 LSBs with an NRZ DAC.
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effect of second stage nonlinearity is indeed negligible. For a quantitative understand-

ing, the reader can refer to the discussion in Appendix G.

Having analyzed multi-bit modulators, the logical step to take further is to apply

these concepts to model the effect of integrator nonlinearity in single-bit modulators.
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CHAPTER 4

ANALYSIS OF INTEGRATOR NONLINEARITY IN
CTDSMs : THE SINGLE-BIT CASE

In the previous chapters, integrator nonlinearity in multi-bit CTDSMs was shown to

result in increased in-band noise. The performance degradation was found to worsen by

18 dB for every one bit reduction in the resolution of the quantizer. Therefore, a severe

increase in the in-band noise floor can be expected when a single-bit quantizer is used.

However (as pointed out in Chapter 1 (Section 1.4.4)), integrator nonlinearity results in

significant harmonic distortion in single-bit CTDSMs, apart from a small increase in

the in-band noise floor. This chapter involves the study of distortion observed in single-

bit modulators. Breems et al. (1999) analyzed such effects when nonlinear single-stage

active-RC integrators and an RZ feedback DAC are used in a single-bit modulator. We

extend the analysis to other integrator topologies, considering both NRZ and RZ DACs.

The nonlinear integrator models derived in the previous chapters will be used for this

purpose.

4.1 Distortion with Gm-C and active-RC integrators with a single-stage transcon-

ductor

A. With NRZ DACs : A single-bit CTDSM having a nonlinear first integrator and an

NRZ DAC can be represented as shown in Fig. 4.1(a). The effect of weak nonlinearity

in the integrator is modeled as an additional input sequence, z[n] = −βx3[n] applied to



Vout [n]Vin(t)

-

y[n]x[n]
ZOH L(s)

z[n]

Figure 4.1: Model of a single-bit CTDSM with nonlinear Gm-C and active-RC integra-
tors with a single-stage transconductor.

a linear modulator. Assuming the feedback DAC (Vout[n]) levels to be ±Vref , y[n] is

given as

y[n] = x[n] − βx3[n] (4.1)

= Vin[n] − Vout[n] − βV 3
in[n] + 3βV 2

in[n]Vout[n]

−3βVin[n]V 2
out[n] + βV 3

out[n] (4.2)

= (1 − 3βV 2
ref)Vin[n] − (1 − βV 2

ref)Vout[n]

−βV 3
in[n] + 3βV 2

in[n]Vout[n] (4.3)

It can be seen that integrator nonlinearity in a single-bit CTDSM is not reflected in the

DAC signal because of its binary nature (±Vref ). Assuming Vout ≈ Vin in the in-band

region, we see that

y[n] ≈ Vin[n] − Vout[n] + 2βV 3
in[n] (4.4)

Thus, the nonlinear modulator can be considered to be a linear modulator with an addi-

tional input, 2βV 3
in as shown in Fig. 4.2. With Ain denoting the amplitude of the input

signal, the third harmonic distortion observed at the modulator output is given by

HD3 =
βA2

in

2
(4.5)
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Vout [n]Vin(t)

-
ZOH L(s)

2βVin
3[n]

Figure 4.2: Equivalent model of the single-bit CTDSM with nonlinear single-stage in-
tegrators.

B. With RZ DACs : The model of a single-bit CTDSM with a nonlinear first integra-

tor and an RZ DAC is shown in Fig. 4.3. The additional input sequences introduced due

to integrator nonlinearity are defined as z1[n] = −4βx3[n] and z2[n] = 6βx2[n]Vin[n].

Using the binary nature of the DAC signal and assuming Vout ≈ Vin in the signal band,

the components (in z1[n] and z2[n]) contributing to the third harmonic distortion are

z1[n] = −4βx3[n] ≈ 8βV 3
in[n] (4.6)

z2[n] = 6βx2[n]Vin[n] ≈ −6βV 3
in[n] (4.7)

Vout [n]

-

y(t)

L(s)
0 Ts /2

2

0 Ts /2

2

Vin(t)
2

z1[n] z2[n]

Figure 4.3: Model of a single-bit CTDSM with nonlinear single-stage integrator and an
RZ DAC.

Thus, the effect of integrator nonlinearity can be modeled as an additional input se-

quence 2βV 3
in[n] to an otherwise linear modulator, as shown in Fig. 4.4.
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Vout [n]

-
L(s)

0 Ts /2

2

2βVin
3[n]

Vin(t)
2

y(t)

2

0 Ts /2

Figure 4.4: Equivalent model of the single-bit CTDSM with nonlinear single-stage in-
tegrators

The third harmonic distortion observed at the modulator output is therefore

HD3 =
βA2

in

2
(4.8)

It can be recalled that the effect of integrator nonlinearity worsens in a multi-bit mod-

ulator when RZ DACs are employed. In contrast, it is seen that the performance of

a single-bit CTDSM is the same with both NRZ and RZ DACs. Intuitively, this can

be explained as follows. The feedback DAC signals do not get influenced by inte-

grator nonlinearity because of their binary nature. Due to the mixing operation (or

(Vin[n] − Vout[n])3), the in-band signal component of Vout[n] contributes to the third

harmonic distortion. With the in-band signal component being independent of the DAC

pulse shape, the performance can thus be expected to be identical.

While Breems et al. (1999) has quantified the distortion with a single-stage active-

RC integrator (using a different approach), the models shown in Fig. 4.2 and Fig. 4.4

are applicable for both Gm-C and (single-stage) active-RC integrators, where

β =
g3

4gm

, for a Gm − C integrator (4.9)

=
2g3

gm(2 + gmR)3
, for an active − RC integrator (4.10)
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4.2 Distortion with active-RC integrators based on Miller and feedforward com-

pensated opamps

A. With NRZ DACs : The discussion in Chapter 2 (Section 2.1.2) showed that active-

RC integrators with two-stage opamps are better suited to meet the linearity require-

ments on the first integrator of CTDSMs. However, initial transients were found to

degrade the performance of the modulator in these cases. The effect of nonlinearity in

such integrators can be analyzed using the same model for the single-bit CTDSM, as

with a single-stage active-RC integrator (shown in Fig. 4.5). However, the additional

input sequence, z[n] is now composed of four sequences, which results in

y[n] = (Vin[n] − Vout[n]) +
4∑

i=1

zi[n] (4.11)

where,

z1[n] = −β1x
3[n]

z2[n] = −β2x
2[n]x′[n]

z3[n] = −β3x[n]x′ 2[n]

z4[n] = −β4x
′ 3[n]

Vout [n]Vin(t)

-

y[n]x[n]
ZOH L(s)

z[n]

Figure 4.5: Model of a single-bit CTDSM with nonlinear two-stage opamp based
active-RC integrators, where z[n] =

∑
zi[n] (i=1,2,3,4).
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where the nonlinear coefficients are defined (as in Chapter 3) as

β1 =
2g31

gm1(2 + kgm1R)3

βi =
2g31αi

gm1

, (for i = 2, 3, 4)

and αi denotes the time-average of the respective transient component, computed over

one clock cycle. The components of z[n] can be approximated in the in-band region as

explained below.

The sequence, x′[n] = x[n] − x[n − 1] can be expressed as

x′[n] =
(
Vin[n] − Vin[n − 1]

)
−
(
Vout[n] − Vout[n − 1]

)
(4.12)

With ωin = 2πfin/fs denoting the input frequency (expressed in rad/sample), for slow

varying input signals Vin[n] − Vin[n − 1] ≈ ωinVin[n]. Hence,

x′[n] ≈ ωinVin[n] −
(
Vout[n] − Vout[n − 1]

)
(4.13)

Given the binary nature of the feedback DAC signal (±Vref ), higher powers of x′[n] can

be approximated as having the following components that can significantly contribute

to harmonics of the input signal.

x′ 2[n] ≈ −2ωinVin[n]
(
Vout[n] − Vout[n − 1]

)

−2Vout[n]Vout[n − 1] (4.14)

x′ 3[n] ≈ −6ωinVin[n]Vout[n]Vout[n − 1] (4.15)

103



In a similar manner,

x2[n] ≈ V 2
in[n] − 2Vin[n]Vout[n] (4.16)

x3[n] ≈ V 3
in[n] − 3V 2

in[n]Vout[n] (4.17)

Using the above expressions, with Vout ≈ Vin in the signal band, the individual se-

quences (zi[n]) can be simplified to

z1[n] ≈ 2β1V
3
in[n] (4.18)

z2[n] ≈ 2β2Vin[n]Vout[n]Vout[n − 1]
)

(4.19)

z3[n] ≈ 2β3Vin[n]Vout[n]Vout[n − 1] (4.20)

z4[n] ≈ 6β4ωinVin[n]Vout[n]Vout[n − 1] (4.21)

The expression for y[n] can now be given by

y[n] ≈ (Vin[n] − Vout[n]) + 2β1V
3
in[n]

+2(β2 + β3 + 3ωinβ4)Vin[n]Vout[n]Vout[n − 1] (4.22)

Comparing this expression with eq. 4.4, the presence of initial transients is seen to in-

troduce a new term dependent on the product of the output signal (Vout[n]) with its ‘de-

layed’ version (Vout[n−1]). Simulations run on a third order (linear) audio modulator re-

veal two important observations concerning this component. Fig. 4.6 shows the in-band

spectrum of V 3
in[n] and Vin[n]Vout[n]Vout[n − 1], obtained through simulation. It can

be seen that the third harmonic component present in Vin[n]Vout[n]Vout[n − 1] is higher

than that found in V 3
in[n]. This can be attributed to the mixing of high-frequency (signal-
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Figure 4.6: In-band PSD of V 3
in[n] and Vin[n]Vout[n]Vout[n − 1], with 6 kHz being the

input frequency.

dependent) tones that can be observed in the modulator output. This phenomenon can

also be seen to result in demodulation of the out-of-band noise to low frequencies. This

suggests that an increase in the in-band noise can be expected at high nonlinearities,

apart from the increased third harmonic distortion with initial transients.

Let the factor γin denote the relative amplitude1 of the third harmonic tone in the

component Vin[n]Vout[n]Vout[n− 1], when compared to that present in V 3
in[n]. With Ain

representing the input signal amplitude, the third harmonic distortion at the output of

the modulator can be calculated from eq. 4.22 as

HD3 =
(
β1 + γin(β2 + β3 + 3ωinβ4)

)A2
in

2
(4.23)

1This can be determined through ideal modulator simulations, for the given input amplitude (normal-
ized to the DAC reference Vref ).
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In summary, similar to the multi-bit modulators, the effect of initial transients is

seen to degrade the performance of single-bit CTDSMs. The mixing between Vout[n]

and Vout[n − 1] is observed to lead to an increased third harmonic distortion in these

cases. Such mixing operations occur because of the interference between two consec-

utive output samples of the modulator, when an NRZ DAC is used. Since modulators

with RZ DAC are free from any such interferences, it would be interesting to investigate

if the effects of the initial transients are negligible.

0 Ts /2

2

0 Ts /2

2

Vin[n]-Vout[n]
2

Vin[n]
2

PATH 2

PATH 1

Vo(t)
s

ω1y(t)

Figure 4.7: Model for the input stage of a CTDSM with an RZ feedback DAC and a
linear first integrator.

B. With RZ DACs : The input stage of a CTDSM having an RZ feedback DAC and

a linear first integrator is shown in Fig. 4.7. As in the previous chapter (Section 2.2.1),

two paths (1 and 2) with complementary RZ DACs have been used to model the input

signals of the integrator. The input to the integrator (y(t)) is given as

y(t) = Vin[n] − 2Vout[n] , nTs ≤ t < (n + 0.5)Ts (4.24)

= Vin[n] , (n + 0.5)Ts ≤ t < nTs (4.25)

Similar to the case with an NRZ feedback DAC, the input to the integrator can be

considered as a series of step-like signals. However, with the RZ DAC, the steps change

for every Ts/2 interval. During the first half (or phase) of the clock cycle, the input to
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the integrator comprises

• a pulse of amplitude Vin[n] − 2Vout[n] (= 2xrz[n])

• along with a transition of height Vin[n] − Vin[n − 1] − 2Vout[n]

For simplicity, assuming a high OSR, Vin[n] ≈ Vin[n − 1]. Assuming wn(t) to

denote w(t − nTs), the linear response at vd can be expressed as

vd,lin(t) ≈ 2G0xrz[n] − 2Vout[n]wn(t) , nTs ≤ t < (n + 0.5)Ts (4.26)

From the knowledge of the linear response, the injected current (iinj = g31v
3
d,lin) for

nTs ≤ t < (n + 0.5)Ts can be determined as

iinj(t) = 8g31G
3
0x

3
rz[n] − 24g31G

2
0x

2
rz[n]Vout[n]wn(t)

+ 24g31G0xrz [n]V 2
out[n]w2

n(t) − 8g31V
3
out[n]w3

n(t) (4.27)

With V 2
out[n] = V 2

ref , only the first two terms in the above expression can contribute to

third harmonic distortion. Thus, the injected current can be simplified to

iinj(t) ≈ 8g31G
3
0x

3
rz[n] − 24g31G

2
0x

2
rz[n]Vout[n]wn(t) (4.28)

≈ 8g31G
3
0x

3
rz[n] − 6g31G

2
0V

2
in[n]Vout[n]wn(t) , nTs ≤ t < (n + 0.5)Ts (4.29)

During the second half of the clock cycle ((n + 0.5)Ts ≤ t < (n + 1)Ts), the input to

the integrator consists of a pulse of amplitude Vin[n] with a transition of height 2Vout[n]

at every t = (n + 0.5)Ts. The injected current during this phase is

iinj(t) = g31

(
G0Vin[n] + 2Vout[n]wn+0.5(t)

)3

(4.30)

= g31G
3
0V

3
in[n] + 6g31G

2
0V

2
in[n]Vout[n]wn+0.5(t)

+ 12g31G0Vin[n]V 2
out[n]w2

n+0.5(t) + 8g31V
3
out[n]w3

n+0.5(t) (4.31)
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It is apparent that only the first two terms are significant, thus resulting in

iinj(t) ≈ g31G
3
0V

3
in[n] + 6g31G

2
0V

2
in[n]Vout[n]wn+0.5(t) (4.32)

for (n + 0.5)Ts ≤ t < (n + 1)Ts. From the expression for the injected current during

the two phases of the clock cycle (eq. 4.29 and 4.32), it is clear that the currents that are

dependent on the initial transient (w(t)) will get averaged out in a given clock cycle.

In essence, the injected current is seen to be purely determined by G0, similar to the

case of single-stage active-RC integrators. The third harmonic distortion observed at

the modulator output can easily be shown to be

HD3 =
β1A

2
in

2
(4.33)

where β1 = 2g31/(gm1(2 + kgm1R)3). Such a performance advantage observed with

RZ DACs can be attributed to two reasons. Firstly, equal and opposite transitions in the

DAC signal can be thought as nullifying the error charges injected in each clock cycle.

In essence, transients in response to the odd powers of the DAC signal (Vout[n], V 3
out[n])

effectively inject zero error charge in each cycle. Secondly, thanks to the binary nature

of the DAC signal, the charges injected due to the components containing even powers

of Vout (say Vin[n]V 2
out[n]), also do not lead to harmonic distortions.

However, such an advantage with RZ DACs should be appreciated with caution ow-

ing to the increased jitter and slew-rate requirements2. In addition, due to the presence

of initial transients, the transconductors can be pushed into stronger regions of nonlin-

earity. In such cases, the third harmonic distortion will worsen than predicted in the

above analysis.
2The peak input to the loop filter is Vin,max + 2Vref as opposed to Vin,max + Vref for the NRZ case.
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4.3 Simulation results

A third order single-bit modulator was chosen as a test vehicle to verify the results

derived in the previous sections. The NTF has an OBG of 1.5 with complex in-band

zeros. With an OSR of 128, a peak SNR of 110 dB can be achieved with this NTF

in a 24 kHz bandwidth. The feedback DAC reference voltage (Vref ) was assumed to

be 1.8 V and the first integrating resistor was chosen to be R = 150 kΩ. The effect of

nonlinearity was observed for different topologies in the first integrator, using the same

opamps as in our simulations with multi-bit modulator. In all the simulations, distortion

was measured by applying an input tone of 1 V amplitude at a frequency of 6 kHz.
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g

m
 = 500 µS
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Figure 4.8: Variation of HD3 with a single-stage transconductor based active-RC inte-
grator for two values of gm.
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A. Performance with an NRZ DAC : Fig. 4.8 shows the variation3 in HD3 observed

with a single-stage active-RC integrator for two values of the transconductance, gm.

The first integrating capacitor was fixed at 5.77 pF in these simulations. The predicted

distortion is seen to closely match the simulated results. Fig. 4.9 shows the observed and

predicted variation in HD3, obtained with the Miller opamp based active-RC integrator.

The variation is plotted for different values of the integrating capacitor, with Table 4.1

showing the respective βi/β1 used in calculations. The factor γin was found to be 2.24

through ideal modulator simulations for the given input amplitude of 1 V.

Opamp topology/C β2/β1 β3/β1 β4/β1

Miller/5.77 pF 2.15 17.1 41.5
Miller/2.88 pF 1.07 4.3 5.2
Miller/8.65 pF 3.2 37.75 135.8

Feedforward/5.77 pF 4.35 73.25 507.9
Feedforward/2.88 pF 2.48 23.9 94.45
Feedforward/8.65 pF 5.86 132.9 1240

Table 4.1: Relative nonlinear coefficients of various integrator configurations used in
the single-bit modulator with NRZ DAC. γin = 2.24 for 1 V input amplitude.

Similar tests were run with the feedforward based integrator and Fig. 4.10 shows

the observed and predicted variation in HD3 for different nonlinearities in the input

transconductor. As expected, the performance can be seen to improve for increasing

values of the integrating capacitor, though the improvement is only directly proportional

to C. As can be inferred from Table 4.1, this is due to the significance of the initial

transients and in particular, of the factor β3 (which varies approximately as 1/C).

Another effect of the initial transients that can be observed to affect the performance

of single-bit CTDSMs is shown in Fig. 4.11. In addition to the harmonic distortion, an
3Since the harmonic distortion is purely determined by the input signal amplitude and the nonlinearity

of the integrator, the x-axis is provided in absolute terms of
√

gm/g3.

110



1 1.2 1.4 1.6 1.8 2
−115

−110

−105

−100

−95

−90

−85

√g
m1

/g
31

 (V)

H
D

3 (
dB

)

C = 2.88 pF
C = 5.77 pF
C = 8.65 pF

Predicted 
A

in
 = 1V 

Figure 4.9: Variation of HD3 with Miller compensated opamp due to nonlinearity in the
input transconductor for different integrating capacitors.
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Figure 4.10: Variation of HD3 with feedforward compensated opamp due to nonlinear-
ity in the input transconductor for different integrating capacitors.
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Figure 4.11: In-band PSD of the modulator output showing the increase in noise floor
at high nonlinearities

increase in the in-band noise can be observed at very high nonlinearities (
√

gm1/g31 =

21.5 mV). This can be attributed to the demodulation of the out-of-band noise to the

in-band region, arising out of the mixing operation between Vout[n] and Vout[n − 1].

Further, the dependency of the harmonic distortion with input frequency (as given in

eq. 4.23) was confirmed for two different integrating capacitors as shown in Fig. 4.12.

It can be seen that the distortion increases with input frequency, with the variation being

higher with C = 8.65 pF than with C = 5.77 pF. Such a trend is due to the higher value

of β4/β1 (see Table 4.1) for the case of C = 8.65 pF.

B. Performance with an RZ DAC : To demonstrate the accuracy of the models with

an RZ DAC, the modulator was simulated with the same nonlinear integrators as in

the NRZ case. Fig. 4.13 compares the observed and predicted variation in HD3 ob-

tained with the Miller opamp based active-RC integrator, with an integrating capacitor
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Figure 4.12: Variation of HD3 (with feedforward compensated opamp) as a function of
the input frequency for different values of integrating capacitors.
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Figure 4.13: Variation of HD3 with a Miller compensated opamp as function of nonlin-
earity in the input transconductor, in modulators with NRZ and RZ DAC.
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of 2.88 pF. There is good matching between the results from theory and simulation.

Also, observe that the performance with an RZ DAC is better than with an NRZ DAC,

even for an integrating capacitor as low as 2.88 pF4. A similar performance improve-

ment can be seen in Fig. 4.14, where the in-band PSD of both the NRZ and RZ modu-

lator outputs has been plotted for the case of the feedforward opamp based active-RC

integrator. With an integrating capacitor of 2.88 pF and the nonlinearity of the input

transconductor fixed at
√

gm1/g31 = 87 mV, the harmonic distortion observed with the

NRZ modulator is -100 dB. In comparison, thanks to the large k ≈ C/cp achieved with

a feedforward architecture for the opamp, the RZ modulator is free of third harmonic

distortion.

0 5 10 15 20 25

−140

−120

−100

−80

−60

−40

−20

Frequency (kHz)

O
ut

pu
t P

S
D

 (
dB

F
S

)

with NRZ DAC
with RZ DAC

√g
m1

/g
31

 = 87 mV 

C = 2.88 pF, A
in

 = 1V 

Figure 4.14: In-band PSD of the single-bit CTDSM employing a nonlinear feedforward
opamp based active-RC integrator, comparing the performance with NRZ
and RZ DAC

4While the integrating capacitor can in principle be reduced further, integrator swings exceeded the
supply limits for lower values of C. For the given single-bit CTDSM with RZ DAC, an integrating ca-
pacitor of 2.88 pF limits the swing to 2.4 V (peak-to-peak differential), which is two-third of the supply
or the full-scale range.
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4.4 Severity of integrator nonlinearity in single-bit and multi-bit modulators and

discussion

The knowledge of the effect of integrator nonlinearity obtained for both single-

bit and multi-bit modulators can now be used to compare the severity of integrator

nonlinearity in each of these modulators. The comparison can be made based on the

performance with feedforward opamp based active-RC integrator, since feedforward

opamps prove to be the best choice for designing low power, high resolution CTDSMs5.

Referring to Fig. 3.11 in the previous chapter, a 4-bit modulator employing a feed-

forward opamp based active-RC integrator can be observed to provide a performance

equivalent6 of 110 dB, at nonlinearity levels as low as
√

gm1/g31 = 0.1 LSB. This is

achieved with an integrating capacitor of about 1 pF. In contrast, (as seen from Fig. 4.10)

such a performance is possible with the single-bit modulator only at relatively weaker

levels of nonlinearity (or larger
√

gm1/g31) and with smaller integrator bandwidths (or

larger RC).

This confirms the general intuition that opamp nonlinearity becomes severe as the

quantizer bits are reduced. However, a key point to note in case of a single-bit CTDSM

is that the performance is degraded through harmonic distortions in the modulator out-

put. Since the distortions worsen with increasing signal power, this reduces the max-

imum Signal-to-Noise-plus-Distortion Ratio (SNDR) that can be achieved. This will

significantly affect the dynamic range of the modulator unless corrective measures are

adopted.
5either single-bit modulator (see Fig. 4.9 and 4.10) or multi-bit modulator.
6The performance of the multi-bit modulator can be compared with the ideal SNR obtained with the

given single-bit CTDSM.
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To briefly summarize the possible measures, an apparent way of improving the per-

formance is to increase the resistance, R. Since the thermal noise of the modulator

increases in this case, there is a limit to the maximum value of the resistor tolerable. As

an alternate option, the integrating capacitor (C) can also be increased. However, unlike

with the resistor, an increase in its value by a factor of 2 does not improve the perfor-

mance by 18 dB. This is due to the fact that the initial transients (w(t)) are not reduced

by the increase in the integrating capacitor. As discussed in the previous section, since

HD3 is primarily determined by β3 (∝ 1/C), the performance is found to improve only

in steps of 6 dB in such cases.

To elaborate on the significance of the initial transients, consider the case where C

= 5.77 pF. With the feedforward opamp topology, a very high value for k (= 429) can

be obtained with the given value of the integrating capacitor. For
√

gm1/g31 = 87 mV,

β1 (= 2g31/gm1(2 + kgm1R)3) can be calculated to be about 50 nV−2. If the effect of

initial transients are neglected, the HD3 can thus be expected to get lowered to -152 dB.

However, as seen from Table 4.1 and Fig. 4.10, the presence of initial transients (or β3)

has led to a harmonic distortion as high as -106 dB. In such situations, the performance

of the modulator can only be enhanced by

(a) improving the opamp dynamics (gm3, gm2), to reduce the initial transients or

(b) by increasing the linearity of the transconductors.

Unfortunately, either of these solutions will lead to an increased power consumption

of the first integrator and thereby the power dissipated in the loop filter. For this reason,

designing a single-bit CTDSM with low power can be challenging, thus making multi-

bit modulators more preferable for their reduced linearity requirements.
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CHAPTER 5

MITIGATION OF NONLINEARITIES USING THE
ASSISTED OPAMP TECHNIQUE

The discussion in the previous chapter indicated that the design of the first integrator

with adequate linearity and low power can pose significant challenges while designing

high performance single-bit CTDSMs. The effect of initial transients in the two-stage

active-RC integrators1 was shown to limit the performance of modulators with an NRZ

feedback DAC. In this chapter, a power efficient solution that addresses this problem

will be introduced.

4Vref

R

iC

Vref

Vmax

−

+

Vin R

Vdac R

C

iC

Figure 5.1: Schematic and waveforms in a conventional integrator

To motivate the proposed solution, consider the first integrator in a conventional single-

bit modulator, as shown in Fig. 5.1. For simplicity, a single-ended circuit is assumed.

The input is a sinusoid, with an amplitude Vmax. The feedback DAC waveform takes on

one of two values ±Vref . The current iC flowing through the integrating capacitor, can

be seen to have a peak-to-peak value of almost 4Vref/R. This current can be expected
1which are preferred to other integrator topologies for better linearity



to mostly consist of high frequency contents, due to the voltage steps introduced by the

feedback DAC. If the opamp is ideal, the virtual ground voltage remains at zero and

there is no degradation in the modulator performance.

A real opamp, however, cannot respond fast enough to the sharp steps of the DAC

feedback voltage. This effect manifests as jumps (or initial transients) in the virtual

ground potential whenever the feedback DAC switches. If the opamp is nonlinear,

these transients significantly degrade the performance of the modulator. The conven-

tional way of addressing this issue is to bias the opamps with large currents, so that

the bandwidth and/or the linearity of the opamp are enhanced. Observe that the need

for the opamp to source or sink large currents “instantaneously” decides the bandwidth

required in the opamp. Instead of improving the bandwidth with increased power, the

following solution can thus be suggested.

The current demanded of the opamp is known exactly, since one has access to Vin

and Vdac. This information can be used to “assist” the opamp in discharging its func-

tion, as shown in Fig. 5.2. A transconductor with gm = 1/R and a replica current

steering DAC with outputs ±Vref/R (referred to as the assistant) pull current out of the

opamp - this way, the opamp does not have to supply any current.

−

+

Vin R

Vdac R

C

0 DAC

gm
Vin

Vdac

Vin

R

Vref
R

+/-

AssistantiC

Vref

Vmax

Figure 5.2: Assisted opamp integrator
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Since the steps of DAC current are now supplied by the assistant, the excursions at the

virtual ground node are greatly reduced. This results in low distortion operation of the

modulator. In effect, the only requirement on the opamp is to supply the load currents

and any incidental differences between the integrator input current and the assistant cur-

rent. Therefore, the power requirements of the opamp can be significantly relaxed. We

call this technique for designing linear, low power integrators as the ‘assisted opamp’

technique. The rest of the chapter provides a detailed description of this technique.

5.1 Basics of opamp assistance

-Gm(s)

C

vd vout

iin Gin iaGLCLcd

Figure 5.3: Equivalent circuit of an assisted opamp integrator

The fundamentals of opamp assistance can be understood using the equivalent cir-

cuit shown in Fig. 5.3, where some of the practical nonidealities are shown. iin, Gin

denote the Norton equivalent of the input and DAC circuits, with ia denoting the as-

sistant current. cd is the capacitance at the virtual ground node. C is the integrating

capacitor, while CL and GL are the total load capacitance and conductance that the

opamp needs to drive. The opamp itself is modeled as a frequency dependent transcon-

ductor2, Gm(s). The Laplace transform of the response at the virtual ground node, vd is
2This is an accurate representation of single-stage and two-stage feedforward compensated opamps.

119



given by

Vd(s) =
−Iin(s)

(
s(C + CL) + GL

)
+ Ia(s)sC

GinGL + sC
(
Gm(s) + GL(1 +

cd

C
) + Gin(1 +

CL

C
)
)

+ s2(cdC + cdCL + CCL)

(5.1)

From the above equation, we can see that vd will not swing if

Ia(s) =

(
1 +

CL

C

)
Iin(s) +

GL

sC
Iin(s) (5.2)

This indicates that the assistant current must contain proportional and integral versions

of the input current to ensure zero swing at vd. Note that in a CTDSM, the current

through GL is usually small, in comparison with the current flowing through the in-

tegrating capacitor3. Alternately, if subsequent integrators and the summation of their

outputs are implemented using Gm-C techniques, the first integrator’s resistive load

(GL) becomes negligible. Assuming GL = 0, the swing at the virtual ground node can

thus be canceled with an assistant current given by

Ia(s) ≈

(
1 +

CL

C

)
Iin(s) (5.3)

The above equation indicates that the cancellation at vd does not depend on cd, Gin or

more importantly, on the shape of iin. This implies that the idea of opamp assistance is

not restricted to be used with NRZ DACs.

Fig. 5.4(a) and (b) illustrate how opamp assistance can be used for integrators based

on single-stage and two-stage feedforward compensated opamps. As discussed before,

the assistant current is obtained using a transconductor (that provides the input com-

ponent of the integrator current) and a current steering DAC (which provides the DAC
3Since subsequent integrators are impedance and node scaled to reduce power dissipation.
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Figure 5.4: Implementation of the assisted opamp integrator for several commonly
used opamp topologies - (a) A single stage transconductor (b) A two-stage
feedforward compensated opamp and (c) A Miller compensated opamp
(α = 1 + CL/C)
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component of the integrator current). A Miller compensated two-stage opamp can also

be “assisted”, as shown in Fig. 5.4(c). Two assistants are needed in this case - apart

from the one that injects current into the output, another assistant is needed to remove

the current iCCc/C that flows through the compensating capacitor. As a result, the input

transconductor (gm1) does not need to sink any current, resulting in vd = 0.

Having understood the usefulness of the assisted opamp technique, a more quantita-

tive analysis of integrator nonlinearity can now be obtained using the methodology dis-

cussed in Chapter 2 (Section 2.1.2). Since the above discussion can be directly extended

to analyze single-stage integrators, attention will be given to active-RC integrators with

two-stage opamps.

5.2 Analysis of nonlinearity in two-stage opamp assisted active-RC integrators

Vo

C

cp

c1

gm2gm1

iC

r1 c2
r2

gm3

Vin R

-Vdac

R

vd 
-α/R

Vin - Vdac
iai1

i3

v1

icp

ic1 ic2ir1

Figure 5.5: Assisted active-RC integrator with feedforward compensated opamp

Consider an active-RC integrator having a feedforward compensated opamp, that

is provided with opamp assistance as shown in Fig. 5.5. The assistant transconductor

and the DAC have been modeled together as a single transconductor pulling a current
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α(Vin − Vdac)/R. Let α be defined as

α = m1

(
1 +

c2

C

)
(5.4)

where the factor m1 can model any variation in the assistant current from the expected

value (ideally m1 = 1). Denoting the assistant current as ia, the step-like voltage

component at v1 is

v1,cap =
(iC + icp − ic2 − i3)

gm2

−
ia

gm2

(5.5)

≈
iC(1 + cp/C + c2/C) − i3

gm2
−

α(Vin − Vdac)

gm2R
(5.6)

Assuming iC ≈ (Vin − Vdac)/R, we have

v1,cap ≈
iC(1 − α + cp/C + c2/C) − i3

gm2
(5.7)

The above modified expression for v1,cap thus leads to a modified ir1 given by

ir1 ≈
v1,cap

r1
(5.8)

=
iC(1 − α + cp/C + c2/C) − i3

gm2r1
(5.9)

The input transconductor’s current i1 = icp + ic1 + ir1 is given by

i1 ≈ iC

(
cp

C
(1 +

1

gm2r2
) +

c1

C

1

gm2r2
+

1 − α + cp/C + c2/C

gm2r1

)
−

i3
gm2r1

(5.10)

Comparing the above expression with that in eq. 2.48, the linear response at the virtual
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ground node can be shown to be

vd,lin ≈
Vin − Vdac

2 + k
(
gm1 +

gm3

gm2r1

)
R

≈
Vin − Vdac

2 + kgm1R
(5.11)

where, k =
C

cp +
c1 + cp

gm2r2
+

(C + c2)(1 − m1) + cp

gm2r1

(5.12)

The fact that the assistant now provides the current iC and ic2 can clearly be seen to

modify the expression for k and thereby the swing at the virtual ground node. Particu-

larly, if m1 = 1, cp = 0 and r2 = ∞, k is infinite resulting in zero swing at the virtual

ground node. In general,

k =
C

cp +
c1 + cp

gm2r2
+

cp

gm2r1

, if m1 = 1 (5.13)

=
C

cp +
c1 + cp

gm2r2
+

c2 + cp

gm2r1

, if α = m1 = 1 (5.14)

With this information, the nonlinear integrator can be modeled as before using a non-

linear function (f(x) = x − βx3) preceding a linear integrator, where

f(x) = x −
2g31

gm1(2 + kgm1R)3
x3 −

2g33/(gm2r1)

gm1(2 + kgm1R)3
x3 (5.15)

As discussed in Chapter 4 (Section 4.1), this can be modeled as an additional input

(2βV 3
in) to an otherwise linear modulator. Thus, the third harmonic distortion at the

modulator output is

HD3 =
βA2

in

2
(5.16)

provided the initial transients are negligible. This is indeed the case, since the opamp

is assisted in supplying the current steps demanded by the feedback DAC. Fig. 5.6 il-

lustrates this by comparing the step response observed at vd with and without opamp
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assistance. Some initial transients can be seen in this case since the opamp is not as-

sisted to drive the capacitor, c2 (or α = m1 = 1). In such cases, the effect of any

residual transients can be accounted by computing the time-averages (αi), as discussed

in Chapters 3 (Section 3.1) and 4 (Section 4.2).
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Figure 5.6: Step response of the active-RC integrator with and without opamp assis-
tance (α = m1 = 1). Inset shows a zoomed in view of the response with
assistance. gm1 = 27.12 µS, R = 150 kΩ, C = 5.77 pF, r1 = 20 MΩ, cp =10 fF,
gm2 =100 µS, gm3 = 320 µS, c1 =45 fF, r2 = 1 MΩ.
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Figure 5.7: Assisted active-RC integrator with Miller compensated opamp
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The corresponding model for a nonlinear Miller opamp based integrator can be

obtained by a similar analysis, considering the circuit shown in Fig. 5.7. The assistants

for each stage of the opamp are characterized by the parameters, αa1 and αa2 with

αa1 = m11

(
Cc

C

)
(5.17)

αa2 = m12

(
1 +

Cc + c2

C

)
(5.18)

where m11 and m12 denote the relative variation of the respective assistant currents

from their expected value. Considering the assistance provided to the first stage and

assuming iC ≈ (Vin − Vdac)/R, we have

i1 = iCc + ic1 + ir1 − ia1 (5.19)

= iC
Cc

C

(
1 − m11 +

1

gm2r2

)
+ iC

c1

C

(
1

gm2r2

)
+ ir1 (5.20)

With the second stage of the opamp also being assisted, the modified ir1 can be deter-

mined by proceeding along the same lines as with the feedforward compensated opamp.

It can be shown that

i1 ≈ iC
Cc

C

(
1 − m11 +

1

gm2r2

)
+ iC

c1

C

(
1

gm2r2

)

+
iC(1 − m12 + (Cc + c2)(1 − m12)/C) − i3

gm2r1
(5.21)

Using the above expression, the nonlinear integrator can be modeled with a linear inte-

grator preceded by the nonlinear function,

f(x) = x −
2g31

gm1(2 + kgm1R)3
x3 = x − βx3 (5.22)

where, k =
C

Cc(1 − m11) +
c1 + Cc

gm2r2
+

(C + Cc + c2)(1 − m12)

gm2r1
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Recall that the feedforward opamp based integrators are more linear than their Miller

counterparts due to the inherently large value of k ≈ C/cp. With opamp assistance,

(in particular m11 = 1) it is evident from the above equation that large values of k (or

smaller β) can be achieved with Miller opamp based integrators as well. In conjunc-

tion with reduced initial transients (due to m12 = 1), comparable performances can

thus be achieved with a Miller opamp based integrator similar to that achieved with a

feedforward opamp based integrator. By the same argument, it should be apparent that

the linearity of a single-stage transconductor based active-RC integrator4 can also be

significantly improved with opamp assistance.

5.3 Nonidealities of the assistant blocks

The discussion so far explained how the linearity requirements of an opamp can be

relaxed to enable the design of high performance single-bit CTDSMs. While assistance

can help in reducing the power consumption in the opamp, two additional blocks have

been introduced to accomplish this. These blocks were assumed to be ideal in the

above discussion. The practical nonidealities of these assistant blocks (like noise and

nonlinearity) can potentially degrade the modulator performance. This can result in

significant power requirements in these assistants, which can make the overall power

consumption of the assisted integrator more than that of the conventional integrator.

However, as will be explained below, the nonidealities of the assistant blocks are not a

serious concern. Hence, power can be conserved while designing these blocks.
4whose linearity can in principle be increased only through gm or R
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5.3.1 Effect of noise due to opamp assistants

The assistant circuitry can inject thermal and 1/f noise apart from supplying the de-

sired signal current. Considering each of the integrator topologies shown in Fig. 5.4(a),

(b) and (c), an intuitive understanding on the effect of these noise components can be

obtained as follows. In all the cases, the spectral density of the noise current injected

by the assistants is assumed5 to be 8kT/R.

In the single-stage transconductor case with assistance (Fig. 5.4(a)), the noise source

of the assistants appears in parallel with the noise of the transconductor. In a well

designed integrator, GmR � 1. Therefore, it can be seen that the noise injected by

the assistant can only slightly degrade the input referred opamp noise (which is much

smaller than the input referred integrator noise).

With the two stage opamp using feedforward compensation (Fig. 5.4(b)), the noise

current due to the assistants appears in parallel with that of the second stage of the

opamp. Similar to the noise current of gm2, the noise due to the assistant is negligible

when referred to the opamp input.

For the Miller compensated two-stage opamp (Fig. 5.4(c)), the noise injected by

the assistant circuitry appears in parallel with that injected by gm1 and gm2. The noise

injected at the opamp output is of little consequence, like in the feedforward example.

The noise source occurring at the output of gm1 could be of potential concern. In a

well designed integrator, where the gain-bandwidth product of the opamp (gm1/Cc) is

chosen to be much higher than the unity gain bandwidth of the integrator (1/RC),

gm1 �
1

R

Cc

C
(5.23)

5Though only thermal noise is considered, the discussion holds good for flicker noise as well.
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The RHS of the above equation is the transconductance of the assistant block at the

output of the first stage as shown in Fig. 5.4(c). This indicates that the noise penalty due

to this assistant is also negligible.

−

+
Gm

C

R

R

ia,n

Vout(t)Rest of the
Loop Filter

vd

Figure 5.8: Simplified diagram of the modulator used to evaluate the effect of noise of
the assistant transconductor

To obtain a quantitative understanding of the effect of the noise due to the assistants,

consider the simplified representation of the CTDSM as shown in Fig. 5.8. Let ia,n

denote the noise current injected by the assistant (with a spectral density Sia,n(f)). Let

Gm denote the low frequency transconductance of the opamp. Very little (≈ 0) current

can flow through the integrating capacitor (C) at low frequencies6. If the rest of the

modulator is assumed not to load the first integrator, the noise current of the assistant

gets “absorbed” by the transconductor (Gm). This results in a corresponding swing in

the virtual ground node given by7

vd =
ia,n

Gm

(5.24)

Applying KCL at vd (and noting that the current through C ≈ 0), the output of the

modulator is given as

Vout =
2ia,n

Gm
(5.25)

6assuming a high unity gain bandwidth for the first integrator
7assuming a deterministic ia,n for calculation purposes
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Using this relation, the output noise spectral density can be related to Sia,n(f) as

SV out,n(f) =
4

G2
m

Sia,n(f) (5.26)

The corresponding output noise spectral density of the modulator, assuming the input

resistor’s noise PSD to be SiR,n(f), is given by

SV out,n(f) = R2SiR,n(f) (5.27)

Since Sia,n(f) is of the same order as SiR,n(f), eq. 5.26 and 5.27 indicate that the

noise of the assistant blocks is attenuated by a factor of (GmR/2)2 when compared

to the noise contributed by the input resistor. Thus, by ensuring a large low frequency

transconductance for the opamp, the noise of the assistant blocks can be made negligible

at the output of the modulator.

5.3.2 Effect of distortion from the assistant circuitry

A similar analysis can show that the distortion introduced by the assistant circuitry

is also attenuated by a large factor. If the assistant transconductor is assumed to be

weakly nonlinear with a current function modeled as ia = Vin/R − g3aV
3
in (where

Vin/R � g3aV
3
in), the amplitude of the third harmonic current tone injected by the

assistant is

I3a =
g3aA

3
in

4
= HD3,a

Ain

R
(5.28)

where Ain denotes the input amplitude and HD3,a is the third harmonic distortion ob-

served in the assistant current. This must result in a third harmonic component in the
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virtual ground voltage vd with an amplitude

Avd,3 =
I3a

Gm
=

g3aA
3
in

4Gm
(5.29)

With an STF = 1, the signal amplitude at the modulator output is Ain and thus, the third

harmonic distortion will be given as

HD3 =
g3aA

2
in

2Gm

=
2HD3,a

GmR
(5.30)

It can be seen that the distortion of the assistant transconductor is also reduced by a

factor GmR/2. Since the assistant’s distortion is not a serious concern, a class-AB

architecture can be used to realize the assistant transconductor, leading to a power-

efficient design. Also, it is easier to design the current steering DAC (±Vref/R) for low

distortion operation.

In a nutshell, it is seen that higher the low frequency transconductance of the opamp,

better is the attenuation of the noise/nonlinear current components of the assistant

blocks. Among the opamp topologies, the two-stage architectures can realize large low

frequency transconductance8 with the least power expenditure. Therefore, integrators

with two-stage opamps will be more tolerant to the nonidealities of the assistants, when

compared to their single-stage counterparts.

5.4 Simulation results

The models derived in Section 5.2 were confirmed by employing opamp assistance

in the integrators of the third order single-bit CTDSM simulated in Chapter 4. Fig. 5.9
8The effective Gm is gm1r1gm2 at low frequencies. However, in a Miller compensated opamp, the

value of Gm reduces with a first order roll-off for frequencies above 1/
(
r1(Cc + c1)

)
. This may not be

critical as long as the signal bandwidth is smaller or gm1r1gm2 is adequately large.

131



shows the variation in the harmonic distortion observed for the case of the feedforward

compensated opamp9 with different integrating capacitors. The harmonic distortion

predicted using the models can be seen to closely match the simulated performance.
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Figure 5.9: Variation of HD3 with feedforward compensated opamp with assistance.

When compared to the modulator performance without assistance (shown in Fig. 4.10),

the modulator with opamp assistance can be seen to tolerate stronger levels of nonlin-

earity (or higher values of
√

gm1/g31). More importantly, with negligible initial tran-

sients, the HD3 is now inversely proportional to k3 or C3 as predicted by eq. 5.13. Note

that a deviation is seen between the predicted and observed distortion, for the case of

C = 8.65 pF. This is because the harmonic component becomes indistinguishable with

the noise floor of the modulator at such low levels of nonlinearity. Fig. 5.10 shows the

corresponding variation in HD3 observed with the Miller compensated opamp, when

assistance is provided only to the second stage (m11 = 0, αa2 = m12 = 1).

9In all the simulations, α = m1 = 1 since C � c2.
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Figure 5.10: Variation of HD3 with Miller compensated opamp with assistance pro-
vided only to the second stage (m11 = 0, αa2 = m12 = 1).
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Figure 5.11: In-band PSD of the single-bit CTDSM employing a nonlinear active-RC
integrator with both Miller and feedforward compensated opamps. Assis-
tance has been provided to both the stages of the Miller opamp.(m11 = 1,
αa2 = m12 = 1).
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Referring to the modulator performance without assistance (Fig. 4.9), a slight im-

provement can be seen in the performance with such an assistance. This can be at-

tributed to the reduction in the initial transients. However, if the opamp’s input transcon-

ductor is also assisted (m11 = 1), performances comparable to that of the feedforward

opamp can be expected. Fig. 5.11 illustrates such an improvement, obtained by assist-

ing both the stages of the Miller compensated opamp. For comparison, the in-band PSD

observed with the feedforward opamp based integrator is also provided.

5.5 Application of opamp assistance to multi-bit modulators

The concept of opamp assistance can also be applied to reduce the effect of integra-

tor nonlinearity in multi-bit modulators. In such cases, the linearity of the first integrator

can be improved by choosing

• two-stage feedforward compensated opamps to significantly reduce β and

• opamp assistance to reduce the initial transients (w(t))

While the opamp can be assisted in the same manner as discussed for the single-bit

modulator (Fig. 5.2), a modified scheme can also be suggested. This can be under-

stood from the fact that the initial transients are caused by the steps in the feedback

DAC voltage given by Vdac[n] − Vdac[n − 1]. In the technique discussed so far, the

DAC current is entirely provided by the assistant to remove the need for the opamp to

source/sink steps of DAC current. Alternately, the high speed current requirements on

the opamp can be relaxed by supplying only the “incremental” steps of the DAC current,

(Vdac[n]−Vdac[n−1])/R in each clock cycle. Illustrated in Fig. 5.12, such a scheme re-

duces the number of unit DAC cells in the assistant DAC, since the transitions typically
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span only 2 or 3 LSBs. This can be advantageous in a multi-bit design in terms of the

area and power consumed by the assistant circuitry. However, with this modified assis-

tance, the opamp has to sink the current difference, iC − ia = (Vin[n] +Vdac[n− 1])/R.

This can be modeled as an error current injected by the assistant DAC. Though it in-

creases the opamp current, this does not result in performance degradation, as the errors

get absorbed by the opamp. It is sufficient for the current in the opamp to be adequate

enough to sink these currents.

−

+

Vin R

Vdac R

C

DAC

Vdac[n] - Vdac[n-1]

iC

ia

iC - ia

Figure 5.12: Modified assisted opamp integrator in a multi-bit CTDSM
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Fig. 5.13 illustrates the improvement observed in the 4-bit CTDSM (simulated in Chap-

ter 2) with a nonlinear feedforward opamp based active-RC integrator. It is clearly seen

that both the proposed schemes of opamp assistance aid in improving the modulator

performance.

5.6 Prospects and related work

The assisted opamp technique described in this chapter is fundamentally a way of

improving the performance of an integrator. It should benefit any modulator topology

(like CIFF or CIFB) if the critical integrators are assisted with this technique. While the

idea has been explained for an NRZ DAC, the benefits carry over to other DAC pulse

shapes as well (like RZ, SCR DACs). This is because the cancellation of the swing at

the virtual ground of the opamp is independent of the integrator input waveforms (as

long as there is good matching between the assistant and the net input current flowing

into the integrating capacitor).

The idea of “helping” an opamp has been attempted before, in the context of a

switched capacitor integrator (Stevens and Miller (1994)). In that work, the authors

use a booster circuit to supply a large portion of the (initial) current required in an SC

integrator. This is done by using the knowledge of the “sampled” input of the integrator.

By this way, the slew-rate of the integrator is shown to be enhanced. While this might be

suitable for a switched capacitor application (since only the settled value is of interest),

it can be problematic for a continuous-time design.
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CHAPTER 6

DESIGN OF LOW POWER SINGLE-BIT AUDIO
MODULATORS

The recent delta-sigma modulators targeting the audio range have been built using

continuous-time loop filter (Gerfers et al. (2003) Ortmanns et al. (2005) Baggini et al.

(2006) Nguyen et al. (2005) Dorrer et al. (2006) Pavan et al. (2008)). In all these

works, power reduction has been the main motivation for choosing CTDSMs over

their discrete-time counterparts. While the first three designs (cited above) have used

a single-bit quantizer, subsequent designs have largely employed multi-bit quantizers.

This is because multi-bit designs are less sensitive to clock jitter and relax the linearity

requirements of the loop filter, when compared to their single-bit counterparts. Also,

the inherent quantization noise of multi-bit quantizers is smaller and with aggressive

NTFs being possible, the in-band quantization noise gets further reduced.

Though single-bit modulators are associated with such design issues, they do offer

some attractive features.

• A single-bit quantizer greatly reduces the power consumed by the digital section
of the modulator - like the comparators, digital logic and the clock drivers.

• A single-bit quantizer reduces the design area, owing to the smaller number of
comparators/DAC elements.

• The fact that the Dynamic Element Matching (DEM) circuitry is not needed,
further reduces area and complexity.

• Though not a serious concern in audio modulators, the absence of the DEM block
can significantly reduce the excess loop delay.

To illustrate the above mentioned advantages with an example, in the multi-bit de-

sign reported by Pavan et al. (2008), about 30% of the modulator power is consumed



by the digital section - mainly by the clock generator circuitry that has to drive the 4-bit

internal flash ADC and the DEM block. In addition, one-fourth of the modulator area is

found to be occupied by the Flash, DEM and DAC circuitry. This clearly signifies the

power and area advantage possible when a single-bit design is adopted. This was the

motivation behind designing single-bit audio modulators, the design of which will be

discussed in this chapter. The modulators were targeted for the same 15-bit performance

as the above mentioned multi-bit design, with a similar power dissipation.

6.1 Addressing the issues of a single-bit design

The issues associated with a single-bit design should first be addressed in order

to leverage its implementation advantages. The problems have been circumvented by

adopting the following system and circuit level choices.

A.) In-band quantization noise : The increase in quantization noise with the use of a

single-bit quantizer is countered by an equivalent increase in the Over-Sampling Ratio1.

Thus, an OSR of 128 has been chosen, resulting in a sampling frequency of 6.144 MHz

for 24 kHz signal bandwidth. Complex zeroes are spread in the signal band to further

minimize the in-band quantization noise power. With a third order maximally flat NTF

having an OBG of 1.5, this results in an in-band peak SQNR of about 110 dB . This is

well above the desired 92 dB SNR of the modulator, which is ensured to be determined

purely by device (thermal) noise. In addition, the dynamic range of the modulator

is maximized by using a full scale voltage of 3.6 V (peak-to-peak differential) for the

quantizer, which is the maximum possible with the given supply voltage.
1The increase in the modulator’s power consumption (due to the increase in the digital power con-

sumption) is only marginal with an increase in OSR. This is because the loop filter is the major power
dissipating block in a single-bit CTDSM.
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Figure 6.1: Single-ended schematic of an SCR DAC

B.) Clock jitter : It is well known that jitter affects the performance of CTDSMs

by perturbing the width of the fedback DAC pulse, making an NRZ DAC preferable to

an RZ DAC. With an NRZ DAC, this issue can be addressed through appropriate PLL

design. Alternatively, an SCR DAC implementation (Ortmanns et al. (2005)) as shown

in Fig. 6.1 can also be employed.

C.) Power consumption in the loop filter : The discussions in Chapter 3 clearly

brought out the increased linearity requirements of the loop filter in a single-bit CTDSM.

The power required to design linear integrators can potentially offset the power advan-

tage gained in the digital section. Further, in case of an SCR DAC, reduced jitter sen-

sitivity is achieved only at the expense of increased linearity requirements of the first

integrator. This can easily undermine the objective of designing a low power single-bit

CTDSM. To address this problem, the technique of opamp assistance is used. With

the help of this technique, as targeted, 15-bit performance has been in demonstrated

in single-bit CTDSMs based on NRZ and SCR feedback DACs, with a power con-

sumption that is comparable to that of the multi-bit modulator reported by Pavan et al.

(2008). Implemented in 0.18 µm CMOS technology, the NRZ/SCR modulators con-

sume 110/122 µW from a 1.8 V supply and achieve dynamic ranges of 92.5/91.5 dB for

a signal bandwidth of 24 kHz. The architectural and circuit details of these modulators

form the subject of the rest of the chapter.
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6.2 Loop filter architecture
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Figure 6.2: Modulator architecture and component values (DAC is either NRZ or SCR)

A single-ended equivalent of the modulators showcasing the loop filter architecture

along with the respective component values2 is shown in Fig. 6.2. The loop filter is im-

plemented as a CIFF structure. For low noise and high linearity, active-RC techniques

are used to implement the integrators. Opamp assistance is used only in the first inte-

grator, since distortion introduced by subsequent circuitry gets attenuated by the high

in-band gain of the first integrator. This is an inherent advantage of the CIFF architec-

ture, and the high OSR (= 128) being used. For simplicity, assistance is not provided for

the first opamp to drive the capacitive loads (≈ 300 fF), due to the relatively larger value
2The inversion of the signals have been indicated using the negative sign used with the resistors.
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for the first integrating capacitor (C1). The first integrator uses 150 kΩ resistors (to limit

thermal noise), while 600 kΩ resistors are used in the second and third integrators, to

reduce power dissipation. Some important aspects of the architecture can be elaborated

as follows.

a.) Direct path to the quantizer : A direct path is added from the modulator input

to the loop filter output through the resistor Rd. This technique, originally proposed

to reduce distortion in discrete-time DSMs (Silva et al. (2001)), has been adopted in

this design for the following reason. In order to limit the swing at the third integrator’s

output, large values for the third integrating capacitor (C3) are required. With the direct

path, the signal component of the loop filter output is provided by the modulator input.

Therefore, relatively smaller values can now be used for the third integrating capacitor.

It needs to be mentioned that the drawback of having a direct path is the reduced anti-

aliasing property of the CTDSM. However, as explained in Appendix H, the degradation

in the anti-alias rejection is tolerable for practical purposes.

b.) Implementation of the notch in the NTF : Realizing NTF complex zeros (which

improve the SQNR by about 8 dB) is traditionally done using a single feedback resistor

around two integrators (in the notation of Fig. 6.2, Rx1 = 0 and Rx2 = ∞). For a

third order NTF and 24 kHz bandwidth, calculations show that using a single resistor to

realize the notch necessitates an impractically large Rx (of approximately 200 MΩ!). To

avoid this, the notch is implemented using a T-network formed by Rx = 2 MΩ, Rx1 =

1 MΩ and Rx2. The notch frequency is given by ω2
z ≈ (Rx2/Rx1) (1/R3RxC2C3). The

resistors, Rx1 and Rx2 are realized without any power or area overhead, by re-using the

common-mode detecting resistors employed at the output of the third opamp (A3).
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c.) Realizing the summing operation in the loop filter : A CIFF loop filter has several

advantages with respect to suppressing noise and distortion from sources other than the

first integrator. However, feed-forward architecture requires a summing operation to be

performed. This can be accomplished by either having capacitive feed-ins into the third

integrator or by using a dedicated summing amplifier.

In the capacitive summation approach, the first integrator needs to drive a capacitive

load. With the capacitive load current being proportional to that flowing through the

integrating capacitor (C1), this can potentially increase the power dissipation in the first

opamp or the assistants, to ensure low distortion operation of the modulator. Further,

the third integrator is now in the high speed path (the 1/s path of the loop filter) of the

modulator. The feed-in capacitors needed to implement summation result in increased

delay when compared to the delay of a stand alone integrator. This requires higher

power to be burnt in the third opamp. Hence, even though capacitive summation needs

only three opamps, it is not clear that it saves power. This was the reasoning behind

using a separate summing amplifier (opamp A4).

d.) Use of resistor and capacitor banks : As discussed in Chapter 1, the variation

in RC time constants of the loop filter (due to process shifts and changes in ambient

temperature) can be problematic in a CTDSM design. To counter this, the integrating

resistors and capacitors are implemented as digitally tuned banks as shown in Fig. 6.3.

While the time constant variations can be compensated by tuning ‘only’ the capacitors

or the resistors, the resistor and capacitor banks are tuned individually, in this design.

This alleviates the need to increase the value of the resistances (in particular R1) when

the capacitors are small, which prevents any increase in the thermal noise. The switches

S0−7 are externally controlled and can compensate for RC shifts of up to ±25% from the
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Figure 6.3: Resistor and capacitor banks used in the integrators

nominal value and bring them to within ±5%. Under nominal conditions, the desired

resistance and capacitance are realized by turning on switches S0 and S4−5.

e.) Scaling of the NTF : Finally, thanks to the single-bit quantizer, the output of

the summing amplifier is scaled. In essence, the output of the loop filter is scaled by

a factor of 8 in both the modulators without affecting the NTF. This has been used to

advantage in two ways - the power consumption of the loop filter is minimized and

also, a high speed opamp architecture which cannot support full rail swings, is used

to design the opamp A4. For the same reason, a large value is chosen for the first

integrating capacitor (C1) to limit the power dissipation and output swings of the first

two integrators (realized by opamps, A1 and A2).
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6.3 Circuit design details

6.3.1 Operational amplifiers

The opamps in the active-RC integrators are realized using two-stage architectures

with feedforward compensation, to achieve better speed and linearity. The opamp used

in the first integrator of the NRZ DAC based modulator is shown in Fig. 6.4. The first

stage consists of long channel devices M1, M2, M3 and M4 to lower the input referred

1/f noise. M5 and M6 provide common-mode feedback for the first stage. These are

minimum length devices, carrying 20% of the first stage tail current. Since M9,10 and

M5,6 have the same VDS , the quiescent current in the second stage is accurately set to

4 µA by choosing M9 to be 8 times wider than M5. The reason for the choice of 4 µA

is the following. The modulator coefficients are scaled in such a manner that 1.5 µA is

needed from the first opamp to drive the resistive load current of the subsequent stages.

2.5 µA has been allocated for design margin. The total current drawn by the opamp is

15 µA. The simulated DC gain and unity gain bandwidth of the opamp are 65 dB and

55 MHz respectively.

A notable feature of the opamp is that the second stage current is re-used to realize

the feedforward transconductance. This results in a power efficient opamp architecture,

though with the drawback of increased output swing constraints. However, as discussed

in the previous section, the first integrator is node scaled to ensure the swings are well-

within the limits set by the given opamp topology.

A similar opamp topology can be found in Ouzounov et al. (2007), where resis-

tive common-mode feedback has been used at the output of the first stage. In contrast,

transistors are used to detect the common-mode voltage in this design. This occupies
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a smaller area and more importantly, maintains the inherent high DC gain of the first

stage. Further, the common-mode feedback scheme used allows to set the current den-

sity of M3,4, independent of that in the output stage. M3,4 are thus sized based on 1/f

noise considerations, while M5,6 and M9,10 are optimized for speed.

The opamp used in the SCR DAC based modulator is similar to that in Fig. 6.4 - the

only difference is that the quiescent current in the second stage is increased to 6 µA per

leg. The reason for this is the mismatch expected between the assistant and feedback

DAC currents, which will become clearer in the next section.

The opamps used in the subsequent integrators and the summing block are scaled

down versions of the first opamp, since their noise and nonlinearity are of little con-

cern. The current consumed by each of these opamps is 8.5 µA. Since 1/f noise is not

an issue in these opamps, NMOS input and feedforward pairs are used, while gm2 is

implemented using PMOS devices. As mentioned in the previous section, the second

stage common-mode feedback resistors of the third opamp are modified to implement

the T-network as shown in Fig. 6.5.

vop

vcmo
Rx1 vom

Rx1

Rx2 Rx2

Rx Rx

To virtual ground
of second opamp

Figure 6.5: Common mode feedback sensing used in third opamp (Rx1 and Rx2) to
realize the T-network. Resistor Rx is also shown for convenience.
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6.3.2 Quantizer
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Figure 6.6: (a) Comparator schematic and (b) Clock waveforms

The circuit diagram of the comparator and the corresponding clock waveforms are

shown in Figs. 6.6(a) and (b) respectively. The comparator operates as follows. When

the latch-connect signal LC is high, the back-to-back inverters formed by M1, M2, M3

and M4 are disabled and the differential input is sampled on nodes X and Y. The regen-

eration phase begins thereafter, when the latch signal (L) goes high. The decision of the

latch is held by two C2MOS (clocked CMOS) inverters, which sample the latch output

after a small delay (Td). The excess delay in the quantizer realized is about 100 ps.

Since the NTF has a relatively low OBG of 1.5, this delay is of little consequence.
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6.3.3 Feedback DACs

The NRZ DAC based design uses a simple resistive DAC (R1 = 150 kΩ) for low

excess noise3. The schematic of the first integrator of the SCR DAC based modulator is

shown in Fig. 6.7(a) and the details of the DAC are shown in Fig. 6.7(b).
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Figure 6.7: (a) Schematic of the first integrator in the modulator with the SCR DAC (b)
Schematic of the differential SCR DAC

The capacitors CD are charged to ±Vref in phase φ2. In φ1, they are discharged into the

virtual grounds (vdp & vdm) depending on the quantizer output, D. The discharge time

constant is given by (RD + 2Rs)CD, where Rs denotes the resistance of the switches

in series with CD. As discussed in Chapter 1 (Sections 1.4.3 and 1.4.4), the choice of

RD involves a trade-off between linearity and jitter noise. In this design, CD = 1.1 pF

and RD + 2Rs = 22.5 kΩ are used, resulting in a time constant of about 25 ns. The

exponentially shaped DAC current thus has a peak of 40 µA, decaying to about 1.5 µA

in half clock cycle (which is ≈ 3.3 time constants of the SCR DAC). The average current

is 6 µA, as with the NRZ feedback DAC.
3A comparison of resistive and current-steering DAC architectures is provided in Appendix E.
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6.3.4 Assistant circuitry
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Figure 6.8: Transconductor used in the assistant circuit

Assistant transconductor : Fig. 6.8 shows the schematic of the assistant transcon-

ductor used in the first integrator. It is a class-AB design, comprising of complementary

common gate stages M2 and M6 which carry 0.5 µA of current under no signal condi-

tions. RA is chosen to have a value of 300 kΩ. M4 and M8 are accordingly chosen to

be twice as large as M3 and M7, to realize an effective small-signal transconductance of

(1/150 k)S. As explained in Chapter 5 (Section 5.3.2), distortion components generated

by this transconductor are absorbed by the first opamp. In this design, about 0.5% dis-

tortion from the assistant circuitry is found to be tolerable, which is easily achieved by

this class-AB design.
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Assistant DAC in the NRZ design : The assistant DAC in the NRZ modulator con-

sists of 6 µA cascoded NMOS and PMOS current sources, which are steered using

differential pairs of switches (as shown in Fig. 6.9). The current sources are derived

from a current proportional to Vref/R1, where R1 (= 150 kΩ) denotes the resistance of

the modulator feedback DAC. In this way, the magnitude of the assistant DAC current is

ensured to track variations of the feedback DAC current, over process and temperature.

Assistant DAC in the SCR design : The assistant DAC of the SCR modulator needs

to provide an exponentially decaying current with a peak of about 40 µA and a time con-

stant as same as the feedback SCR DAC. More importantly, the assistant DAC should

robustly track the variations in the feedback DAC current, over process and tempera-

ture. This represents a significant circuit design challenge. A possible choice for the
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assistant DAC is the circuit proposed by the authors of Ortmanns et al. (2003). Their

circuit is as shown in Fig. 6.10 and it operates as follows.
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C
M1
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φ2 V1
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Vdd

M2

φ1

S1 S2

Figure 6.10: Simplified schematic of an exponentially decaying pulse generator pro-
posed in Ortmanns et al. (2003)

For simplicity, M1 and M2 can be assumed to be identical devices. During phase φ2,

the capacitor C is charged to Vhigh. In φ1, it is discharged to Vlow = VTN (the threshold

voltage of M1/M2) through a resistor R. The choice of VTN for Vlow is to avoid having

to charge C all the way from zero during φ2. If the switches are ideal, the gate voltage

of M1 (denoted by V1) is an exponentially decaying pulse with a time constant τ = RC.

The drain current of M1, which is initially Imax, decays to zero as V1 approaches VTN .

If the transistors are assumed to behave like square-law devices, it can be seen that the

time constant of the decaying current is 0.5τ . Several problems were encountered while

attempting to adopt this technique in this design, as described below.

• Error in the initial current : When φ1 goes high, V1 should initially be Vhigh

so that I1 = Imax. Several mechanisms prevent this from happening. Charge
sharing between C and the gate capacitance of M1 causes a reduction in V1, which
is aggravated by the voltage drop across the switch, S2. Threshold mismatch
between M1 and M2 leads to an error proportional to the gm of M1 (since the
initial current is high, the gm and current error are also large).
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• Error in the decay time constant : Since M1 is not a true square-law device, the
decay time constant of I1 does not track the time constant of the feedback DAC
pulse.

• Error in the off state : If Vlow is larger than VTN (due to mismatch), I1 does not
go to zero.

Excessive swing at the virtual ground of the opamp can be prevented only if there is

good matching between the currents of the SCR feedback DAC and that of the assistant

DAC. Understandably, a high degree of matching is required in the initial periods, when

the current is at its peak. While such issues of the circuit of Fig. 6.10 are tolerable in

the design of Ortmanns et al. (2003) (as is apparent from that reference), it results in

significant degradation in the modulator performance when used as the assistant DAC.
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152



The fundamental reason for the inaccuracy of the circuit in Fig. 6.10 is that all error

mechanisms directly impact the VGS of M1. This problem has been overcome in this

modulator design by desensitizing the exponentially decaying current from the assistant

DAC with respect to the properties of the transistor. This is achieved by switching the

capacitor at the source of the device (akin to the benefits of source degeneration), rather

than at its gate. The functioning of the proposed assistant circuit is explained with the

help of Fig. 6.11. For reference, one branch of the SCR feedback DAC is shown in

Fig. 6.11(a), while Fig. 6.11(b) shows the schematic of the assistant DAC.

The operation of the NMOS portion is described below - the PMOS section operates

in a similar fashion. M2, M6 are N (=40) times wider than M1, which is biased with

Iref = Vref/
(
N(RD + 2Rs)

)
(generated by the circuit shown in Fig. 6.11(c)). During

phase φ2, the capacitors denoted by 2CD are discharged. In φ1, the switches at the

sources of either M2 or M6 are turned on, depending on the quantizer decision, D. The

drain current of M2 or M6 (which should not go into the triode region during modulator

operation) starts out at Vref/(RD + 2Rs) and decays exponentially towards zero, as the

capacitor 2CD keeps charging. The decaying time constant of this current can be seen

to be (RD +2Rs)CD. Replica switches are used in series with the sources of M1 and M3

to match the peak current/time constant of the assistant and feedback DACs. Capacitors

Cb (approximately 5 pF) are required for high frequency bypass and are realized using

MOS gates.

The reader might wonder why 2CD and 0.5RD are used to set the decay time con-

stant in the assistant DAC, when the use of CD and RD could result in a smaller area.

The reason for this choice is the following. Note that M2/M6 and M4/M5 should not
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operate in the triode region. Using CD and RD would result in a higher(lower) quiescent

potential at the gate of M1(M3), thereby reducing the headroom available for M2/M6

and M4/M5.

0 20 40 60 80 100
−10

0

10

20

30

40

50

Time (ns)

C
ur

re
nt

 (
µA

)

SCR Feedback DAC
Assistant DAC

Figure 6.12: Pulse shapes of the SCR feedback and assistant DACs.

The differential component of the current pulses injected by the feedback and assis-

tant DACs are shown in Fig. 6.12. Notice the good matching between the two pulses

when the injected current is large. At the end of φ2, the assistant pulse deviates from

the feedback pulse by about 1.8 µA due to the decreasing gm of M2/M6. This is not a

problem as the difference is small. The current in the second stage of the opamp has

been deliberately increased to 6 µA (from 4 µA in the NRZ case) per leg to be able to

handle this mismatch.

The proposed architecture for the assistant DAC robustly addresses the issues that

caused problems with the scheme of Fig. 6.10 in the following ways.
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• Initial current : The peak current is desensitized with respect to error in the volt-
age at the gates of M1/M3 due to resistive degeneration and the large gmRD

product in the initial portion of the DAC pulse. Charge sharing is less of an issue
since the parasitic capacitors involved (source-bulk capacitance of the devices)
are much smaller (compared to the gate-source capacitances involved in the gen-
erator of Fig. 6.10). The voltage drops across switches are no longer a problem as
they are taken into account while setting the bias voltages at the gates of M1/M3.

• Time constant matching : As shown in Fig. 6.12, the time constant of the assistant
DAC pulse is matched well with that of the SCR feedback DAC waveform in the
initial (high current) portion. As the current reduces, the time constant of the
assistant pulse increases (due to the decreasing gm of M2/M6, M4/M5).

• Current in the off state : When φ1 is low, the sources of M2/M6 and M4/M5 are
open, thus ensuring zero current.

6.4 Simulation results

Power reduction using the assisted opamp integrator : For estimating the bene-

fit (power reduction) of using opamp assistance in the NRZ and SCR modulators, the

modulators were simulated by replacing the assisted opamp integrator with a conven-

tional active-RC integrator. The same two-stage feedforward topology (as in Fig. 6.4)

was used for the opamp, keeping the first stage current fixed at 5 µA and scaling the sec-

ond stage4 to accommodate the current that the opamp needs to source/sink. The input

to the modulator was chosen to be a -5 dBFS 6 kHz sinewave. In the NRZ case, the to-

tal current consumed by the assisted opamp integrator (opamp, assistant transconductor

and DAC) is 27 µA and the simulated in-band SNDR is observed to be 107 dB5. When

the assistant is removed and the quiescent current in the second stage of the opamp

increased to 10 µA per leg (so that the current consumption is the same as the assisted

integrator), the in-band SNDR is seen to be 89 dB. The PSD of both the modulators

(with and without assistance, but same total power) is shown in Fig. 6.13. The inset in
4maintaining the same gate overdrives
5this is almost the simulated SNDR of a modulator with a linear loop filter.
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the figure shows that the virtual ground node excursions are considerably smaller with

opamp assistance.
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Figure 6.13: Low frequency PSD of NRZ modulators using conventional and assisted
opamp integrators (with the same power consumption). The inset shows
the voltages at the virtual ground node in both cases.

Further, to determine the improvement possible with the conventional integrator

with enhanced power dissipation, the performance of the modulator was observed by

progressively increasing the second stage current of the opamp. The observed results

are as given in Tab. 6.1. The second row of the table corresponds to the usual practice

of designing the opamp so that slewing is avoided (with some design margin). The

maximum load current that the opamp needs to supply per leg is 13.5 µA. Using a de-

sign margin of 2.5 µA per leg in the second stage, a first stage current of 5 µA and

CMFB/bias current of 2 µA (the same as in the assisted case), the resulting current con-

sumption is 39 µA. Still, the in-band SNDR is not quite as high as in the assisted mod-

ulator, which clearly shows the power advantage obtained with opamp assistance. The
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Total Current
(µA)

Second Stage
Current (µA)

In-band
SNDR (dB)

27 20 89
39 32 102
47 40 103.5

Table 6.1: Performance of a CTDSM using a conventional integrator (NRZ DAC) as a
function of current consumption.

same experiments were repeated with the SCR DAC based modulator as well. Fig. 6.14

compares the PSD of modulators with and without assistance, for the same current con-

sumption in both cases (about 35 µA). It can be seen that using assistance improves the

SNDR by about 23.5 dB. Table 6.2 gives the simulated performance of the SCR DAC

based modulator (without assistance) as a function of the total bias current. The third

row represents the situation where currents in the second stage of the opamp are chosen

to avoid slewing.
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Figure 6.14: Low frequency PSD of SCR modulators using conventional and assisted
opamp integrators (with the same power consumption). The inset shows
the voltages at the virtual ground node in both cases.

In short, the simulation results shown above prove that the assisted opamp integrator
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Total Current
(µA)

Second Stage
Current (µA)

In-band
SNDR (dB)

35 28 78
67 60 98
113 106 102

Table 6.2: Performance of a CTDSM using a conventional integrator (SCR DAC) as a
function of current consumption.

technique can reduce the power consumed in the first integrator. An added advantage of

using an assisted opamp integrator is that, one can bypass the “trial and error” approach

usually employed during the design of the first opamp in a CTDSM. The assisted opamp

technique provides a simple, straight-forward and power efficient design methodology.
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Figure 6.15: Simulated performance of modulators employing assisted integrators with
NRZ and SCR DACs, with ±5% mismatch and ±1 ns (0.6 %Ts) timing
skew between feedback and assistant DACs.

Mismatch and timing errors : Since the technique of opamp assistance is based on

cancellation of the swing at the virtual ground of the opamp, a potential problem is

the sensitivity to mismatch and timing skew errors between the currents injected by the

feedback and assistant DACs. To observe such effects in this design, simulations incor-

porating mismatch (±5%) and timing skew (±0.6%Ts = 1 ns) between the feedback
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and feedforward DACs were run. Fig. 6.15 shows the results, indicating that the assisted

opamp technique is robust in the face of such practical nonidealities.

6.5 Measurement results

The third order continuous-time delta-sigma modulators were fabricated in a 0.18 µm

CMOS process through Europractice. The test setup used to measure the performance

of the modulator is as shown in Fig. 6.16. Five hundred thousand samples from the mod-

ulator output, captured using an Logic analyzer were processed offline on a PC. Since

the signal generator and the clock generator were not synchronized, a 32K Blackman-

Harris window (rather than the Hann window used during simulations) was used to

minimize the leakage effects during power spectral density estimation.

DUT

Signal generator

Clock generator

Logic analyzer

CLOCK OUT

DATA OUT

Supply, 
References, 
Switch controls 

To PC for analysis

DATA OUT

Figure 6.16: Block diagram representation of the setup used for measuring the perfor-
mance of the modulators.

Fig. 6.17 shows the test board and layout screen shots of the active areas of the

CTDSMs6. The NRZ and SCR designs occupy about 0.24 mm2 and 0.26 mm2 respec-

tively. This is a third of the area occupied by the multi-bit modulator reported by Pavan

et al. (2008), in the same process.
6The reader can refer to Appendix I, where the pin details of the modulator chip are provided.
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Figure 6.17: Test board and chip layouts of the NRZ and SCR DAC based modulators.
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Fig. 6.18 shows the measured SNR/SNDR of the modulators. The SNR is deter-

mined using a 15 kHz sinewave input, while a 6 kHz tone is used for SNDR measure-

ment. The peak SNR/SNDR are 91 dB/88 dB and 90.3 dB/89.1 dB for the NRZ/SCR

modulators. The measured dynamic ranges are 92.5 dB and 91.5 dB respectively.

The PSD plots of the modulator outputs are shown in Fig. 6.19. Part (a) of the figure

shows the spectrum produced by the CTDSM with the NRZ DAC for a -2.2 dBFS 6 kHz

sinewave input7. It can seen that the harmonics are about 95 dB below the fundamental

and no non-harmonic tones are observed above the noise floor. Fig. 6.19(b) shows the

output spectrum of the modulator with the SCR DAC for a -2.1 dBFS 6 kHz input. The

third harmonic is seen to be about 97 dB below the fundamental.

Fig. 6.20 shows the measured rejection in the alias-band, (fs - 24 kHz) to (fs +

24 kHz). The simulated rejection (as computed from an AC response) is also shown for

comparison and good agreement is seen. Around fs, the measured rejection is around

90 dB, falling to 72 dB at the edge of the alias band. Fig. 6.21 shows the measured (and

simulated) STF at out-of-band frequencies. Due to the nonlinear nature of the single-bit

quantizer, the STF is a strong function of the amplitude of the sinusoidal input tone. The

STF can be seen to peak significantly (15 dB) when a 50 mV input is used, but reduces

to 5 dB when the amplitude is increased to 500 mV.

7This is the amplitude that results in the best SNDR.
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Figure 6.18: Measured SNR and SNDR for the modulator with (a) an NRZ DAC and (b)
an SCR DAC. The dynamic ranges are 92.5 dB and 91.5 dB respectively.
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6.5.1 Jitter sensitivity measurements

Since a controlled jitter injection setup was not available, the jitter performance

of the two modulators was compared using an FM modulated sinusoidal clock source

which can be expressed as

Vclk = Aclk sin

(
2πfst +

∆f

fm
sin(2πfmt)

)
(6.1)

where fs and fm refer to the sampling and modulating frequencies and ∆f denotes the

peak frequency deviation. With such a modulated clock, the timing errors in the clock

edges can be shown to be

∆Ts1[n] =
∆f

2πfsfm

sin
(
2πfmnTs

)
(6.2)

∆Ts2[n] =
∆f

2πfsfm
sin
(
2πfm(n + 0.5)Ts

)
(6.3)

For the modulator with NRZ DAC, the equivalent random error input sequence intro-

duced as a result of the clock jitter is given as,

ej,NRZ [n] =
∆Ts1[n]

Ts

(
v[n] − v[n − 1]

)
(6.4)

=
∆f

2πfm
sin
(
2πfmnTs

)(
v[n] − v[n − 1]

)
(6.5)

If fm � fs/OSR, the timing uncertainty concentrated at a frequency fm can fold back

the out of band noise of v[n] − v[n − 1] into the in-band region. This can be shown to

result in a noise, which is white in nature (Tao et al. (1999)). From the above equation,

the timing uncertainty’s tonal amplitude can be seen to be ∆f/(2πfm). With a DAC

reference of Vref , the probability of the quantizer making a transition (±2Vref ) can be
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denoted by an activity factor, Λ. Thus, the in-band power of the (white) jitter induced

noise is given by

J2
rms,NRZ =

1

2

(
∆f

2πfm

)2

Λ(2Vref)
2 1

OSR
or,

Jrms,NRZ = 2Vref
∆f

πfm

√
Λ

8OSR
(6.6)

With the NRZ design, measurements show that Λ ≈ 0.75. Choosing fm to be 2.5 MHz,

the in-band noise of the modulator was measured as a function of ∆f (with their inputs

set to zero). ∆f was varied upto 25 kHz, which corresponds to a peak-to-peak jitter

of about 0.52 ns. Fig. 6.22 shows the measured in-band noise (denoted by the circles)

along with the expected values as computed from eq. 6.6.
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Figure 6.22: Measured jitter performance of the NRZ and SCR modulators, with an FM
modulated sinewave clock source. The upper and lower curves in gray are
calculations using eq. 6.7 and 6.12 respectively.
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The reason for deviation of the measured noise from the expected jitter noise can

be pointed out to the jitter of the clock source used for this experiment. Along with

the thermal noise of the modulator, this explains the measured 116 µV RMS noise even

when ∆f = 0. This is several times higher than the noise seen with the (clean) square

wave clock source, used for all the measurements reported previously.

However, when Ĵrms,NRZ defined by

Ĵrms,NRZ =
√

J2
rms,NRZ + (116 µV)2 (6.7)

is plotted as a function of ∆f (upper gray curve in Fig. 6.22), we can see that there is

excellent matching between prediction and measurement. This makes sense because

the thermal noise of the modulator, noise due to the intrinsic jitter of the clock source

and that due to the FM tone are uncorrelated.

The jitter performance of an SCR modulator is expected to be better, when com-

pared to an NRZ modulator. This is due to the fact that the current at the end of the

clock phase φ1 (denoted as I1) in an SCR DAC will be smaller than the current of an

NRZ DAC (INRZ). In the presence of an FM modulated clock (with timing errors in

the clock edges given by eq. 6.2 and 6.3), the input-referred jitter noise sequence with

an SCR DAC can be expressed as

ej,SCR[n] =

(
∆Ts1[n]

Ts
−

∆Ts2[n]

Ts

)
v[n]

I1

INRZ
(6.8)

=
∆f

2πfm

[
sin
(
2πfmnTs

)
− sin

(
2πfm(n + 0.5)Ts

)]
v[n]

I1

INRZ

(6.9)

=
∆f

2πfm

[(
1 − cos(πfmTs)

)
sin
(
2πfmnTs

)

− sin(πfmTs) cos
(
2πfmnTs

)]
v[n]

I1

INRZ
(6.10)
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Similar to the case with the NRZ DAC, this results in a white noise if fm � fs/OSR.

With the tonal amplitude of the timing uncertainty being given by |1 − cos(πfmTs) −

j sin(πfmTs)|, the RMS in-band noise with an SCR DAC can be approximately shown

to be

Jrms,SCR ≈ βVref
∆f

πfm

I1

INRZ

√
1

8OSR
, (fm � fs/OSR) (6.11)

where β = |1−cos(πfmTs)−j sin(πfmTs)|. The measured in-band noise with jitter for

the case of the SCR modulator is plotted by squares in Fig. 6.22. It can be seen that the

noise is significantly smaller than that in the NRZ case, indicating superior performance

of the SCR modulator when there is clock jitter. When

Ĵrms,SCR =
√

J2
rms,SCR + (53 µV)2 (6.12)

is plotted as a function of ∆f , there is a disagreement between predictions and mea-

surements for values around ∆f = 20 kHz. A possible reason for this is the deviation of

I1 from the value predicted in simulation (1.5 µA), due to RC time constant variations.

Table 6.3: Summary of measured performance of the NRZ and SCR modulators.

NRZ Modulator SCR Modulator
Signal Bandwidth/Clock Rate 24 kHz / 6.144 MHz 24 kHz / 6.144 MHz
Quantizer Range 3.6 Vpp,diff 3.6 Vpp,diff

Input Swing for peak SNR -1.6 dBFS -2 dBFS
Dynamic Range/SNR/SNDR 92.5 dB/91 dB/88 dB 91.5 dB/90.3 dB/89.1 dB
Active Area 0.24 mm2 0.26 mm2

Process/Supply Voltage 0.18 µm CMOS/1.8 V 0.18 µm CMOS/1.8 V
Power Dissipation (Modulator
+ References)

110 µW 122 µW

Figure of Merit (SNDR) 112 fJ/level 109 fJ/level
Figure of Merit (Schreier) 175.9 174.4
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A summary of the measured performance of the modulators is given in Table 6.3.

The Figure of Merit (FOM) of the modulators is determined as (Gerfers et al. (2003))

FOMSNDR =
P

2 × fb × 2(SNDR−1.76)/6.02
(6.13)

where P and fb denote the power dissipation and signal bandwidth respectively. Since

the performance is dominated by thermal noise, it is also relevant to compute the FOM

proposed by Schreier (Schreier and Temes (2005b)), which is given by

FOMDR = Dynamic RangedB + 10 log10

(
fb

P

)

Note that FOMDR is a logarithmic measure. The NRZ and SCR based modulators

achieve FOMSNDR of 112 fJ/level and 109 fJ/level and FOMDR of 175.9 and 174.4

respectively. The FOMs are close to that achieved in the multi-bit design reported by

Pavan et al. (2008), but with one-third the active area.

6.6 Comparison with other work

Table 6.4 compares the performance of several delta-sigma modulators presented

in the literature with the designs implemented in this research. Power efficiency of

the designs can be compared using the FOM provided. The modulators reported by

Kim et al. (2008), Roh et al. (2008), Chae and Han (2009), Park et al. (2009) and

Yao et al. (2004) are discrete-time designs. The designs of Gerfers et al. (2003) and

Ortmanns et al. (2005) use single-bit multiple feedback continuous-time architecture

and achieve SNDRs of 70 and 65 dB respectively. The latter uses an SCR feedback

DAC. It appears that the linearity of these modulators is limited by the first integrator.
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The ADC presented by Nguyen et al. (2005) employs a four-bit quantizer in the loop

and has a hybrid continuous-time and switched-capacitor loop filter. Apart from the

modulator, the chip also includes RC time constant tuning loops and a “clock clean-up”

loop that makes the performance insensitive to clock jitter. Dorrer et al. (2006) presents

a design in a 65 nm CMOS process. It employs a “tracking ADC” to reduce the number

of comparators in the 4-bit quantizer. Due to the high OSR, the power efficiency is low.

The modulator reported by van der Zwan and Dijkmans (1996) employs a single-bit

modulator and is intended for voice applications. Pun et al. (2007) have shown a single-

bit design in a 0.5 V supply, yielding 74 dB SNDR. The performance of the modulator is

limited due to single-bit operation and the linearity of the first integrator. The multi-bit

continuous-time design reported by Pavan et al. (2008) consumes a power of 121 µW

(including reference buffers) and achieves a FOM of 65 fJ/level.

It can be seen that the NRZ modulator described in this chapter achieves a FOM

which is better than that of the single-bit CTDSMs reported earlier. Further, it achieves

an efficiency that approaches that of the modulator of Pavan et al. (2008)8. The SCR

DAC based modulator is also power efficient and achieves very low distortion, because

of the use of the assisted opamp technique.

8which uses a 4-bit quantizer and occupies thrice the area
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Table 6.4: Comparison with other Delta-Sigma modulators

Reference B/W
(kHz)/
OSR

Type
(DT/
CT)

DR/SNR/
SNDR (dB)

Power
(µW)

Tech.
(µm)

Supply
(V)

FOMSNDR

(pJ/level)
FOMDR

(dB)

Kim et al.
(2008)

24/128 DT 92/91/89 1500 0.13 0.9 1.36 164

Yao et al.
(2004)

20/100 DT 88/85/81 140 0.09 1 0.38 169.5

Roh et al.
(2008)

20/50 DT 83/82.2/73.1 60 0.13 0.9 0.406 168.2

Chae
and Han
(2009)

20/100 DT 85/84/81 36 0.18 0.7 0.098 172.4

Park et al.
(2009)

25/100 DT 100/100/95 870 0.18 0.7 0.38 174.6

Gerfers
et al.
(2003)

25/48 CT 80/73/70 135 0.5 1.5 1.04 162.7

Ortmanns
et al.
(2005)

25/48 CT 81/66/66 250 0.5 1.5 3.07 161

Nguyen
et al.
(2005)

20/128 CT 106/106/98 18000 0.35 3.3 6.93 166.5

Dorrer
et al.
(2006)

20/300 CT 95/77/ 74 2200 0.065 1.2 13.43 164.6

van der
Zwan
(1996)

3.4/64 CT 80/–/70 210 0.5 2.2 11.95 152.1

Pun et al.
(2007)

25/64 CT 74/74/74 300 0.18 0.5 1.46 153.2

Pavan
et al.
(2008)

24/64 CT 93.5/92.5/90.8 121 0.18 1.8 0.089 176.5

This work
(NRZ)

24/128 CT 92.5/91/88 110 0.18 1.8 0.112 175.9

This work
(SCR)

24/128 CT 91.5/90.3/89.1 122 0.18 1.8 0.109 174.4
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CHAPTER 7

CONCLUSION

In this research, the issue of integrator nonlinearity in continuous-time delta-sigma

modulators has been investigated. Several areas which had not been attended to in the

past, have been studied. The contributions and observations borne out of this research

can be summarized as below.

7.1 Summary of the contributions and observations

The performance of multi-bit CTDSMs is observed to degrade due to integrator

nonlinearity through an increase in the in-band noise floor. In order to analyze such

performance degradations, suitable models were developed for nonlinear integrators

that are employed as the first integrator of a CTDSM. Nonlinearity in the active-RC

integrators (which are closed loop systems) was analyzed by using Bussgang’s method

of current injection. With the input to the integrator being a sampled and held version

of the shaped quantization noise, two-stage active-RC integrators were analyzed using

a simple, intuitive approach. From these models, it was inferred that active-RC inte-

grators built with feedforward compensated opamps are the most linear among various

integrator topologies.

Using these models in a multi-bit modulator with CIFF loop filter, the effect of in-

tegrator nonlinearity was perceived as introducing an additional noise sequence at the

input of a linear modulator. This noise sequence was shown to be a nonlinear function



of the shaped quantization noise. With the assumption of Gaussian distribution for the

shaped quantization noise, analytical expression were thus derived, quantifying the in-

crease in the in-band noise of multi-bit modulators. These expressions clearly bring out

the influence of various parameters like the NTF of the modulator (OBG), the number

of quantizer levels and the nonlinearity of the integrator (β), on the performance of a

multi-bit CTDSM.

When the analysis was extended to modulators employing RZ feedback DACs, sev-

eral useful observations were obtained. With an RZ DAC, the in-band noise due to

integrator nonlinearity is 12 dB higher than that observed with an NRZ DAC. This can

be attributed to the fact that the height of the RZ pulse is twice that of an equivalent

NRZ pulse. Further, with an RZ DAC, the in-band noise was found to increase as a

function of the input signal amplitude, thus leading to even higher degradations in the

modulator performance.

Results from macromodel simulations with various integrator topologies and differ-

ent number of quantizer levels proved the accuracy of the derived models. However,

with active-RC integrators having feedforward compensated opamps, the in-band noise

was shown to be under-estimated using the analytical expressions. This was because the

initial transients at the virtual ground node were neglected while deriving the nonlinear

models for such integrators. This was duly addressed by modeling the initial transients

with equivalent sampled and held components. This resulted in expressions for the

in-band noise due to integrator nonlinearity, which can be quickly computed through

numerical calculations using tools like MATLAB.
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The analysis of integrator nonlinearity was also extended to study the harmonic

distortion observed in single-bit modulators. Similar to the multi-bit modulator, the ini-

tial transients were shown to increase the harmonic distortion in the modulator output.

This was attributed mainly to the interference between consecutive output samples of

the modulator, with an NRZ feedback DAC. Since such interferences do not occur for

modulators employing RZ DAC, the harmonic distortion was shown to be independent

of the initial transients.

Inspite of the better performance with an RZ DAC, it was realized that NRZ archi-

tectures are preferred for their relaxed slew-rate and jitter constraints. The conventional

way of addressing the issue of integrator nonlinearity in NRZ modulators was seen to

increase the power consumed in the first integrator (opamp) in trying to improve the

bandwidth and linearity of the opamp. The motivation to find an alternate power ef-

ficient solution directed us to the ‘assisted opamp’ technique. This was based on the

intuition that if the opamp is assisted in sourcing/sinking the steps of DAC current, the

swings at all its transconductor inputs can be minimized. By this way, the effect of

nonlinearity of the transconductors can be reduced, thus resulting in a low distortion

modulator performance. More importantly, it was shown that this technique can im-

prove the linearity of the integrator with reduced power consumption and also without

affecting the noise performance.

Finally, the design of audio frequency third order CTDSMs (with NRZ and SCR

feedback DACs) employing the ‘assisted opamp’ technique was discussed. Simula-

tion and experimental results clearly proved the efficacy of this technique in reduc-

ing the power consumption of the first opamp of a single-bit CTDSM. With the help
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of opamp assistance, the NRZ/SCR modulators have achieved a dynamic range of

92.5 dB/91.5 dB while dissipating 110 µW/122 µW from a 1.8 V supply. The power

efficiency achieved by the modulators was shown to be comparable to the best multi-bit

modulators reported with similar specifications.

In short, an attempt has been made in this research to answer several unanswered

questions related to the effects of integrator nonlinearity in CTDSMs. The proposed

analytical models quantifying these effects can aid the design of low power, high reso-

lution CTDSMs. Further, the proposed assisted opamp technique can help in reducing

the power consumption of the loop filter. However, it should be mentioned that there

is still a lot of scope for investigation in this interesting and important topic of inte-

grator nonlinearity. The need for investigation can first be pointed out to the following

limitations of the analysis carried out in this research.

• In case of multi-bit modulators, numerical computations are required with the
proposed model to accurately quantify the effect of initial transients. Though the
numerical method can quickly estimate the modulator performance, they provide
comparatively lesser intuition than analytical expressions. While some useful
insights were obtained with an approximate analytical expression in this work,
further insights on the effect of initial transients can be achieved, if one can arrive
at an accurate analytical expression.

• Similarly, in case of single-bit modulators with NRZ feedback DAC, the dis-
tortion performance is observed to be dependent on the input signal amplitude
(through the factor γin) due to the presence of initial transients. In essence, mix-
ing of the modulator output samples with its delayed version was shown as the
cause for such a dependency. With little intuition on the magnitude of the second
harmonic generated through the mixing, ideal modulator simulations were used
in this research to compute γin. It would be useful and interesting to determine
the influence of the input signal amplitude and/or the NTF of the modulator on
this factor.

In addition, the analysis carried out in this research can be extended to several other

architectures as explained below.
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7.2 Suggestions for future work

A.) Effect of nonlinearity in subsequent integrators of a CIFB loop filter : The ef-

fect of first integrator’s nonlinearity in a CIFB loop filter can be analyzed in the same

manner as in a CIFF loop filter. While the nonlinearity of the subsequent integrators are

not critical in a CIFF loop filter, it may not be the case in a CIFB architecture (Leuciuc

(2001)). Therefore, there arises a need to analyze the effect of nonlinearity in these

integrators in a CIFB loop filter. The same approach as discussed for the first integrator

can be adopted for the analysis. However, a notable difference in these cases lies in the

nature of the input to the integrators. Unlike the first integrator, the input to the other

integrators is not only a sampled and held version of the shaped quantization noise.

The input also includes filtered versions of this noise. This complicates the computa-

tions involved and hence, is a challenging task to quantify the effect of nonlinearity in

subsequent integrators.

B.) Effect of nonlinearity in modulators with SCR feedback DAC : An even more

challenging task is to analyze the effect of integrator nonlinearity in modulators em-

ploying SCR feedback DAC. This is because the exponential decaying current from the

SCR DAC complicates the analysis unlike the NRZ/RZ case, where the output of the

DAC is constant in a given clock period.

C.) Effect of timing skews when opamp assistance is employed in high-speed modu-

lators: The technique of opamp assistance can be suitably applied for higher modulator

speeds as well. However, the timing skew between the assistant and the feedback DAC

current becomes increasingly crucial as the modulator speed is increased. This can be

modeled as an error current injected at the opamp output, containing mostly of high fre-

176



quency components. This can lead to excursions at the virtual ground node and thereby

distortion due to the opamp nonlinearity. Quantitative estimation of the modulator per-

formance in such cases is highly dependent on the specifics of the opamp, in particular

on its dynamics. It is an interesting area to study and to characterize the performance

degradations observed with various opamp topologies.

In summary, several avenues are open to extend the approaches and results devel-

oped in this research and to quantify the effect of integrator nonlinearity in varied ar-

chitectures of continuous-time delta-sigma modulators.

177



APPENDIX A

Analysis of nonlinear systems using Bussgang’s method
of current injection

Nonlinear differential equations are often encountered during circuit analysis due to the

presence of nonlinear elements in the network. The Volterra series approach can be em-

ployed to obtain the circuit solutions in such cases. Using this approach, Bussgang et al.

(1974) has provided a technique for solving circuits with weak nonlinearity. The tech-

nique recursively solves the linear equations of the network to obtain an approximate

solution.

The steps involved in this method can be described with a help of a weakly nonlinear

single-stage active-RC integrator as shown in Fig. A.1.

vdVin R

C1/gm

iout = f(vd)

Figure A.1: A nonlinear active-RC integrator.

The transconductor is assumed to be weakly nonlinear1 with

iout = f(vd) (A.1)

= g1vd + g2v
2
d + g3v

3
d + · · · (A.2)

1With weak nonlinearity, it can be assumed that g1vd � g2v
2

d + g3v
3

d + · · · .



Writing the nodal equation at the input of the transconductor,

Vin − vd

R
= iout = f(vd) or, (A.3)

Vin

R
=

vd

R
+ f(vd) (A.4)

With a linear integrator, the above equation would have reduced to

Vin

R
=

(1 + g1R)vd

R
(A.5)

The nonlinear equation given in eq. A.4 can be solved using Bussgang’s method of cur-

rent injection, by iteratively solving the above linear equation in the following manner,

• First, the linear solution from the above equation is determined as vd,1.

vd,1 =
Vin

1 + g1R
(A.6)

• Next, considering the second order nonlinearity, a nonlinear current, iinj2 =
−g2v

2
d,1 is injected at the output of the transconductor as shown in Fig. A.2, with

zero input (Vin = 0).

vd,2R

C1/gm

iinj2 = -g2vd,1
2

Figure A.2: Injection of the nonlinear currentiinj2 to a linear active-RC integrator.

Denoting vd,2 as the solution obtained with this circuit,

vd,2 =
R

1 + g1R
iinj2 =

−g2v
2
d,1R

1 + g1R
(A.7)

=
−g2V

2
inR

(1 + g1R)3
(A.8)
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If one assumes gi = 0 (for i ≥ 3), the solution for vd can be approximated as the
sum of the linear solution (eq.A.6) and the nonlinear solution as obtained above.

vd ≈ vd,1 + vd,2 (A.9)

• With higher order nonlinearities, the above procedure of injecting a nonlinear
current can be repeated to determine the nonlinear part of the solution at vd. In
each step, the injected current is found using the solution obtained for vd in the
previous step.

vd,3R

C1/gm

iinj3

iinj3 = -g2(vd,1+vd,2)
2 - g3(vd,1+vd,2)

3

Figure A.3: Injection of the nonlinear currentiinj3 to a linear active-RC integrator.

For instance, with the third order nonlinearity, the nonlinear current iinj3 =
−g2(vd,1 + vd,2)

2 − g3(vd,1 + vd,2)
3 is injected as shown in Fig. A.3. The solution

thus obtained will be

vd,3 =
−g2R(vd,1 + vd,2)

2

1 + g1R
−

g3R(vd,1 + vd,2)
3

1 + g1R
(A.10)

=
−g2R(v2

d,1 + v2
d,2 + 2vd,1vd,2)

1 + g1R
−

g3R(v3
d,1 + v3

d,2 + 3v2
d,1vd,2 + 3v2

d,2vd,1)

1 + g1R

With weak nonlinearity and g1R � 1, the solution can be approximated to

vd,3 ≈
−g2R(v2

d,1 + 2vd,1vd,2)

1 + g1R
−

g3Rv3
d,1

1 + g1R
(A.11)

Thus, the solution for vd can now be obtained as

vd ≈ vd,1 + vd,3 (A.12)

≈ vd,1 −
g2R(v2

d,1 + 2vd,1vd,2)

1 + g1R
−

g3Rv3
d,1

1 + g1R
(A.13)

The solution can so be easily extended to include higher order nonlinearities, by
following the same procedure in an interative fashion.

It must be noted that with a differential implementation for the active-RC integrator,
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even order nonlinearities do not exist. Therefore, the above procedure can be suit-

ably simplified to include only the odd order nonlinearities. Though the procedure was

discussed for a nonlinear single-stage active-RC integrator, it can be extended to any

weakly nonlinear network. In essence, the key to solve a given nonlinear system is to

recursively determine the solution of its linear equivalent, by injecting the necessary

nonlinear currents at each iteration.
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APPENDIX B

Comparison of Miller and feedforward compensated
opamp based active-RC integrators

The choice of opamp architecture in an active-RC integrator can be made based on

several criteria. It was shown in Chapter 2 that the smaller value of cp in a feedfor-

ward opamp results in better linearity than a corresponding integrator built with Miller

opamp. Though an useful observation from a design point of view, it is insufficient to

comment on the power efficiencies of the two architectures. For a proper comparison

of the integrators, an additional design parameter needs to be taken into account. In this

discussion, we intend to compare the linearity (and the power efficiency) achieved with

the two integrator architectures, when designed to have the same phase margin.

B.1 Active-RC integrator with a two-stage Miller compensated opamp

Vo

1/gm2

vd 

C

Cc

c2c1

gm2gm1

R/2Vth

 Vth = (Vin - Vdac)/2

Figure B.1: Active-RC integrator with a two-stage Miller compensated opamp

Consider an active-RC integrator with a two-stage Miller compensated opamp form-

ing the input stage of a CTDSM as shown in Fig. B.1. Stability analysis for the integra-



tor can be performed using the open loop configuration1 as shown in Fig. B.2.

1/gm2

C

Cc

c1

gm2gm1

c2

R
2

Vfb
Vtest

Figure B.2: Open loop configuration of the active-RC integrator with two-stage Miller
compensated opamp

Note that a practical active-RC integrator is designed in a manner such that the parasitic

pole (p2) of the opamp lies much beyond the unity gain bandwidth of the opamp (ωu).

This in turn is designed to be much larger than the unity gain frequency of the integrator

(ωo). With reference to the circuit shown in Fig. B.1, we have

gm2

c1 + c2
�

gm1

Cc
�

2

RC
(B.1)

With the feedback network presenting a resistive load to the opamp for frequencies

greater than 2/(RC), observe that the unity gain frequency of the (open) loop, ωu,loop

will be same as ωu = gm1/Cc. Denoting the parasitic pole of the open loop system by

p2,loop, it is given by

p2,loop =
gm2 + 2/R

c1 + c2

(B.2)

Since the open loop network is predominantly a first order system, whose high fre-

quency parasitic pole (p2,loop) lies much beyond its unity gain frequency (ωu,loop), the
1The capacitance at the virtual ground node of the opamp has been neglected in this analysis. It is

assumed that the virtual ground node capacitance is smaller when compared to the integrating capacitor.
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phase margin of the active-RC integrator can be determined as

PM = 90◦ − tan−1

(
ωu,loop

p2,loop

)
(B.3)

= 90◦ − tan−1

(
gm1(c1 + c2)

(gm2 + 2/R)Cc

)
(B.4)

≈ 90◦ − tan−1

(
gm1(c1 + c2)

gm2Cc

)
, (with gm2 � 2/R ) (B.5)

B.2 Active-RC integrator with a feedforward compensated opamp

C

cp

c1

gm2gm1
c2

gm3

vd Vth
R/2

 Vth = (Vin - Vdac)/2

cp

c1

gm2gm1

c2

gm3

Vtest C

R
2

Vfb

(a)

(b)

Vo

Figure B.3: (a) Active-RC integrator with a feedforward compensated opamp and its
(b) open loop configuration used for stability analysis

Consider an active-RC integrator built with a feedforward compensated opamp as
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shown in Fig. B.3(a). The open loop configuration used for stability analysis is shown

in Fig. B.3(b). Similar to the case of Miller opamp, it can be assumed that the unity gain

frequency of the integrator (ωu) or that of the open loop (ωu,loop) is much higher than

ω0 = 2/(RC). Assuming the feedforward zero frequency (ωz,loop) to occur well before

ωu,loop, the phase margin of the integrator can be expressed as

PM = tan−1

(
ωu,loop

ωz,loop

)
(B.6)

≈ tan−1

(
gm3/c2

gm1gm2/(gm3c1)

)
(B.7)

= tan−1

(
g2

m3c1

gm1gm2c2

)
(B.8)

Equating eq. B.5 and B.8, the condition for both the integrator architectures to have the

same phase margin is,

90◦ − tan−1

(
gm1(c1 + c2)

gm2Cc

)
= tan−1

(
g2

m3c1

gm1gm2c2

)
(B.9)

Using the relation, tan−1(θ) + tan−1(1/θ) = 90◦, we have

g2
m3 = g2

m2

c2Cc

c1(c1 + c2)
(B.10)

Considering the case where c2 � c1,

gm3 ≈ gm2

√
Cc

c1

(B.11)

The above equation indicates that gm3 needs to be higher than gm2 by a factor
√

Cc/c1,

to have the same phase margin as the Miller opamp based integrator. To evaluate this
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for a known implementation, consider the second stage of the feedforward compensated

opamp as shown in Fig. B.4. In this implementation, the feedforward transconductor

shares current with the second stage transconductor, gm2 (Ouzounov et al. (2007)) .

vip vim

vom vop

M1 M2

M4
M3 vom1vop1

Itail

Iext

(vop1, vom1) from first

stage of opamp

Figure B.4: Second stage of a feedforward compensated opamp, showing the imple-
mentation of gm2 and gm3 sharing the same current

Assuming the transistors to behave like square-law devices, a higher transconductance

for gm3 requires an additional current, Iext (∝
√

Cc/c1). The advantage gained by

burning this extra current is the increase in the parameter, k by almost a factor of Cc/cp

(thanks to the compensation scheme). Instead, if this additional current is used to in-

crease gm2 in a Miller opamp, the same phase margin can be maintained by reducing Cc

proportionally (as can be inferred from eq. B.5). However, this can only increase k by a

factor2 of
√

Cc/c1. With the gate-to-source capacitance of the second stage transistors

M3/M4 being always larger than its drain counterpart (cp), the improved linearity gained

(for the same power) with a feedforward opamp based architecture should be apparent .
2Note that to maintain the overdrives of the transistors, M3/M4 will have to be scaled, which can

increase the value of c1. As a result, the improvement factor is actually smaller than
√

Cc/c1.
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While we have considered the case c2 � c1, even in other scenarios, any additional

current required in a feedforward compensated opamp can be shown to be more benefi-

cial in improving the linearity of the integrator. Further, it is well known that the speed

achieved by a feedforward compensated opamp is better than that of a Miller compen-

sated opamp, since gm3 � gm1 (to ensure good phase margins). For the above reasons,

feedforward compensation can be seen as a better choice for implementing two-stage

opamps (especially for active-RC integrators) when compared to using Miller compen-

sation.
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APPENDIX C

Autocorrelation function of Gaussian noise passed
through a weak nonlinearity

We are interested in determining the autocorrelation function of the output (y) of a de-

vice with weak nonlinearity, when it is driven by a zero-mean Gaussian input sequence

x[n] with an autocorrelation function Rxx[n]. The autocorrelation function of y[n] can

be determined in terms of Rxx[n] through the use of Price’s theorem [9]. When ap-

plied to two zero-mean Gaussian random variables x1 and x2 (with a covariance r and

variance σ2) and a function g(x1, x2), this theorem states that

dnE(g(x1, x2))

drn
= E

[
δ2ng(x1, x2)

δnx1δnx2

]
(C.1)

Several nonlinear functions are encountered while analyzing nonlinearity in multi-bit

CTDSMs. We first consider the the case where the nonlinear function is of the form

y = x− βx3. With weak nonlinearity, the input x is such that x � βx3 (as indicated in

Fig. C.1(b)).

y=f(x)

xx yNonlinear
Device y=x-βx3

Input
Range

(a) (b)

Figure C.1: (a) Weakly nonlinear function y = f(x) = x − βx3 (b) Input signal range
relative to the transfer characteristic of the nonlinear function



In this case,

g(x1, x2) = y1y2 = (x1 − βx3
1)(x2 − βx3

2) (C.2)

Using n = 2 in eq. C.1 and integrating the result twice, we obtain

E[y1y2] = ryy = 6β2r3 + c1r + c2 (C.3)

where c1 and c2 are constants of integration. Clearly, c2 = 0. c1 is obtained by putting

x1 = x2 in the above equation and can be shown to be equal to 1 − 6βσ2 + 9β2σ4. For

weak nonlinearity βσ2 � 1, which results in

Ryy[n] ≈ Rxx[n] + 6β2R3
xx[n] (C.4)

If the nonlinear function is defined as y = βx2, the function g(x1, x2) is given by

g(x1, x2) = y1y2 = (βx2
1)(βx2

2) (C.5)

The autocorrelation function of y[n] can be determined by using the above function in

eq. C.1 and having n = 1. Upon integration, we obtain

ryy = 2β2r2 + c1 (C.6)

With E[y2] = β2E[x4] = 3β2σ4, the constant of integration (c1) can be determined

and thus

Ryy[n] = 2β2R2
xx[n] + β2σ4 (C.7)
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With the constant term indicating the squared mean of the random sequence, (E[y])2

the spectral density (Syy(ω)) can be determined as the Fourier transform of

Ryy[n] ≈ 2β2R2
xx[n] (C.8)
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APPENDIX D

Low frequency equivalence of time-varying random
signals with sampled and held waveforms

Consider a train of impulses scaled by the random sequences, x1[n] and x2[n] being

applied as the input of two filters with impulse responses h1(t) and h2(t), respectively.

For simplicity, the impulse responses can be assumed to be zero for t > t1 (� Ts). Let

y(t) be the random signal obtained by combining the outputs of the filters. Thus, in a

given clock cycle

y(t) = x1[n]h1(t − nTs) + x2[n]h2(t − nTs) , nTs ≤ t < (n + 1)Ts (D.1)

= y1(t) + y2(t) (D.2)

With Hi(f) (i=1,2) denoting the Fourier transform of respective impulse responses, we

have (Papoulis and Pillai (2002))

Sy1y1
(f) =

1

Ts
|H1(f)|2Sx1x1

(f) (D.3)

=
1

Ts

∣∣∣∣
∫

∞

0

h1(t)e
−j2πft dt

∣∣∣∣
2

Sx1x1
(f) (D.4)

=
1

Ts

∣∣∣∣
∫ t1

0

h1(t)e
−j2πft dt

∣∣∣∣
2

Sx1x1
(f) (D.5)

Similarly,

Sy2y2
(f) =

1

Ts

∣∣∣∣
∫ t1

0

h2(t)e
−j2πft dt

∣∣∣∣
2

Sx2x2
(f) (D.6)

Sy1y2
(f) =

1

Ts

(∫ t1

0

h1(t)e
−j2πft dt

∫ t1

0

h2(t)e
j2πft dt

)
Sx1x2

(f) (D.7)



The PSD of the random signal, y(t) can thus be determined as

Syy(f) = Sy1y1
(f) + Sy2y2

(f) + 2Re(Sy1y2
(f)) (D.8)

The PSD at low frequencies (f � fs) can be approximated to

Syy(f) ≈
1

Ts

∣∣∣∣
∫ t1

0

h1(t) dt

∣∣∣∣
2

Sx1x1
(f) +

1

Ts

∣∣∣∣
∫ t1

0

h2(t) dt

∣∣∣∣
2

Sx2x2
(f)

+
2

Ts
Re
(∫ t1

0

h1(t) dt

∫ t1

0

h2(t) dtSx1x2
(f)
)

, (for f � fs)(D.9)

Consider a sequence, p[n] to be sampled and held (for one clock cycle) to generate the

signal, m(t). The PSD of m(t) is given as

Smm(f) =
1

Ts
|Ts sinc(fTs)|

2Spp(f) (D.10)

From eq. D.9, the low frequency content of m(t) will be same as that of y(t), if

Spp(f) =
Syy(f)

Ts

, (for f � fs) (D.11)

Defining,

a1 =
1

Ts

∫ t1

0

h1(t) dt (D.12)

a2 =
1

Ts

∫ t1

0

h2(t) dt (D.13)

The desired sequence p[n] can be expressed as

p[n] = a1x1[n] + a2x2[n] (D.14)

satisfying the relation in eq. D.11.
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APPENDIX E

A comparison of resistive and current-steering DAC
topologies

The NRZ feedback DAC of a CTDSM can be implemented using a resistive or current-

steering topology. Fig. E.1(a) and (b) illustrate the implementations for the case of a

single-bit CTDSM. The two choices of implementation can be compared on the basis

of their noise contribution, speed and area as follows.

(a)

−

+

C1

Vin(t) R1

R1

(b)

−

+

C1

Vin (t) R1

-Vout(t)

idac

-Vout(t)

Vref

-Vref

Figure E.1: Input stage of a single-bit CTDSM with (a) resistive DAC (b) current-
steering DAC

E.1 Noise

A. Resistive DAC : The noise contributed by the input and the feedback DAC resistor

are critical to the performance of a CTDSM. In addition, with a CIFF loop filter, the

noise from the first opamp can significantly degrade the performance of the modulator.

The contribution of these noise sources to the output noise of the modulator can be



determined by modeling the sources as shown in Fig. E.2(a). The noise source, vn1

denotes the voltage noise of the input resistor, while vn2 represents the noise of the

feedback resistor. vn3 is the input-referred noise voltage source of the opamp. Observe

that the noise component of the opamp can be equivalently represented in the input and

the feedback arms as shown in Fig. E.2(b).

−

+

C1

R1vn1

vn2 R1 -Vout

vn3
−

+

C1

R1vn1

R1 -Vout

vn3

-vn3 vn2

(a) (b)

Figure E.2: (a) Input stage of a CTDSM showing the critical noise sources and (b) the
equivalent representation of the opamp noise.

By virtue of source transformation, the voltage noise sources can be perceived as current

noise sources as illustrated in Fig. E.3(a). Upon simplification, the contribution of these

sources can be modeled with an equivalent current noise source (in,eq) injecting at the

virtual ground node of the opamp as shown in Fig. E.3(b). The equivalent current noise

−

+

C1

R1 -Vout

(vn2 - vn3)

(a)

R1
−

+

R1 -Vout

(b)

R1

C1

in,eq = 

R1

(vn1 +vn3)

R1

(vn1 +2vn3 - vn2)

R1

Figure E.3: (a) Representation of the voltage noise sources in the input stage of a
CTDSM with current noise sources and (b) the equivalent current noise
source (in,eq) representing the contribution of the noise sources.
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source is given by

in,eq =
vn1 + 2vn3 − vn2

R1
(E.1)

Denoting the power spectral density of the respective noise sources as Sv1(f), Sv2(f)

and Sv3(f), the output noise spectral density of the modulator (SV out(f)) can be ex-

pressed in terms of the PSD of in,eq (Si,eq(f)) as

SV out(f) = Si,eq(f)R2
1 (E.2)

= Sv1(f) + 4Sv3(f) + Sv2(f) (E.3)

where the three noise sources are assumed to be uncorrelated. Since the input and the

feedback resistors are of the same value, Sv2(f) = Sv1(f) and hence,

SV out(f) = 2Sv1(f) + 4Sv3(f) (E.4)
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(vn1 +vn3 )
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in,eq = - indac 

-Vout

1/R1

Figure E.4: (a) Input stage of a CTDSM having a current-steering DAC along with the
critical noise sources and (b) the equivalent current noise source (in,eq) rep-
resenting the contribution of all the noise sources.

B. Current-steering DAC : The input stage of a CTDSM with a current steering DAC

can be represented with its noise sources as shown in Fig. E.4(a). The current-steering
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DAC has been modeled by a transconductor (1/R1) along with a current noise source,

indac. Let Sidac(f) denote the spectral density of this current noise. It is composed

of thermal and flicker noise components of the transistor which functions as the cur-

rent source. Similar to the discussion with the resistive DAC, the contribution of the

noise sources can be equivalently represented by a current source in,eq, as shown in

Fig. E.4(b). The noise spectral density at the modulator output is thus given by

SV out(f) = Si,eq(f)R2
1 (E.5)

= Sv1(f) + Sv3(f) + Sidac(f)R2
1 (E.6)

Several conclusions can be drawn by comparing eq. E.4 and E.6. Firstly, when com-

pared to the resistive implementation, the effect of the opamp noise is smaller with

the current-steering implementation. However, unlike the resistive implementation, the

current-steering DAC injects flicker noise at the modulator output1. In addition, as will

be explained below, the thermal noise contribution of the current-steering DAC can be

higher than that of an equivalent resistive DAC.

In a current-steering DAC, the thermal noise spectral density of the transistor acting

as the current source (with transconductance, gm) is (8/3)kTgm. Assuming a square-

law model for the transistor, we have

Sidac(f)
∣∣∣
thermal

=
8kT

3

(
2idac

Vd,sat

)
(E.7)

where idac denotes the DAC current and Vd,sat is the drain saturation voltage of the
1Flicker noise can be critical for low bandwidth modulators like an audio modulator, requiring larger

lengths for the transistors (used as the current source).
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transistor. With a DAC reference voltage of Vref , the DAC current is given as

idac =
Vref

R1
(E.8)

Thus, we have

Sidac(f)
∣∣∣
thermal

=
8kT

3

(
2Vref

Vd,satR1

)
(E.9)

In an equivalent resistive DAC, the current noise spectral density of the DAC resistor is

SiRdac(f) =
4kT

R1
(E.10)

Comparing eq. E.9 and E.10, the thermal noise contribution from a current-steering

DAC will be same as that of a resistive DAC only if

Vd,sat =
4

3
Vref (E.11)

Since Vref can be as high as half the supply voltage, a significantly large Vd,sat is re-

quired to satisfy the above condition.

In summary, though the noise contribution from the opamp is smaller with a current-

steering DAC, the intrinsic noise contribution of the DAC is observed to be larger.

Therefore, depending on the significance of the opamp noise, a current-steering im-

plementation for the NRZ feedback DAC can be advantageous or otherwise. While the

above analysis has been carried out for a single-bit modulator, this observation holds

good for multi-bit modulators too.
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E.2 Speed and Area

CTDSMs with multi-bit quantizers usually employ flash architecture to implement

the internal ADC. Further, the thermometer coded output of the ADC is directly fed to

the feedback DAC to utilize the advantages of thermometer coding2.

NRVref

-Vref

Vref

-Vref

Vref

-Vref

Vref

-Vref

NR

NR

NR

idac,lsb

DAC
N-1

D0,1,..,N-1 vd

vd vd

D0

D1

DN-1

DN-2

D0

D1

DN-2

DN-1

Figure E.5: N-bit feedback DAC - resistive and current-steering implementation

Fig. E.5 depicts the conventional way of implementing a N-bit DAC (resistive and

current-steering) that accepts the N-1 bit thermometer coded output (D0,1,··· ,N ) of a

flash ADC. While the resistive implementation has an unit resistor of value NR, the unit

current steering element sources/sinks a current, idac,lsb = Vref/(NR). In such cases, a

current-steering implementation can be preferred over a resistive DAC because
2And also to avoid an additional block for conversion from thermometer to binary code and thereby

reduce excess loop delay.
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• The area consumed by an unit transistor can often be smaller than the unit resistor
(NR).

• A more serious issue would be the delay in the current provided by the resistors,
owing to their distributed capacitance (which is proportional to the value of the
resistor). This can increase the excess loop delay of the modulator and can cause
stability problems.

It can be seen that the value of the unit resistor (NR) decreases as the number of

quantizer levels are reduced. Hence, the issue of excess loop delay and area can be of

lesser concern with smaller number of quantizer levels. Also, if the delay through the

resistors is not critical for the given speed of the modulator, a resistive DAC can be a

good choice, owing to its low excess noise.

199



APPENDIX F

Slewing and nonlinearity issues in a multi-bit CTDSM
with an RZ feedback DAC

A critical issue of employing RZ feedback DACs in a multi-bit CTDSM is the increased

slew-rate and linearity requirement. Fig. F.1 shows the input to the loop filter (Vin(t) −

Vdac(t)) observed for a 4-bit modulator with NRZ and RZ DAC.
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Figure F.1: Normalized input to the loop filter (Vin(t) − Vdac(t)) observed for a 4-bit
modulator with (a) NRZ DAC (b) RZ DAC. The input signal is also shown
for reference in grey

Clearly, the input to the loop filter is higher for the RZ case, with the enhancement



being illustrated by the equations

Vin(t) − Vdac(t) = Vin[n] − Vout[n] − (Vout[n]), nTs ≤ t < (n + 0.5)Ts

= Vin[n] − Vout[n] + (Vout[n]), (n + 0.5)Ts ≤ t < (n + 1)Ts

As indicated in the above equations, the input to the loop filter can go as high as the

applied input signal. This is in contrast to a much smaller loop filter input1 observed

with an NRZ DAC. It is well-known that the slew-rate requirements on the first inte-

grator is determined by the peak value of the loop filter input. Thus, with a higher

Vin(t) − Vdac(t), RZ DACs can be seen to significantly increase such requirements

when compared to an NRZ implementation.

Apart from this drawback, note that ‘weak’ nonlinearity is assumed while quan-

tifying the performance degradation due to integrator nonlinearity. In particular, it is

implied that the given transconductor operates such that gmvd � g3v
3
d. It can be seen

that the peak swing at the virtual ground node is determined by the initial transients,

which are in-turn determined by the jumps in the loop filter input. Since the jumps

with an RZ DAC can go as high as twice the peak output of the modulator (2Vout[n]),

the transconductor can be pushed into regions of strong nonlinearity. In such cases,

the in-band noise can be worse than predicted by the analysis, as shown through the

simulation results in Chapter 2.

1typically 2 or at the maximum 3 LSBs (for modulators with higher OBGs)

201



APPENDIX G

Analysis of nonlinearity of the second stage
transconductor in two-stage active-RC integrators

The effect of integrator nonlinearity on the performance of multi-bit CTDSMs with two-

stage active-RC integrators was analyzed in Chapters 2 and 3. The analysis assumed

a linear second stage transconductor (gm2) for both Miller compensated opamps and

feedforward compensated opamps. The assumption is acceptable due to the fact that

the nonlinear effects of the second stage transconductor get reduced by the first stage

gain. In case of the feedforward opamp based active-RC integrators, it is seen that the

effect of the input transconductor’s nonlinearity is reduced manifold because of a higher

value of k ≈ C/cp. In certain situations, it might therefore turn out that the effect of

second stage transconductor’s nonlinearity is significant when compared to that of the

first stage. The following discussion is intended to quantify the effect of nonlinearity in

the second stage transconductor and to investigate the possibility of scenarios where it

can be critical.

G.1 Modeling of second stage nonlinearity in active-RC integrators with feedfor-

ward compensated opamp

The input stage of a CTDSM having an active-RC integrator with a feedforward

compensated opamp is shown in Fig. G.1. Let the second transconductor be assumed to

be weakly nonlinear with i2 = gm2v1 − g32v
3
1 . The nonlinear integrator can be modeled

with a nonlinear function and a linear integrator by adopting the familiar Bussgang’s



method of current injection.

C

cp

c1

gm2gm1
r1 c2

r2

gm3

vd Vth

R/2

 Vth = (Vin - Vdac)/2

0 Ts

0 Ts

v1 Vo

0 Ts

0 Ts

iC

ic2ir2ic1ir1

icp

i2
0 Ts

Figure G.1: Circuit of the first integrator of a CTDSM with feedforward compensated
opamp. The responses (currents) at each node given a step input have been
shown neglecting the initial transients.

As the first task, the linear response at the input of the second transconductor, v1,lin(t)

needs to be determined. Assuming the integrator input Vin(t) − Vdac(t) to be a series

of step-like signals, the knowledge of the step response at v1 can be used to determine

v1,lin(t). To simplify the analysis, the following can be assumed

(a) The initial transients generated at v1 in response to a step input are negligible.

(b) The opamp’s output resistances r1 and r2 are high.

Using these assumptions, the step response at v1 can be considered to be similar to a

step signal. With a large value for r2, the linearly increasing component at v1 (as shown

in Fig. G.1) can be neglected. Thus we have

v1,lin ≈
(iC + icp − ic2)

gm2
(G.1)

≈
iC(1 + cp/C + c2/C)

gm2

=
iC

k1gm2

(G.2)

where, k1 =
C

C + cp + c2
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Since iC ≈ kgm1vd,lin,

v1,lin ≈
kgm1

k1gm2
vd,lin (G.3)

The injected response at the virtual ground node vd,inj can now be found by injecting

iinj,2 = g32v
3
1,lin at the output of the integrator. Note that this is similar to the current in-

jected while modeling the nonlinearity of the feedforward transconductor. As discussed

in Chapter 3 (Section 3.1), the step-like injected current can be referred back to the first

stage output through the factor gm2r1. Denoting this current by i′inj,2, we have

i′inj,2 =
iinj,2

gm2r1
=

g32v
3
1,lin

gm2r1
(G.4)

=

(
k3g3

m1

k3
1g

3
m2

)
g32v

3
d,lin

gm2r1

(G.5)

The knowledge of the injected current can be utilized to find the injected response and

thereby determine the equivalent nonlinear function, f(x). It was shown (in Chapter 2)

that the injected current of a nonlinear input transconductor (iinj,1 = g31v
3
d,lin) results

in the nonlinear function,

f(x) = x −
2g31

gm1(2 + kgm1R)3
x3 (G.6)

With an injected current as in eq. G.5, the nonlinear function can thus be obtained as

f(x) = x −

(
k3g3

m1

k3
1g

3
m2

)
2g32/(gm2r1)

gm1(2 + kgm1R)3
x3 (G.7)

≈ x −
2g32

(gm1gm2r1)g
3
m2R

3
x3 , for kgm1R � 2 and k1 ≈ 1 (G.8)
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The performance of the multi-bit CTDSM in the presence of nonlinearity in the second

stage transconductor can thus be determined using this nonlinear function. However,

it should be noted that the initial transients and finite output resistances have been ne-

glected in the above analysis. Fig. G.2 compares the PSDs of v3
1,lin obtained with and

without considering the initial transients. Unlike the case of the virtual ground node ex-

cursions, it can be seen that there is only a marginal difference between the two spectra.

This can be attributed to the fact that a significant part of the response at v1 is deter-

mined by the step-like response expressed as iC/gm2. Further, the effect of finite output

resistance (r2) on the spectrum of v3
1,lin is shown in Fig. G.3, with the PSDs obtained for

two values of r2. Understandably, the spectrum is observed to be higher with a smaller

output resistance, due to the increased current requirements of the transconductor (and

hence higher v1,lin).
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Figure G.2: PSDs of the exact and approximate response, v3
1,lin in the feedforward

opamp based active-RC integrator. gm1 = 27.12 µS, R = 100 kΩ, C =
527 fF, c1 =45 fF, cp =10 fF, gm2 = 100 µS, c2 =250 fF, r1 =20 MΩ, r2 =
1 MΩ.
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Figure G.3: PSDs of the response, v3
1,lin observed for two values of r2 of the feedfor-

ward opamp based active-RC integrator

In essence, the nonlinear function as given in eq. G.7 can be used to determine the

modulator performance, with a marginal error in the estimation expected for cases with

smaller output resistance (r2) in the first opamp.

G.2 Severity of second stage nonlinearity in two-stage active-RC integrators

The severity of the nonlinearity in the second stage transconductor when compared

to that of the input transconductor can be evaluated by comparing the injected current,

i′inj,2 (eq. G.5) with that of the nonlinear input transconductor, iinj,1 = g31v
3
d,lin.

i′inj,2

iinj,1
=

k3g3
m1

k3
1g

3
m2

(
g32

g31

)
1

gm2r1
(G.9)

≈
k3

gm2r1

(
g3

m1

g31

)(
g32

g3
m2

)
, for k1 ≈ 1 (G.10)
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From the above equation, it is clear that the significance of the first stage nonlinearity

decreases with increasing k3. However, with considerable initial transients at the vir-

tual ground node, it was explained in Chapter 3 that the injected current iinj,1 = g31v
3
d,lin

does not reduce in accordance with the increase in k3.
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Figure G.4: Comparison of the PSDs of v3
1,lin and v3

d,lin obtained with the feedforward
opamp based active-RC integrator. The difference in the spectrum of v3

d,lin

observed when the intial transients are neglected is also shown.

Fig. G.4 illustrates this by comparing and contrasting the PSDs observed for v3
1,lin and

v3
d,lin. It can be seen that the PSD of v3

d,lin differs considerably when the initial tran-

sients are neglected, in contrast to that of v3
1,lin. In essence, the severity of the input

stage transconductor’s nonlinearity can be under-predicted by the relation in eq. G.10,

for higher values of k. In most practical cases, it can be seen that the input transcon-

ductor’s (weak) nonlinearity remains as the dominant contributor of the performance

degradation, owing to the effect of the initial transients. For instance, with the feedfor-

ward opamps used as test vehicles in all the previous discussions (in Chapter 2 and 3),
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a nonlinear second stage transconductor is found to have little effect on the modulator

performance.

For more understanding, a particular scenario can be discussed by assuming the

following condition for the input and second stage transconductors. With weak nonlin-

earity in the second stage transconductor, it needs to be ensured that

gm2v1,lin � g32v
3
1,lin or, (G.11)

gm2

g32
� v2

1,lin (G.12)

�
k2g2

m1

g2
m2

v2
d,lin , from eq. G.3 (G.13)

With a weak nonlinear input transconductor implying gm1/g31 � v2
d,lin, if both the

transconductors are assumed to be operated at the edge of their weakly linear regions

(to minimize power consumption), we have

gm2

g32
=

k2g2
m1

g2
m2

gm1

g31
or, (G.14)

g3
m2

g32

= k2g3
m1

g31

(G.15)

Substituting this in eq. G.10,

i′inj,2

iinj,1
≈

k

gm2r1
(G.16)

This indicates that the effect of the worst case nonlinearity of the second stage transcon-

ductor is smaller than that of the input transconductor by the factor k/(gm2r1). In the

example integrator considered in Fig. G.2, k ≈ 49 and gm2r1 = 2000. Even when k is

increased, as discussed previously, the initial transients at vd can make the nonlinearity

of the input transconductor more critical than that of the second stage transconductor.
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APPENDIX H

Anti-alias rejection of CTDSMs with direct path for the
input signal

It is well known twidehat a CIFF implementation of the loop filter results in a Signal

Transfer Function (STF) with peaking, as well as poorer rejection in the alias bands

[(m fs−fb)-(m fs +fb)], when compared to a modulator design with a CIFB loop filter.

A potential issue with the addition of the direct path is the effect on the antialiasing

property of the modulator - and one might be tempted to infer twidehat this attribute of

the modulator is lost. This is not so, as can be seen from the following. If the modulator

input is a tone at a frequency fs + ∆f , the output of the loop filter largely comprises

of the contribution from the direct path (since the integrator unity gain bandwidths are

much smaller than fs). This tone, injected through the direct path, is sampled and

undergoes noise shaping, just like quantization noise. Thus, the tone appears at the

modulator output as a frequency ∆f (due to aliasing), with an amplitude g|NTF (∆f)|,

where g denotes the gain of the direct path. Since |NTF (∆f)| is very small, and the

gain of the direct path is of the order of unity, the alias rejection is good.

It is interesting to determine the loss in the alias rejection incurred with respect to

a CIFF modulator without the direct path. In the discussion twidehat follows, L̂ and L

denote the transfer functions from the DSM input to the quantizer input (Vq(s)/Vin(s)

in Fig. 6.2), for modulators with and without the direct path respectively. From Fig. 6.2,



we see twidehat Lc and L̂ around fs (the sampling rate) can be approximated by

L(j2πf) ≈
1

j2πfC1R1

Rf

Ra
, (no direct path)

L̂(j2πf) ≈
1

j2πfC1R1

Rf

Ra

+
Rf

Rd

, (with direct path)

From the above equations, we see twidehat the direct path increases the gain of the

filter at high frequencies, affecting the alias rejection. Thus, the degradation in the alias

rejection around fs is given by

|
L̂(j2πfs)

L(j2πfs)
| ≈

2πfsC1R1Ra

Rd
(H.1)

For the component values chosen in Fig. 6.2, the STF magnitude (around fs) is in-

creased by 17.4 dB and 14.9 dB in the NRZ DAC and SCR DAC designs respectively.

In spite of this degradation, the alias-rejection is still quite good (about -85 dB at fs) -

thereby justifying the use of the direct path to reduce capacitor area.
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APPENDIX I

Pin details of the audio CTDSM

Fig. I.1 shows the pinout details of the continuous-time audio modulator fabricated in

0.18 µm CMOS technology. While one half of the chip (pins 1-12 and 35-44) belongs

to the NRZ modulator, the other half comprises of the SCR modulator. The functional

details of the pins are given in Table I.1.
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Figure I.1: Pinout details of the audio CTDSM employing NRZ and SCR feedback
DACs



Table I.1: Functionality of pins of audio CTDSM
Pin number Pin Name Functionality
1, 9, 17, gnda Ground
20, 23, 28,
31, 39, & 42
2, 38 V dda nrz Supply voltage for NRZ modulator

(1.8 V nominal)
3, 7 D2 nrz, D1 nrz Control bits for RC bank - NRZ modulator
8 D0 nrz
4 en Enable input for automatic RC tuning
5 CLK in nrz Clock input for NRZ modulator
6 rst Reset input for automatic RC tuning
10 DOUT nrz 1-bit output of NRZ modulator
11 CLK out nrz Clock output of NRZ modulator
12, 34 V dd driver Driver supply voltage (1.8 V nominal)
13 ibias scr Master bias current for SCR modulator

(250 nA nominal)
14 ibias1 scr Bias current adjust for 1st opamp - SCR

modulator
15 V cm scr Common mode voltage for SCR modulator

(0.9 V nominal)
16, 24 V dda scr Supply voltage for SCR modulator

(1.8 V nominal)
18 vrefm scr Reference voltage for SCR modulator (-ve)

(0 V nominal)
19 vrefp scr Reference voltage for SCR modulator (+ve)

(1.8 V nominal)
21, 22 vip scr, vim scr Differential inputs for SCR modulator
25, 29 D2 scr, D1 scr Control bits for RC bank - SCR modulator
30 D0 scr
27 CLK in scr Clock input for SCR modulator
32 DOUT scr 1-bit output of SCR modulator
33 CLK out scr Clock output of SCR modulator
35 ibias nrz Master bias current for NRZ modulator

(250 nA nominal)
36 ibias1 nrz Bias current adjust for 1st opamp - NRZ

modulator
37 V cm nrz Common mode voltage for NRZ modulator

(0.9 V nominal)
40 vrefm nrz Reference voltage for NRZ modulator (-ve)

(0 V nominal)
41 vrefp nrz Reference voltage for NRZ modulator (+ve)

(1.8 V nominal)
43, 44 vip nrz, vim nrz Differential inputs for NRZ modulator
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