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CHAPTER 1

Introduction

1.1 Motivation

Improvements in semiconductor technology have led to drastic increase in the

storage and processing capabilities of digital data. For example, it is not un-

common to see personal computers with multi core 64-bit processors running

at a few GHz, having tens of gigabytes of memory accompanied by terabytes

of storage space. Because of these improvements, it is preferred that most of

the signal processing be done in the digital domain. However, most of the real

world signals such as speech, light (radiation), temparature, pressure, etc. are

analog and mostly non-electrical in nature. Sensors such as microphones, pho-

todiodes, thermocouples, etc. pick up these analog real world signals and con-

vert them into an analog electrical signal (voltage, current, charge, etc.). To

utilize the advantages of digital domain, these analog electrical signals must be

converted into their digital equivalents. This job is carried out by an analog-to-

digital converter (ADC).

1.1.1 SAR based ADCs

Several applications such as test and measurement equipments, high fidelity

audio systems, and data acquisition systems require high resolution ADCs.

Successive approximation register (SAR) based ADC is a commonly chosen

architecture for the implementation of high resolution converters. A block dia-

gram illustrating the architecture is shown in Fig. 1.1. The principle of operation

is briefly explained with the help of a 2-bit example. Initially, the ADC takes up
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Figure 1.1: Block diagram of a SAR based ADC.

some time to sample the input signal. This is the process of acquisition. Af-

ter the signal is acquired, the conversion process starts. In the first conversion

cycle, input signal is compared with Vre f/2. This is the generated at the digital-

to-analog converter (DAC) output by applying a digital input “10” from the

control logic. If the input is greater than Vre f/2, then the most significant bit

(MSB) of the digital code will be set to “1”, else “0”. Without loss of generality,

let us assume that the input signal is greater than Vre f/2. In the next conversion

cycle, the input will be compared with Vre f/2+Vre f/4 (Vre f/4 if the input sig-

nal was lesser than Vre f/2). If the input signal is greater than Vre f/2+ Vre f/4,

then the least significant bit (LSB) is also set to “1”. It is set to “0” otherwise.

The same explanation can be easily extended to higher resolutions.

1.1.2 SAR ADCs with capacitive DAC

Although any architecture can be chosen for the implementation of the DAC

itself, the choice is usually a capacitive DAC (see [1] and [2]) as it provides the

option of inherent track-and-hold of the input signal. With this choice, we can

see that most of the circuitry is passive (DAC and the track-and-hold) or digital
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(control logic and SAR). This also lends itself to low power and low voltage

operation. Fig. 1.2 shows the circuit diagram of a 2-bit SAR based ADC using a

capacitive DAC. The digital circuitry is not shown. The converter operation is

best explained with the help of modes.

Track Mode: During the track mode, switches s1 and s5 are closed. Switches s2,

s3, and s4 are connected to the analog input vin. Therefore, the capacitor array

will provide a total capacitance of 2C to the input and it will get charged to the

analog input voltage vin.

HoldMode: During holdmode, the analog input is first disconnected by opening

switch s1. With this, the capacitor array stores a charge that is proportional to

the input voltage vin. We say that the input signal is held. Next, switch s5 is

opened. After that, the switches s2, s3 and s4 are connected to ground. With

this, the total voltage at the negative input of the comparator will be -vin.

Charge Redistribution Mode: This is also known as bit cycling. During this phase,

the actual conversion takes place. In the first bit cycle, switch s2 is connected

to the reference voltage Vre f . Since switches s3 and s4 are connected to ground,

the reference voltage sees a series combination of capacitors of value C and

C. Hence the total voltage at the negative terminal of the comparator will be

−vin +Vre f/2. If this voltage is negative, it implies that vin is larger than Vre f/2.

In that case, the switch s2 is left as is. Else, it is reconnected to ground. With this,
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the most significant bit of the output code is determined. In the next bit cycle

switch s3 is connected to the reference voltage Vre f . This will result in a voltage

of −vin + Vre f/2 + Vre f/4 at the negative input of the comparator. Based on

whether the comparator output is low or high, switch s3 is either left as is or

reconnected to ground.

1.1.3 Total capacitance of the DAC

It should be noted that to realize a high resolution SAR ADC, the DAC within

the ADC should also be of comparable resolution. To achieve high resolution

in a DAC, it is necessary that all the unit elements within the DAC behave simi-

larly. In the jargon of circuit design, this translates to all the unit elements being

matched to each other. In a capacitive DAC, the unit elements are all capaci-

tors and as per the previous arguement, all of them should be matched. It is

a well-known fact that increasing the area of capacitors increases the matching

between them ([3], [4], and [5]). Increasing the area also increases the capaci-

tance of the unit element. It is because of this reason that the capacitance of the

unit element in a high resolution DACwill normally be larger than the smallest

possible value that can be realized in a given process. This, coupled with the

large number of unit elements (2n for an n-bit DAC) required for a high reso-

lution capacitive DAC makes the total capacitance large. The total capacitance

of the DAC in a high resolution converter can easily reach several tens of pF.

These values are considered large inside an integrated circuit.

1.1.4 Switched-capacitor load

From the above explanation, we can see that a SAR ADC employing capacitive

DAC presents a switched-capacitor load (series combination of a switch and

total capacitance of the DAC) to the input signal source. There is a fundamental
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problem in driving switched-capacitor loads especially when the input signal

is changing. The problem is explained below.

Fig. 1.3 shows an ideal voltage source vs driving a series combination of switch

s1 and a capacitor C. The voltage across the capacitor is vout. For simplicity,

we shall assume that the switch s1 is ideal. i.e., it has zero ON resistance and

infinite OFF resistance. Let us assume that the switch s1 is intially closed. This

makes vout = vs. At time instant t1, let the switch s1 be opened. Now, the output

voltage will stay constant at vs(t1) until the switch closes again. Let us assume

that at instant t2, the switch s1 is closed again. As a result of closing of the

switch, the output voltage will now be vs(t2). Clearly, we can see that at the

time instant t2, there is a sudden change in the voltage across the capacitor

from vs(t1) to vs(t2). To induce a sudden change in the capacitor voltage, an

impulsive current should flow through it. Fig. 1.4 illustrates the phenomenon.

For a given capacitance, higher the value of the step, higher will be the amount

of the charge that should be dumped on it. This implies a larger impulsive

current. Alternatively, for a given step voltage, as the capacitance increases, the

amount of charge that should be dumped on it increases i.e., a larger impulsive

current is required.

If an ideal voltage source is driving such a large capacitor, there wouldn’t be

any problems as the source can easily provide correspondingly larger impul-
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sive currents. However, no real world source is ideal and will have a limit to

the maximum current that they can provide. The sensors, which themselves

may be integrated circuits, will not be designed to provide (or even handle)

such impulsive currents. Hence a separate driver stage which will isolate the

sensor and the ADC is required and the addition of driver should not corrupt

the signal. This makes the design of ADC driver circuitry a challenging exer-

cise.

Traditionally, general purpose opamps are used for such drivers. The use of

general purpose opamps might not be the most power efficient solution just

because it is not optimized for the given application. Also, integration of the

driver along with the ADC will significantly reduce the board complexity and

space. This idea is not new and some commercial parts, which are multi-chip

modules, are available which have integrated drivers. ADS8284 serves as an ex-

ample even though it is presently discontinued. This dissertation will demon-

strate the design and implementation of a driver to be used with an 18-bit ADC.

Although the designed part is a stand alone driver, the author feels that the in-

tegration of the driver along with the ADC should not pose major challenges.

In fact, a better performance can be expected as the effect of unnecessary bond-

wire inductances of the driver as well as the ADC, along with printed circuit

board (PCB) trace inductance will be eliminated completely.
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1.2 State of the art of ADC driver amplifiers

1.2.1 Evolution

It was mentioned earlier that the ADCmanufacturers specify the use of general

purpose opamps for the driver. This section shows the evolution of the ADCs

and more importantly the driver circuits recommended along with it. The evo-

lution of the devices from three manufacturers are studied separately. Common

trends among them are identified. Qualitatively, their advantages and disad-

vantages are also pointed out. Most of the data in this section come from the

datasheets.

The author wishes to bring the following point to the notice of the reader.

Datasheets usually do not mention the choice of the technology for the part

explicitly. In order to make an educated guess, the assumption that a compli-

mentary metal oxide semiconductor (CMOS) part will have an input bias cur-

rent smaller than 1 nA is made. For input bias currents greater then 1 nA, it is

assumed that the technology used is Bipolar (or BiCMOS).

Texas Instruments: ADS8383 (500 kS/s at 110mW) and ADS8381 (580 kS/s at

115mW) were two of the industry’s first 18-bit converters. They were released

in 2002. The datasheet of ADS8383 does not have any details on driving the

input signal. ADS8381 suggests the use of THS4031, a general purpose opamp.

The converters support only single-ended inputs. Therefore a simple nonin-

verting unity gain amplifier configuration is recommended. For doing the bipo-

lar to unipolar conversion, an inverting amplifier configuration with a DC volt-

age applied to the non-inverting input terminal of the opamp is recommended.

ADS8380 (600 kS/s at 115mW) and ADS8382 (600 kS/s at 115mW) were re-

leased next in 2004. These were advanced versions of the previous devices

boasting higher speeds. ADS8382 offered the option of fully-differential in-
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put signals. Datasheets recommend the use of THS4031 as the opamp for the

driver. For ADS8380, non-inverting unity gain amplifier configuration is rec-

ommended as the input is single-ended. A difference amplifier configuration is

recommended for bipolar to unipolar conversion. For ADS8382, for converting

a single-ended signal to differential signal, a combination of inverting and non-

inverting unity gain amplifiers are shown. The non-inverting amplifier gives

a buffered version of the input signal at its output while the inverting ampli-

fier gives an inverted version at its output. With this the single-ended signal is

converted to a fully-differential version with a gain of 2. The important thing

is to note that the input is directly applied to both of the unity gain amplifiers.

For fully-differential inputs, the two arms are separately buffered from non-

inverting unity gain amplifiers.

ADS8481 (1MS/s at 225mW), ADS8482 (1MS/s at 225mW), and ADS8484

(1.25MS/s at 234mW) were released next. ADS8481 supports single-ended

input while ADS8482 supports fully-differential input. THS4031 is the recom-

mended opamp for driver circuitry. Configurations that are recommendedwith

ADS8380 is again recommended with ADS8481. For ADS8482 and ADS8484,

for single-ended to differential conversion, cascade of non-inverting and invert-

ing amplifiers are shown. For fully-differential input, two difference amplifiers

are used with each arm. This has been done to have the option of adding some

common-mode to the input. To add common-mode, a DC voltage is provided

on non-inverting input of the opamp.

THS4031 is a 100MHz , low noise bipolar (input bias current of 3 µA) opamp.

The quiescent current consumption is 7.5mA with a ±5V supply. This corre-

sponds to a power consumption of 75mW. For fully-differential operation, use

of two such opamps is necessary which doubles the power consumed by the

driver circuitry.

Recently, very low power converters were released. They are ADS8881 (1MS/s
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at 5.5mW), ADS8883 (680 kS/s at 4.2mW), ADS8885 (400 kS/s at 2.6mW), and

ADS8887 (100 kS/s at 0.7mW). Datasheets of these devices and related doc-

uments recommend the use of OPA250, OPA320 and THS4521. OPA350 and

OPA320 are single-ended opamps. For fully-differential input, two of these

opamps in non-inverting unity gain amplifier configuration are recommended.

THS4521 is a fully-differential opamp and can handle both single-ended and

fully-differential signals.

OPA320 is a 20MHz CMOS (input bias current of 0.2 pA) single-ended opamp.

The quiescent current consumption is 1.5mA with a 5V supply. This corre-

sponds to a power consumption of 7.5mW.

OPA350 is a 38MHz CMOS (input bias current of 0.5 pA) single-ended opamp.

The quiescent current consumption is 5.2 mA with a 5V supply corresponding

to a total power consumption of 26mW. The THD performance of this device is

not specified in the datasheet.

THS4521 is a 145MHz fully-differential opamp in a bipolar process (input bias

current of 0.9 µA). The quiescent current consumption is only 1.15mA.

Analog Devices: AD7674 (800 kS/s at 98mW), AD7679 (500 kS/s at 76mW), and

AD7678 (100 kS/s at 18mW) represent the earliest converters from the manu-

facturer. AD7641 (2MS/s at 75mW) and AD7643 (1.25MS/s at 65mW) came

next which was a speed upgrade on the previously mentioned parts. AD8021 is

the recommended opamp in all of the datasheets. For single-ended to differen-

tial conversion, the cascade of non-inverting and inverting unity gain amplifiers

is recommended while for fully differenial inputs, two non-inverting unity gain

amplifiers for the two arms is recommended.

AD8021 is a 200MHz single-ended opamp in a bipolar process (input bias cur-

rent of 7.5 µA). The quiescent current consumption is 6.8mA.

Low power converters AD7690 (upto 400 kS/s) and AD7691 (upto 250 kS/s)
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were also released around the same time as AD7643/41. These datasheets rec-

ommend the use of ADA4941 as the driver. ADA4941 is a monolithic single-

ended to differential converter. Several other parts such as ADA4841, AD8655,

AD8021/22, and AD8615 are also specified.

ADA4941 is a 31MHz single-ended to differential converter in a bipolar process

(input bias current of 3 µA). Functional block diagrams of ADA4941 show a

cascade of non-inverting and inverting unity gain amplifiers. The quiescent

current consumption is 2.3mA with a 5V supply.

ADA4841 is an 80MHz single-ended opamp in a bipolar process (input bias

current of 3 µA). It seems that ADA4941 is made out of these opamps as the

input bias current is same as ADA4941 with the total quiescent current con-

sumption being exactly half (1.15mA).

AD8655 is a precision CMOS buffer as mentioned in the datasheet. It has a

28MHz bandwidth. This part consumes 3.7mA quiescent current with 5V sup-

ply.

AD7634 (680 kS/s at 180mW) and AD7631 (250 kS/s at 73mW) were released

later. Datasheets show similar circuits to what was shown in AD7674/78/79.

AD8021/22 was the choice specified. They also specify ADA8922 and AD8610.

ADA8922 is a single-ended to differential converter in a bipolar process (input

bias current is 1.5 µA.) It has a small-signal bandwidth of 38MHz. Quiescent

power consumption is 70mW with a ±5V supply.

AD8610 is a 25MHz JFET input single-ended opamp. It needs a dual supply of

atleast ±5V. It takes a quiescent current of 2.5mA.

The parts that were released next were AD7982 (1MS/s at 7mW), AD7984

(1.33MS/s at 10.5mW), and AD7986 (2MS/s at 15mW). ADA4841 in non-

inverting unity gain amplifier configuration was recommended for the driver

circuitry. Other parts that are recommended are ADA4941, ADA4899, AD8014,
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AD8021/22, and AD8655.

ADA4899 is a 600MHz bipolar (input bias current of 100 nA) single-ended opamp.

The quiescent current consumption is 14.7mA with a 5V supply.

AD8014 is a 400MHz bipolar (input bias current of 10 µA) single-ended opamp.

It takes a quiescent current of 1.15mA at 5V supply. The distortion peformance

at low frequenices is not specified.

AD7608 and AD7609 were next released. These are data acquisition systems in

themselves, which has input drivers built in. AD7608 is a single-ended input

version while AD7609 has facility to handle fully-differential inputs. Functional

block diagrams show the use of fully-differential amplifiers for the driver cir-

cuitry.

Recently, AD7960 (5MS/s at 46mW) was released. ADA4899 is specified with

it for the high frequency operation.

Linear Technology: LT2376 (250 kS/s at 3.4mW), LT2377 (500 kS/s at 6.8mW),

LT2378 (1MS/s at 13.5mW), and LT2379 (1.6MS/s at 18mW ) were the first

set of converters released by the manufacturer. For single-ended input signal,

each of the datasheets recommend the use of LT6350 which is a single-ended to

differential converter. For buffering fully-differential inputs LT6203 is specified.

Two single-ended non-inverting amplifiers for each of the arms is suggested.

LT6350 is a 33MHz single-ended to differential converter in a bipolar process

(input bias current is 1.2 µA). Functional block diagram shows a cascade of non-

inverting and an inverting unity gain amplifier used to achieve the necessary

conversion. The part consumes 24mW power with a 5V supply.

LT6202 is a 100MHz single-ended opamp in a bipolar process (input bias cur-

rent is 1.3 µA). The part consumes 15mW power with a 5V supply.

LT2364 (250 kS/s at 3.4mW), LT2367 (500 kS/s at 6.8mW), LT2368(1MS/s at

11



13.5mW), and LT2369 (1.6MS/s at 18mW) were also released. These are the

single-ended input counterparts of the previously mentioned parts. Each of

the datasheets recommend the use of LT6202. The non-inverting unity gain

amplifier configuration is recommended.

LT2336 (250 kS/s at 28mW), LT2337 (500 kS/s at 35mW), and LT2338 (1MS/s

at 50mW) were released very recently. These devices have internal references

along with reference buffers leading to an increased power consumption. The

datasheets specify the use of LT1469, a single-ended opamp for driver circuitry.

The cascade on noninverting and inverting unity gain amplifiers is specified

for handling single-ended inputs. Two non-inverting unity gain amplifiers are

recommended for differential signal driving.

LT1469 is a dual 90MHz single-ended opamp in bipolar technology (input bias

current is around 10nA). The part consumes a quiescent current of 3.8mA±5V

dual supply. Dual supply is necessary for the best performance.

Along with the previously mentioned converters, LT2328 (1MS/s at 50mW)

was also released. This seems to be a single-ended input version of LT2338.

The datasheet shows the usage of LT1468 as the driver. The non-inverting unity

gain amplifier is the recommended architecture. LT1468 is a single version of

LT1469.

LT2389 (2.5MS/s at 162.5mW)is the latest of the converters. It has internal

reference and reference buffers. LT6201 is specified. LT6201 is 145MHz single-

ended opamp in a bipolar process (input bias current is 10 µA). It consumes a

quiescent current of 15mA with 5V supply.

1.2.2 Common trends

The following trends can be seen from the history presented in the previous

subsection.

12



The earliest converters were relatively slow offering speeds of several hundreds

of kS/s and supported only single-ended inputs. Such converters typically

consumed around a few hundreds of mW. With these converters, high band-

width low noise general purpose opamps were recommended for driver cir-

cuitry. These opamps consumed several tens of mW of power. The power

consumption of the driver circuitry was smaller than the power consumed by

the converter. Popular architectures for driver included the non-inverting unity

gain amplifier for single-ended unipolar input and a difference amplifier for the

bipolar to unipolar conversion.

Converters with similar speed and power numbers that started supporting fully-

differential input came next. For driving such converters, a combination (cas-

cade as well as parallel) of non-inverting and inverting unity gain amplifiers

were recommended for single-ended to differential conversion. For driving

fully-differential input signal, two non-inverting unity gain amplifiers was sug-

gested. Two general purpose opamps were required for the driver circuitry

which increased the power consumption by a factor of 2. However, even with

this increase, the power consumed by the driver circuitry was less or compara-

ble to the power consumed by the converter.

With time, the power consumption of the converters have gradually decreased

along with increased speeds. Converters offering ∼1MS/s speeds at a fewmW

of power are available. With this came the need for reduction in power con-

sumption of the driver circuitry also. Specialized opamps, mostly in bipolar

technology which consume a few mW of power themselves are recommended

for driving. Monolithic single-ended to differential converters employing a cas-

cade of non-inverting and inverting unity gain amplifiers are also available.

These reduce the complexity when compared to the use of two single-ended

opamps explicitly.

To reduce the complexity and cost at the board level, effort is now being put into
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integrating the reference, reference buffers, and the input buffers along with the

converter. Converters with integrated refernces and reference buffers are avail-

able in the market. Several complicated techniques like multi chipmodule were

being used to accomplish this. To further reduce the cost of such integrated con-

verter, it is required that the driver circuitry be in the same technology as that of

the converter. This dissertation investigates the possibility of low noise and dis-

tortion driver amplifiers in CMOS technology with the final aim of integrating

them with the converter.

1.3 Overview of the thesis

Chapter 2 is devoted to the architecture of the input driver. Analysis of several

possible architectures is given, and based on that, the advantages and short-

comings are pointed out.

Based on the analysis shown in Chapter 2, a fully-differential opamp based

driver amplifier is designed in a 0.6µm CMOS process. Chapter 3 deals with

the design, simulation and layout details of the same. The measurement setup

used and the results obtained with prototype chips are presented in Chapter 4.

Chapter 5 deals with a new technique for simulating the per element distortion

contributions in an analog circuit. It includes motivation for the work, working

principle and related theoretical aspects.

Chapter 6 deals with the analysis of the effect that the common-mode feedback

circuitry has on the slew rate in amplifiers. Simulation results corroborating

the analysis are also presented. The dissertation concludes in Chapter 7 with a

discussion on the achieved results and suggestions for future work.
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CHAPTER 2

A Study of Driver Architectures

2.1 Introduction

Circuitry used for driving the input signal to a high resolution ADC will have

to usually meet very stringent requirements such as: low noise and distortion—

should ideally be lower than, or atleast comparable to, the noise and distortion

added by the converter itself (usually, this will amount to a fraction of the LSB),

rail-to-rail signal swing at the input and output—to possibly utilise the entire

range of converter, high drive capability—to drive the large load presented by

the converter, fast response to step like inputs—if they are to be used in time

multiplexed systems. These requirements have to be met with the smallest area

and power dissipation possible. The focus of this chapter is to zero in on the

architectures that are best suited for implementation of a prototype driver that

can meet such requirements.

The chapter is organized as follows. Using the non-inverting amplifier con-

figuration in the driver circuitry leads to problems whenever rail-to-rail signal

swing at the input side has to be supported. Architectures that employ non-

inverting amplifier configuration are first presented in Section 2.2. Section 2.3

presents the details regarding rail-to-rail swing with a brief summary at the

end. Although using architectures employing inverting amplifier configuration

can alleviate the problems associated with rail-to-rail input signal swing, a de-

sign trade off between total noise at the output and gain error (or equivalently,

the input impedance) is encountered. Architectures based on the inverting am-

plifier configuration and the details regarding the trade off are presented in

Sections 2.4 and 2.5 respectively.



2.2 Architectures employing non-inverting amplifier

configuration

Several commonly used architectures (see [6], for instance) that use the non-

inverting amplifier configuration are depicted in Fig. 2.1. The architectures

shown are only those that can carry out single-ended to differential conversion

with a gain of 2. Slight modifications can make the driver suitable to provide

a single-ended output from a single-ended input or a fully-differential output

from a fully-differential input.

2.2.1 Cascade architecture

Fig. 2.1(a) shows the cascade of non-inverting and inverting unity gain ampli-

fiers. Because of the non-inverting unity gain amplifer, the input impedance

seen is high. However, the input referred noise voltage of the opamp in the

non-inverting unity gain amplifier also gets amplified by a factor of 2 because

of the inherent gain. The cascade combination can also be realised in the other

way where the inverting configuration precedes the non-inverting configura-

tion. This architecture will provide an input impedance of R. Further, the input

referred noise voltage of the inverting amplifier, which includes the noise from

opamp as well as the input and feedback resistors, gets amplified by a factor of

2. Therefore it is always better to have the non-inverting configuration precede

the inverting configuration in a cascade connection.

2.2.2 Parallel architecture

Fig. 2.1(b) shows a parallel combination of non-inverting and inverting unity

gain amplifiers. Unlike the cascade architecture, the input referred noise volt-

age of the opamp in the non-inverting amplifier does not get amplified. How-
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Figure 2.1: Driver architectures involving non-inverting amplifier configura-
tion. (a) Cascade of non-inverting and inverting unity gain amplifiers. (b) Par-
allel combination of non-inverting and inverting unity gain amplifiers. (c) Cas-
cade of non-inverting unity gain amplifier and a fully-differential amplifier.

ever, the input impedance of this architecture is roughly R because of the in-

verting amplifier. It is important to note that in both the architectures, cascade

and parallel, the two anti-symmetric components of the fully-differential signal

are generated separately in a pseudo differential manner. Since the two com-

ponents travel through significantly different paths, they will experience dif-

ference delays. Any delay between the two components of a fully-differential

signal will translate to a small gain error1.

1Here the assumption is that the delay between the relevant components is small. Under
this condition, the gain error seen will be small.
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2.2.3 Fully-differential opamp based architecture

Fig. 2.1(c) shows the architecture where the single-ended to differential conver-

sion is carried out by the fully-differential amplifier. This will ensure that there

is no delay between the anti-symmetric components of the fully-differential

output. The front end unity gain amplifier provides very high input impedance.

To maintain the consistency with the other architectures, the fully-differential

amplifier is shown to have a gain of 2. As this is essentially yet another cascade

architecture, the input referred noise voltage of the opamp in the non-inverting

unity gain amplifier will be amplified by a factor of 2 by the following stage.

2.3 Rail-to-rail signal swing

As mentioned in section 2.1, the usage of non-inverting amplifier configura-

tion can lead to significant problems when the requirement of rail-to-rail signal

swing at the input is pressed upon. To illustrate the problem clearly, consider

the simple case of the non-inverting unity gain amplifier as shown in Fig. 2.2.

Let us assume that the driver runs off a single power supply Vdd as shown in

Fig. 2.2. Let us also assume that the unity gain amplifier has to support a rail-

to-rail swing at the input side, i.e., 0 ≤ vin ≤ Vdd. From the figure, it is clear

that if input has a rail-to-rail swing, then the output should also have a rail-
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Figure 2.3: Circuit diagram of a differential amplifier with active current mirror
load employing (a) nMOS input pair (b) pMOS input pair.

to-rail swing, i.e., 0 ≤ vout ≤ Vdd. For now, we shall assume that this is true2.

We consider the various choices available for the implementation of the input

stage of an opamp and point out their shortcomings as far as them supporting

rail-to-rail input signal swing is concerned.

2.3.1 Differential amplifier with active current mirror load

The most common choice for the input stage of an opamp is the differential

amplfier with an active current mirror load ([7], [8], [9], and [10]). Fig. 2.3(a)

and (b) show the two possible flavors of the differential amplifier. M1 and M2

form the input pair, M3 and M4 form the current mirror load, and M0 is the

current source which biases the stage under consideration. Let us assume that

2I0 is the value of the tail current source.

Investigating the stage yields the following. For the sake of pithiness, in the

following subsections only the case of nMOS input pair is considered for anal-

2The assumption probably stems from the fact that in a Bipolar process, the output swing is
limited by VCEsat which can be around 0.1V while the input swing is limited by VBE which is
usually around 0.7V.
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ysis. With appropriate changes to the polarity of voltages and currents, similar

arguments can be made for the case with pMOS input pair. In order to achieve

high DC gain out of this stage,3 it is necessary that all the transistors operate

in the saturation region. This condition limits the possible range of the input

signal that can be applied to the stage. The limits are evaluated as follows.

The lowest possible value that the input can take is sum of the minimum drain-

source voltage required to keep M0 in saturation and the gate-source voltage

required by M1 to carry a current I0. That is,

vi,min = VDSATM0

∣
∣
∣
∣
2I0

+VGSM1

∣
∣
∣
∣
I0

(2.1)

To get a feel for these quantities, following values of VDSAT = 100mV and

VT = 600mV are assumed. These values are seen to be reasonable in the cho-

sen process. pMOS devices have a higher VT, however, it is also assumed to

be equal to 600mV for the sake of convenience. With these values, it can be

seen that the lower limit for the input signal is 800mV. This forms a significant

fraction of Vdd , which is nominally 5V.

On the upper side, if the input voltage becomes greater than the drain voltage

of M1 by VTM1
(threshold voltage of M1), then transistor M1 will operate in

the triode region. It can be seen that the drain of the input transistors M1 and

M2 will be lower than Vdd by a value that is equal to the gate-source voltage

required by the transistors M3 and M4 to carry a current of I0. Therefore,

vi,max = Vdd −VGSM3

∣
∣
∣
∣
I0

+VTM1
(2.2)

Plugging in the assumed values for these quantities, the input signal can reach

to within 100mV of power supply. Therefore, from the above analysis, it is

clear that the stage under consideration does not support rail-to-rail swing at

3In any opamp, the first stage should always provide significant portion of its total gain.
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Figure 2.4: Circuit diagram of a telescopic cascode differential amplifier with
active current mirror load employing (a) nMOS input pair (b) pMOS input pair.

the input. The available range is limited on both sides, and significantly more

on the lower side.

2.3.2 Telescopic cascode

Yet another commonly used structure is what is dubbed as telescopic cascode

differential amplifier. Cascoding is carried out for input pair and load transis-

tors in this version. Fig. 2.4 shows the two flavors. M1c and M2c form the cas-

codes for the input pair transistors. M3c and M4c form the cascodes for the load

transistors. Although the main motivation for cascoding is to achieve higher

DC gain than the previously considered stage, the swing limits are evaluated

here only for the sake of completeness. One added benefit of cascodes, espe-

cially for the input pair transistors is the reduction of Miller multiplied input
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Figure 2.5: Circuit diagram of a folded cascode differential amplifier with active
current mirror load employing (a) nMOS input pair (b) pMOS input pair.

capacitance4.

Proceeding on similar lines for evaluating the swing limits, the lower limit to

the input voltage remains the same as was discussed in the previous subsection

(relevant circuit topology is the same). However, the higher limit to the input

voltage will be smaller than what was calculated earlier because of the need

to provide sufficient drain-source voltage for the cascode transistors (M1c and

M2c) so that they remain in saturation. From this, we can conclude that the

choice of telescopic cascode stage is only worse than the one considered in the

previous subsection.

vi,min = VDSATM0

∣
∣
∣
∣
2I0

+VGSM1

∣
∣
∣
∣
I0

(2.3)

vi,max = Vdd −VGSM3

∣
∣
∣
∣
I0

−VDSATM1c

∣
∣
∣
∣
I0

+VTM1
(2.4)

4A more subtle advantage is that the difference between the Miller multiplied capacitance
seen on the two input terminals is also reduced.
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2.3.3 Folded cascode

From the previous subsection, it is clear that introducing cascodes reduces the

available signal swing at the input. A technique that is similar in spirit but

different in implementation is the use of folded cascodes (using opposite po-

larity devices for the cascode transistor). Fig. 2.5 illustrates the folded cascode

counterparts of those shown in Fig 2.4. pMOS transistors M1c and M2c form

the cascodes for the nMOS input pair. As is evident from the figure, only the

input pair transistors are cascoded with opposite polarity transistors. The load

transistors are cascoded traditionally. Further, M5 and M6 are two extra current

sources that are necessary for biasing the cascode transistors (M1c and M2c). Let

us assume that they carry a current I1.

From Fig. 2.5 we can find that the lower limit to the input voltage still remains

the same as discussed previously (the relevant topology still remains the same).

On the upper side, it can be seen that the drain of the input transistors will be

one overdrive voltage away from Vdd. This is to ensure that the biasing current

sources (M5 and M6) remain in saturation. We know that the gate voltage of the

input transitors can exceed the corresponding drain voltage by a value equal to

the threshold voltage of the input transistor. Therefore, the following can be

written.

vi,min = VDSATM0

∣
∣
∣
∣
2I0

+VGSM1

∣
∣
∣
∣
I0

(2.5)

vi,max = Vdd −VDSATM5

∣
∣
∣
∣
I1

+VTM1
(2.6)

Using the previously assumed valued for VDSAT and VT, it can be seen that the

upper limit to the input voltage can even be greater than Vdd . To summarize,

the folded cascode structure in itself will not support rail-to-rail swing at the

input. However, it is important to keep in mind that the available swing is

limited only on one end. With an nMOS input pair, the limitation is towards

the lower rail. Similarly with a pMOS input pair, the limitation will be towards
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Figure 2.6: Circuit diagram of a differential amplifier with complementary in-
put pairs.

the upper rail.

2.3.4 Complementary input pair

Complementary input pair structure, christened so because of the simultaneous

use of opposite polarity devices (nMOS and pMOS)5 was demonstrated in [11]

and [12]. It uses the fact that having an nMOS input pair allows one to apply

input signals up to the upper rail while having a pMOS input pair will allow

signals up to the lower rail as well. Fig. 2.6 shows such an arrangement. M1 and

M2 form the nMOS input pair biased from M0. Similarly, M4 and M5 form the

pMOS input pair. M3 forms the corresponding tail current source. These pairs

can be thought of as differential transconductor blocks in themselves with the

output being currents. Now, as the two pairs appear in parallel, the currents

have to be suitably added to form the final output. M6 − M13 forms the sum-

5The original demonstration was with NPN and PNP Bipolar transistors.
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Figure 2.7: (a) Unity gain amplifier with the input referred offset voltage and
(b) representative waveforms for input and input referred offset voltage.

ming block. This circuit arrangement will definitely support rail-to-rail input

swing.

Although the topology provides the advantage of truly rail-to-rail input swing,

it comes with several disadvantages. For input values close to the lower rail,

only the pMOS input pair will be active while for values close to the upper

rail, only the nMOS input pair will be active. For the intermediate range, both

the pairs will be active6 . Therefore the parameters of the system such as the

total transconductance (gm), gain, and the input referred offset all depend on

the signal. This dependency induces significant nonlinear distortion at the final

output.

Several techniques have been proposed that ensure that the stage provides a

constant gm and the problem is still attracting considerable interest. See [13]

and the references within. These techniques only ensure that the stage pro-

vides a constant gm, and thereby reducing the nonlinear behaviour caused by

it. However, the problem of signal dependent input referred offset votlage still

persists. As will be shown next, this problem effectively renders the comple-

mentary input pair stage useless for use in very low distortion designs.

Consider the unity gain amplifier shown in Fig. 2.7(a). The input referred offset

6Suitable biasing can also lead to niether being active as in a typical Class B operation
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is shown as an ideal voltage source at the non-inverting input of the opamp.

Let us assume that a rail-to-rail input at a frequency fin, as shown in gray in

Fig. 2.7(b) is applied. As explained earlier, for input signal close to the lower

rail, only the pMOS input pair is active. Therefore the input referred offset

is essentially the offset produced by the mismatch in the pMOS input pair7.

Similarly, for input signals close to the upper rail, only the nMOS input pair

is active and the input referred offset is essentially the offset produced by the

mismatch in the nMOS input pair. The actual variation of the input referred

offset voltage in the presence of an input signal will be complicated. However

the following zeroth order approximation is made. For signal values above

Vdd/2, the input referred offset is only because of the nMOS input pair and

for signal values below Vdd/2, the offset is only because of the pMOS input

pair. This is pictorially depicted in black solid line in Fig. 2.7(b). The step in

the offset voltage is chosen arbitrarily for this figure as the purpose is only of

demonstration.

Within the chosen process, the difference in the offset (due to the mismatch)

between pMOS input pair and nMOS input pair is seen to be in several tens of

µV. For example, the difference in 3σ offset with 100(10µm/1 µm) transistors

biased at 500 µA current is ∼35 µV8. From Fig. 2.7(a), it is clear that the offset

voltage directly appears at the output as it is. Therefore, we see harmonics at

the output. To find out the strength of these harmonics, the input referred offset

signal can be easily represented by a Fourier series as follows. This is based on

the approximation made earlier.

vo f f (t) =
2Voff , diff

π

∞

∑
n=1, 3, 5, ...

1

n
· sin(2πn fint) (2.7)

where Voff , diff denotes the difference in the offset voltage of the two input pairs.

7The offset contribution due to the mismatch in the load transistors is neglected.
8These results are obtained from a 100 run Montecarlo simulation including process varia-

tions.
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Substituting the value of 35 µV for Voff , diff , the first five significant harmonics

are evaluated and listed in the table below. It is important to note that the higher

Table 2.1: Harmonics originating from signal dependent input referred offset
voltage

Harmonic Amplitude ( µV)
Third 7.4
Fifth 4.45

Seventh 3.18
Ninth 2.47

Eleventh 2.02

harmonics do contribute and cannot be neglected. To get a feel for the distortion

that gets introduced because of this effect, it is helpful to recall that for an 18-bit

ADC, with 5V reference and fully-differential operation, 1 LSB will correspond

to ∼38 µV. Assuming a 10V signal, with the first five significant harmonics,

the THD at the output can be calculated to be around -120dB. Therefore, the

stage cannot be used if the specification is around -120 dB9 as sufficient margin

should be allotted for the nonlinear distortion created by the circuitry itself.

2.3.5 Charge pump based design

[14] demonstrates a technique that circumvents the problems associated with

complementary input pair stage. The basic principle is to increase the effective

power supply voltage provided to the stage and thereby increase the allow-

able signal range such that it includes the original rail-to-rail swing expected.

For instance, consider the case where Vdd is doubled by some scheme (see [15],

for instance) and used with the folded cascode stage with pMOS input pair

as shown in Fig. 2.5(b). Then, the available signal swing can be evaluated as

follows.

vi,max = 2Vdd −VDSATM0

∣
∣
∣
∣
2I0

−VGSM1

∣
∣
∣
∣
I0

(2.8)

9It will be seen later that the specification chosen is indeed -120dB
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vi,min = VDSATM5

∣
∣
∣
∣
I1

−VTM1
(2.9)

As explained in subsection 2.3.3, the stage can support input signals as low as

the lower rail. With the higher power supply, the stage can now easily support

input signals as high as the original upper rail (Vdd). A similar scheme of creat-

ing −Vdd and using it as the lower rail will render rail-to-rail swings for stages

with nMOS input pair.

The disadvantages with charge pump based rail-to-rail input stages are the fol-

lowing. The power dissipation of the input stage doubles effectively because

of the increased power supply. The charge pump circuit requires a clock for

its operation. Clock generation and distribution will complicate the design and

further increases the power dissipation. Clock feedthrough and mixing with

signal can lead to spurs and intermodulation distortion components at the out-

put respectively thereby reducing the dynamic range and SNR of the circuit.

Also, with the higher supply, sufficient care will have to be taken to reduce the

possibility of device breakdown.

2.3.6 Summary

In the design of a non-inverting unity gain amplifier with rail-to-rail swing, the

traditional differential amplifier and its telescopic cascoded version are not suit-

able as they cannot support the necessary swing. The folded cascode provides

improved performance compared to the other two but still cannot support rail-

to-rail swing. Use of complementary input pair structure provides rail-to-rail

swing, however brings along with it added distortion at the output because of

the dependence of gm and input referred offset on the input signal. This makes

the topology unsuitable for very low distortion designs. Use of a charge pump

allows one to use the differential amplifier or its cascoded versions to allow

for rail-to-rail swing. Increased power consumption and spurs due to clock
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Figure 2.8: Cascade of two inverting unity gain amplifiers

feedthrough render it impractical for low power and low distortion designs.

Therefore the non-inverting unity gain amplifier is not suitable for very low

distortion designs.

2.4 Architectures employing inverting amplifier con-

figuration

Based on the discussion presented in the previous section, the use of the non-

inverting configuration in the driver circuitry is not feasible. Therefore, we

have to make do with the inverting configuration. This section deals with the

architectures based on inverting configuration. Architectures involving a fully-

differential opamp are thought to be similar to inverting configuration as the

gain expressions are similar. These are also examined in this section. To main-

tain consistency with what was described in section 2.2, architectures that pro-
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Figure 2.9: Fully-differential amplifier employing a fully-differential opamp.

vide single-ended to differential conversion with a gain of 2 are considered.

However, simple manipulations can be done to provide a single-ended output

from a single-ended input or a fully-differential output from a fully-differential

input.

2.4.1 Cascade of two inverting amplifiers

Fig. 2.8 depicts the cascade of two inverting unity gain amplifiers. The input

impedance of this architecture is R. The input referred noise voltage of the first

inverting unity gain amplifier, which includes the noise from the opamp, input

resistor, and the feedback resistor will get amplified by a factor of 2. The circuit

produces a pseudo differential output. As the anti-symmetric components of

the fully-differential signal traverse different paths, the delay experienced will

definitely be different leading to a gain error. One clear advantage of this topol-

ogy is that the swing seen by the input terminals of the opamp will be very

small leading to a smaller distortion contribution from the input stage of the

opamp.
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2.4.2 Fully-differential amplifier

Fig. 2.9 shows a fully-differential amplifier employing a fully-differential opamp.

For analysing architectures employing fully-differential opamps, we shall make

the following assumption. Any fully-differential opamp will need common-

mode feedback to keep the quiescent output voltages of every stage in the

opamp stable. We assume ideal common-mode feedback loops in this analy-

sis. This implies that the common-mode loop-gain is ideal with infinitely large

DC gain and unity loop-gain frequency.

If the input is fully-differential (anti-symmetric), then the analysis exactly cor-

responds to the differential counterpart of the single-ended inverting amplifier.

The key point here is that the input terminals of the opamp do not experience

any signal swing. However, as shown in Fig. 2.9, to get the single-ended to dif-

ferential conversion done, the amplifier is exicted by a single-ended input. The

other input of the amplifier is held at a constant value (VCM). With this change,

the dynamics of the circuit change slightly.

It is important to note that the gain of the amplifier still remains 2 as the only

difference is in the way in which the input is applied. Therefore, if vin is the

input, then, we will see vin on the positive node of the output and −vin on the

negative side of the output. It is now evident that the non-inverting input ter-

minal of the opamp sees a swing that is 1/3rd of the swing seen on the positive

node of the output (vin). Therefore, by the principle of virtual short, the invert-

ing input terminal of the opamp should also see a similar swing. This can also

be seen if we try to evaluate the node voltage at the inverting input terminal

based on superposition and voltage division. Therefore, we can see that apply-

ing a single-ended input to a fully-differential amplifier as illustrated in Fig. 2.9

leads to a condition where the input terminals of the opamp experience a swing

that is proportional to the input and the feedback factor. The opamp has to be

designed to support such swings.
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Figure 2.10: Fully-differential opamp with asymmetrical feedback.

2.4.3 Asymmetrical feedback around fully-differential opamp

Fig. 2.10 shows a fully-differential opamp used with asymmetrical feedback.

The figure shows two possible configurations. The operation of the circuit in

Fig. 2.10(a) can be easily predicted as follows. The reasoning provided is non

causal in nature however facilitates a very easy path to the correct prediction the

steady state behaviour of the circuit. As the non-inverting input terminal of the

opamp does not see any swing, by the principle of virtual short, the inverting

input terminal of the opampas should also not see any swing. If vin is the input

voltage applied to the amplifier, based on the principles of voltage division and

superposition, the positive node of the output should have a voltage of −vin.

Based on the assumption of ideal common-mode feedback, it can be deduced

that the negative node of the output should have a voltage of vin. Therefore, it

can be seen that the gain of the amplifier is 2.

The topology only uses a total resistance of 2R to achieve a gain of 2 as com-

pared to the 6R as shown in Fig. 2.9. Therefore, for a given noise, the input

resistance can be thrice as large compared to the other topology. This increases

the input impedance of the amplifier. Further this also reduces the load seen

by the output stage of the opamp which in turn improves the gain from that

stage while simultaneously lowering its distortion contribution. The swing at

the input of the opamp is ideally zero. This also helps in reducing the distortion
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from the input stage of the opamp.

There are several drawbacks of this topology. The topology cannot handle fully-

differential input signals. Clearly, the circuit is not symmetrical. This leads to

an increase in the total harmonic distortion seen as the even order harmonics

do not cancel out each other10. Asymmetrical structure also effectuates reduced

immunity to common-mode noise—reduced PSRR and CMRR. Also, it can be

proven that the noise from the common-mode feedback circuitry appears at the

output. This entails a careful and low noise design of the error amplifier in

the common mode feedback circuitry which eventually leads to an increased

power dissipation.

Fig. 2.10(b) shows yet another topology for a fully-differential amplifier with

asymmetrical feedback. The operation of the circuit can also be easily explained.

As the non-inverting input terminal of the opamp sees the entire input signal

swing vin, by the principle of virtual short, the inverting input terminal of the

opamp should also see the same swing. Because of the complete feedback as in

a voltage follower, the negative output also sees the same swing. Based on the

assumption of ideal common-mode feedback, it can be deduced that the posi-

tive node of the output should have a voltage of −vin. Therefore, it can be seen

that the gain of the amplifier is 2.

The topology achieves a gain of 2 without the use of any resistors at all. There-

fore the opamp is the only source of noise. This will translate to a lower power

dissipation in the opamp. Also, the architecture provides an extremely high

input impedance.

The key disadvantage in this topology is that the opamp should support rail-to-

rail input swing. This requirement effectively renders the architecture unusable

in the design of low distortion parts. The problem is dealt in detail in section

10It is seen in simulations that the effect of degradation of linearity due to the incomplete
cancellation of the even order harmonics is greater than the effect of improved linearity because
of the use of larger resistors in the circuit
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2.3. As with the other asymmetrical feedback topology, current topology also

cannot handle fully-differential input signals, shows higher distortion levels as

the even order harmonics do not cancel out each other, shows reduced PSRR

and CMRR. Also, noise from the error amplifier in the common-mode feedback

circuitry appears at the output.

2.4.4 Summary

The cascade of inverting unity gain amplifier and the fully-differential ampli-

fier are more suitable for implementation compared to those involving the non-

inverting configuration. This is mainly because the opamp within these archi-

tectures will not have to support a rail-to-rail swing at the input. One extra

advantage of this fact is that the distortion contribution from the input stage of

the opamp will also be comparatively smaller. However, the major disadvan-

tage is the significantly smaller input impedance.

Asymmetrical feedback around a fully-differential opamp does lead to some

interesting structures such as an amplifier with a gain of 2 that independent of

the ratio of resistors, it does have its own disadvantages. During the discussion,

it is assumed that the common-mode feedback loops are ideal. For practical

purposes, the common-mode loopgain should have high enough DC gain and

unity loop-gain frequency to ensure that the output common-mode remains

stable even in the presence of signal. This entails higher power consumption.

Asymmetry in the feedback will not allow for a perfect cancellation of the even

order harmonics thereby leading to a higher output distortion. A more delicate

disadvantage is that the noise and distortion from the error amplifier in the

common-mode feedback loop will appear at the output. Hence we consider the

cascade of inverting unity gain amplifiers and the fully-differential amplifier as

the only suitable architectures for the implementation of the prototype.
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2.5 Noise and gain error

The architectures described in the previous section have a finite input impedance

other than that depicted in Fig. 2.10(b). Whenever a designer chooses such ar-

chitectures where the input impedance of the driver is dependent on a resistor

value, he faces a trade off between the total noise and gain error seen at the out-

put. A simple explanation to this trade off is first given. An example scenario

is considered and the effect of this trade off is then elucidated.

2.5.1 The trade-off

Any real input source will have a non zero source impedance associated with

it. When such a source is used along with the driver, there will be a voltage

division between the source impedance and the input impedance of the driver.

Because of this division, only a fraction of the source voltage appears as the in-

put to the driver. This leads to a gain error as seen from the output of the driver.

As the input impedance of the driver increases, the fraction of the source volt-

age appearing as the input to the driver increases and therefore the gain error

decreases. It is now easy to conclude that to have no gain error because of

this division, ideally, the input impedance of the driver should be infinite. It

is useful to reiterate here that the topologies depicted in Fig. 2.1(a), Fig. 2.1(b)

and Fig. 2.10(b) provide very high input impedance although the requirement

of supporting rail-to-rail input swing renders them unfeasible for implementa-

tion.

If one has to achieve high input impedance in architectures based on inverting

amplifier configuration, the input resistor which controls the input impedance

has to be increased to the required value. To achieve the necessary gain, the

feedback resistor will also increase proportionally. With the increase in the in-

put and feedback resistors, the total noise contribution from the driver will also

35



Rs

vin Rin vout = 2vinvs

Model of
the driver

Figure 2.11: Circuit diagram illustrating the voltage division at the input.

increase proportionally. Usually, the bandwidth of operation of the driver will

be fixed. Because of the fixed bandwidth and increased noise contribution, the

total integrated noise at the output will also increase. If there is a limit on the

total integrated noise from the driver, then effectively there will be a limit to

the maximum value of the input resistor that can be used. With this limit on

the input resistor, we always see a fixed gain error because of the voltage di-

vision with the source impedance. Therefore, achieving a low gain error will

implicitly bring higher noise at the output and vice versa.

2.5.2 An example

In this section, the total integrated noise and the gain error for architectures

depicted in Fig. 2.8 and Fig. 2.9 are evaluated and the trade off is illustrated. In

this analysis, we consider the noise contribution from the input and feedback

resistors only. Noise contribution from the opamp is not considered as it does

not yield any extra information but adds to the complexity of the calculations.

To find the total integrated noise at the output, the bandwidth of the driver is

assumed to be 25MHz11.

For the gain error calculation, the source impedance is assumed to be 100Ω.

Further, the error introduced by the finite DC gain of the opamp is neglected.

11This is the specification aimed for the prototype driver.
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The error due to the mismatch between the input and feedback resistors is also

neglected. It will be seen later that these errors are smaller than the error due

to the voltage division at the input by several orders of magnitude. Hence dis-

regarding these errors is justified.

Cascade of inverting amplifiers

Gain error: To find the gain error of the driver, we use the circuit shown in

Fig. 2.11. The driver circuitry is replaced by an equivalent model. This model

has an input impedance of Rin and a voltage controlled voltage source of gain

2. The control voltage to this controlled source is the voltage across Rin. Even

though the driver output is fully-differential, the output of the model is shown

to be single-ended as it does not affect the analysis. vs represents the source

voltage and Rs the source impedance. We can write the following.

vin =

[
Rin

Rs + Rin

]

vs (2.10)

Ideally,

vin = vs (2.11)

Therefore, the error (ein) can be calculated as

ein =

[

1−
Rin

Rs + Rin

]

vs (2.12)

Relative to the source voltage, the error is

ein
vs

=

[
Rs

Rs + Rin

]

(2.13)

This is the gain error seen because of the voltage division occuring at the input.

Total integrated noise: To calculate the total integrated noise at the output of the

driver, it is useful to first find the total input referred noise voltage of an in-
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Figure 2.12: Inverting unity gain amplifier illustrating the noise source of (a)
the input resistor and (b) the feedback resistor.

verting unity gain amplifier. As stated earlier, the noise from the opamp is

neglected. Fig. 2.12(a) and (b) show inverting unity gain amplifier with the

noise from the input and feedback resistors respectively. vn,R represents the

noise voltage of the resistors. It should also be noted that the original input is

grounded.

From Fig. 2.12(a), it is easy to see that the noise voltage associated with the

input resistor directly appears at the input of the amplifier.

From Fig. 2.12(b), as the non-inverting input of the opamp is at ground, by

the principle of virtual short, we can reason that the inverting input terminal

of the opamp is at ground. This implies that the current through the input

resistor R is zero as the potential difference across it is zero. We know that zero

current flows through the input terminals of the opamp. By applying KCL at

the inverting input terminal of the opamp, it can now be seen that the current

through the feedback resistor should also be zero. This implies that there will

be zero voltage drop across the feedback resistor. Therefore the voltage drop

across the feedback branch (series combination of the resistor and its associated

noise voltage source) is the same as vn,R. It is now evident that the output of the

opamp is at a voltage vn,R. Alternatively, we say that the entire noise voltage of

the feedback resistor also appears at the output of the amplifier. Since the gain
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of the amplifier is unity, we can refer it as it is to the input. Therefore,

v2n, in = v2n,R + v2n,R (2.14)

Here vn, in refers to the total input referred noise voltage. As the two noise

sources are uncorrelated, the two power spectral densities can be added di-

rectly. Therefore the total input referred noise voltage power spectral density

(Sv, in( f )) of the unity gain amplifier is

Svn, in( f ) = Svn, R( f ) + Svn, R( f ) (2.15)

Svn, in( f ) = 4kTR+ 4kTR (2.16)

where k is the Boltzmann’s constant and T is the absolute temparature.

With this background, we can easily calculate the total integrated noise of the

architecture depicted in Fig. 2.8. First let us consider the contribution of the

resistors in the first unity gain amplifier alone. The input referred noise voltage

spectral density is 8kTR. The transfer function from the input to the differential

output is given as follows.

H( f ) =
1

(

1+ j
f

BW

)2
+

1
(

1+ j
f

BW

) (2.17)

=
2+ j

f
BW

(

1+ j
f

BW

)2
(2.18)

Here, the transfer function of the unity gain amplifier, denoted by G( f ), is as-

sumed as shown below. BW refers to its bandwidth in Hz.

G( f ) = −
1

(

1+ j
f

BW

) (2.19)
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The power spectral density of the noise at the output can now be calculated as

follows.

Svn, out( f ) = |H( f )|2 · Svn in
( f ) (2.20)

Svn, out( f ) =

∣
∣
∣2+ j

f
BW

∣
∣
∣

2

∣
∣
∣
∣

(

1+ j
f

BW

)2
∣
∣
∣
∣

2
8kTR (2.21)

The total mean square noise voltage at the output is given by

v2n, out =
∫ ∞

0
Svn, out( f ) d f (2.22)

v2n, out =
∫ ∞

0

∣
∣
∣2+ j

f
BW

∣
∣
∣

2

∣
∣
∣
∣

(

1+ j
f

BW

)2
∣
∣
∣
∣

2
8kTR d f (2.23)

= 8kTR
∫ ∞

0

4+
(

f
BW

)2

(

1+
(

f
BW

)2
)2

d f (2.24)

= 8kTR








∫ ∞

0

4
(

1+
(

f
BW

)2
)2

d f +
∫ ∞

0

(
f

BW

)2

(

1+
(

f
BW

)2
)2

d f








(2.25)

Substituting ( f/BW) by tan θ and changing the limits of integration, we obtain

= 8kTR

[
∫ π

2

0

4 · BW sec2 θ
(
1+ tan2 θ

)2
dθ +

∫ π
2

0

tan2 θ · BW sec2 θ
(
1+ tan2 θ

)2
dθ

]

(2.26)

= 8kTR

[

4BW
∫ π

2

0
cos2 θ dθ + BW

∫ π
2

0
sin2 θ dθ

]

(2.27)

= 8kTR · BW
[

4 ·
π

4
+

π

4

]

(2.28)

= 8kTR · BW ·

[
5π

4

]

(2.29)

The above equation gives the total mean square noise voltage at the differential

output in Fig. 2.8. Note that only the contribution of the resistors—input and
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feedback—present in the first unity gain amplifier in the architecture is calcu-

lated. The contribution from the resistors in the second unity gain amplifier is

still not found. The power spectral density of the input referred noise voltage

is 8kTR. The relevant transfer function from the input of the amplifier to its

output is denoted by G( f ). Therefore the power spectral density at the output

is

Svn, out( f ) = |G( f )|2 · Svn in
( f ) (2.30)

=

∣
∣
∣
∣
∣

1

1+ j
f

BW

∣
∣
∣
∣
∣

2

8kTR (2.31)

Therefore,

v2n, out =
∫ ∞

0

∣
∣
∣
∣
∣

1

1+ j
f

BW

∣
∣
∣
∣
∣

2

8kTR d f (2.32)

= 8kTR
∫ ∞

0

1

1+
(

f
BW

)2
d f (2.33)

As was done earlier, subsituting tan θ for ( f/BW) and changing the limits of

integration yields,

= 8kTR
∫ π

2

0

BW sec2 θ

1+ tan2 θ
dθ (2.34)

= 8kTR · BW ·
[π

2

]

(2.35)

This is the mean square noise voltage seen at the output because of the resistors

present in the second unity gain amplifier. From equations 2.29 and 2.35, the

total noise seen at the output of the driver depicted in Fig. 2.8 is 8kTR · BW ·

(5π/4+ π/2).

The gain error and the total mean square noise voltage at the output is evalu-

ated for different values of the input resistors. Table 2.2 shows the details. For

this calculation, we assume that the source impedance is 100Ω.
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Table 2.2: Noise and gain error variation with input resistor for driver architec-
ture shown in Fig. 2.8

Input resistor (kΩ) Root mean square noise (V) Gain error (%)
10 67.45 µ 1
5 47.64 µ 2
2 30.14 µ 5

0.878 20 µ 10.22

Fully-differential amplifier

The gain error and the total integrated noise seen at the output of the driver

illustrated in Fig. 2.9 are calculated here. Together with the calculations done

previously, it is easy to quantitatively compare the two architectures.

Gain error: The calculation of gain error because of the finite input impedance

is essentially the same as what was done earlier. The gain error is related to the

input and source impedances as given below. vs, Rs, and Rin denote the source

voltage, source impedance and the input impedance of the driver respectively.

error(relative to vs) =
Rs

Rs + Rin
(2.36)

The only thing that remains to be calculated is that of the input impedance of

the architecture. If the applied input was perfectly anti-symmetric, then the

calculation of the input impedance is straight forward and will be the fully-

differential equivalent of inverting unity gain amplifier. The input terminals of

the opampwill not see any signal swing. Therefore, the input impedance is R12.

However, as discussed earlier in section 2.4.2, with the application of a single-

ended input, the dynamics of the circuit change considerably. The key point

here is that the input terminals of the opamp will see a signal swing that is pro-

portional to the input and the feedback factor. In our case, the input terminals

12Differentially, the input impedance will be 2R.
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Figure 2.13: Circuit diagram illustrating the noise sources from the input resis-
tors of a fully-differential amplifier.

of the opamp will experience a swing that is 1/3rd the input. Therefore,

Voltage across the input resistor = vin −
vin
3

(2.37)

Current through the input resistor =
2vin
3R

(2.38)

Therefore, the effective input impedance =
3R

2
(2.39)

It can be seen that the effective input impedance of the fully-differential am-

plifier with an anti-symmetric input is smaller than if the input is not anti-

symmetric. Also, the factor by which the input impedance increases is depen-

dent to the feedback factor. Smaller the feedback factor, smaller will be the

increase in the input impedance seen. This relationship between the input re-

sistor (R) and the effective input impedance of the driver will be used in the

subsequent calculation of the gain error.

Total integrated noise: As was done with the previous architecture, to find the

total integrated noise at the output of the driver, we first find the total input

referred noise voltage. Then, with the knowledge of the transfer function of the
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Figure 2.14: Circuit diagram illustrating the noise sources from the feedback
resistors of a fully-differential amplifier.

driver, we find the total mean square noise voltage at the output. To calculate

the contribution from the different noise sources to the total input referred noise

voltage, the original input is grounded.

The noise voltage from the input resistor associated with the inverting terminal

of the opamp appears directly at the input of the driver. Hence it is referred

as is. This is illustrated in Fig. 2.13(a). Fig. 2.13(b) shows the noise voltage as-

sociated with the other input resistor. Since the original input of the driver is

grounded, the noise voltage from the input resistor (associated with the non-

inverting input terminal of the opamp) acts the effective input to the driver.

Therefore it can be thought to have a gain of 2 to the differential output. Fur-

thermore while refering it to the original input of the driver, an attenuation

factor of 0.5 is seen. Therefore, the noise voltage from this input resistor also

appears as it is when referred to the input of the driver.

The noise voltage from the feedback resistors are shown as voltage sources in

series with the corresponding resistors in Fig. 2.14. The contribution from one

of the feedback resistor to the total input referred noise voltage is only found

out. Similar arguments can be made to find out the contribution from the other
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feedback resistor. In particular, we consider the circuit is Fig. 2.14(a) for analy-

sis here. The input to the driver is grounded. The input terminals of the opamp

does not experience any swing and hence can be considered as ground for anal-

ysis purposes. This implies that no current flows through the input resistors as

the voltage drop across them is zero. The input terminals of the opamp will

also not carry any current. Therefore by applying KCL at the input terminals

of the opamp, we can see that current through the feedback branches is zero.

If we now consider the total voltage drop across the feedback branches, it will

be equal to zero in the case where the resistor is shown to be noiseless and will

be equal to the noise voltage vn, 2R in the case where the resistor is shown to be

noisy. Therefore the total differential noise voltage seen at the output will be

equal to vn, 2R. When this is referred back to the input of the driver, the attenu-

ation factor of 0.5 comes in and the contribution of the feedback resistor to the

input referred noise voltage will be vn, 2R/2. The contribution from the other

feedback resistor will exactly be the same.

Total input referred noise voltage = vn,R + vn,R
︸ ︷︷ ︸

input resistors

+
vn, 2R
2

+
vn, 2R
2

︸ ︷︷ ︸

feedback resistors

(2.40)

Since the noise sources are all uncorrelated with each other, the power spectral

density of the total input referred noise voltage of the driver, denoted by Svn, in

will be the sum of the power spectral densities of each of the four contributing

sources. k, T, andR have their usual meaning.

Svn, in = 4kTR+ 4kTR+
4kT(2R)

4
+

4kT(2R)

4
(2.41)

= 12kTR (2.42)

If BW is the closed loop bandwidth of the driver, then the overall transfer func-
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tion (H( f )) of the driver can be written as below.

H( f ) =
2

1+ j
f

BW

(2.43)

The power spectral density of the noise voltage at the output of the driver can

now be calculated as follows.

Svn, out = |H( f )|2 Svn, in (2.44)

=
4

1+
(

f
BW

)2
12kTR (2.45)

v2n, out =
∫ ∞

0

4

1+
(

f
BW

)2
12kTR d f (2.46)

= 48kTR
∫ ∞

0

1

1+
(

f
BW

)2
d f (2.47)

Substituting tan θ for ( f/BW) and changing the limits of integration accord-

ingly,

v2n, out = 48kTR
∫ π

2

0

BW sec2 θ

1+ tan2 θ
dθ (2.48)

= 48kTR · BW
[π

2

]

(2.49)

The gain error and the total mean square noise voltage at the output is evalu-

ated for different values of the input resistors. Table 2.3 shows the details. For

this calculation, we assume that the source impedance is 100Ω.

Comparing Table 2.2 with Table 2.3, we can see that the fully-differential ar-

chitecture provides an input impedance that is 1.5 times the input impedance

provided by the cascade of inverting unity gain amplifier architecture for the

same input resistor. However for the same bandwidth the total mean square
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Table 2.3: Noise and gain error variation with input resistor for driver architec-
ture shown in Fig. 2.9

Input resistor (kΩ) Root mean square noise (V) Gain error (%)
10 88.31 µ 0.66
5 61.80 µ 1.33
2 38.47 µ 3.33

0.128 20 µ 34.24

noise seen at the output is also larger by a factor of 12/7.
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CHAPTER 3

Design of the Prototype Driver

3.1 Introduction

This chapter deals with the design of the prototype driver aimed to drive the

input signal into an 18-bit 1MS/s SAR ADC. A proprietary CMOS technology

with a drawn minimum length of 0.6µm from Texas Instruments is used. The

nominal power supply voltage is 5V. The technology provides standard and

low threshold voltage flavored nMOS and pMOS devices. The standard nMOS

and pMOS have a threshold voltage of 0.6V and 0.9V respectively. It is a triple

well process-isolated nMOS transistors are also provided.

Section 3.2 tabulates the specifications aimed for the prototype driver. In order

to meet these specifications, additional filtering is required to the architectures

described in the previous chapter. Details of the filtering and the final architec-

ture chosen for the implementation are presented in Section 3.3 and 3.4. Sec-

tions 3.5 and 3.6 give the schematic and layout design and the corresponding

simulation results.

3.2 Specifications

The driver is aimed to drive an input signal originating from a source whose

specifications are tabulated in Table 3.1. The error tolerable from the driver is

as shown in Table 3.2. This includes the DC offset, noise, distortion, gain error,

1The architecture allows the input to be truly rail-to-rail. The limitation arrives because of
the output stage.



Table 3.1: Input signal source specifications

Mode Single-ended
Range1 0.1 - 0.9Vdd

Output impedance (max.) 100Ω

and settling related errors that the driver can introduce into the signal chain.

It should be noted here that an achievable yet rigorous specification combine

is chosen for the gain error and noise. In the previous chapter, the trade-off

between the gain error and noise was explained.

Table 3.2: Error specifications from the driver

Output offset voltage (3σ) ≤2.5mV
DC gain error ≤5%

Noise sampled onto the ADC sampling capacitor ≤40 µV
Total harmonic distortion at 10Hz -120 dB

Total harmonic distortion at 100 kHz -100 dB
Settling time for a full scale input step ≤ 1 µs

Table 3.3: ADC load and operating conditions

ADC load 100pF
Voltage coefficient of the load 0.02V−1

ADC input mode Fully differential

The specifications of the converter to be driven are as shown in Table 3.3. The

ADC input circuitry is essentially a sample-and-hold circuit. This was illus-

trated in Chapter 1. The switch that comes in series with the input capacitor

adds nonlinearity to the input signal. The nonlinearity is introduced because of

the variation of the ON resistance of the switch based on the input signal. Also,

the capacitors themselves will have some nonlinearity associated with them.

The overall nonlinearity of this switched-capacitor load is specified as a first

order voltage coefficient here. It should be noted that even though the coeffi-

cient is stated as of a first order, it leads to a second harmonic in the output.

The converter is to be used in the fully-differential mode so as to obtain all its
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benefits. Therefore, the driver will have to perform single-ended to differential

conversion.

Table 3.4: Driver operating conditions

Vdd 5± 1V
Temparature range -40◦ to +125◦ C

The expected operating conditions for the driver are as specified in Table 3.4.

Since the aim is to integrate the driver with the converter, both blocks running

from the same supply2 will greatly reduce the complexity of such an integrated

device. We assume that the converter and the driver both run from the same

power supply (= 5V, nominally).

Several datasheets indicate that the maximum reference input to the converter

is close to its nominal analog power supply. It is already mentioned that the

ADC will be used in the fully-differential mode. Therefore, it is easy to see

that to use the entire range of the converter effectively, the input signal should

be amplified by a factor of 2 along with the single-ended to fully-differential

conversion.

3.3 Additional filtering

The author wants to bring the following point to the notice of the reader. The

total harmonic distortion specification of -120dB is a very stringent one. This

is borne out by the fact that there are only a handful of parts offering such lin-

earity and hardly any literature dealing with systematic design procedures for

such circuits, especially with pure CMOS technologies. It is an observation that

the circuits that provide comparable distortion performance are implemented

2Usually, the analog and digital power supply lines of high resolution converters will be
separated to reduce the switching noise from the digital supply line coupling with the critical
analog circuitry. Here we refer to the analog power supply of the converter.
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Figure 3.1: Block diagram elucidating the nonlinearity seen in (a) nonlinear
unity gain amplifier and (b) cascade of identical nonlinear unity gain amplifiers.

with Bipolar processes. [16] explains the reasons why bipolar transistors lend

themselves more easily to highly linear circuits than the MOS transistors.

3.3.1 Filtering at the output

To get a better look at the problem in hand and to find the acheivable level of

linearity in the given process, a preliminary design of the driver is first done.

The fully-differential amplifier architecture is chosen for the following reason.

Among the two architectures, the fully-differential amplifier is more suitable

for low distortion design. This is mainly because of the cancellation of all the

even order harmonics that comes from the symmetry in the circuit.

Even though the cascade of inverting amplifiers provides a fully-differential

output, the even order harmonics on the two anti-symmetric components do

not cancel each other. This is explained with the help of Fig. 3.1. Fig. 3.1(a)
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shows the inverting amplifier as a block of gain−1. Also shown are the spectra

of the input and output assuming that a sinusoidal signal at fin is applied. The

output is shown to have components at fin, 2 fin, and 3 fin
3. Figure shows ex-

aggerated strengths for the second and third harmonic when compared to the

fundamental. This is done for the purpose of clarity. The harmonic components

will be very small compared to the fundamental in a weakly nonlinear system.

The direction of the arrow in the spectra gives an indication of the phase of

the frequency components. The choice of the phases in the example is purely

arbitrary, but without loss of generality.

Fig. 3.1(b) shows the cascade connection to two identical unity gain amplifiers.

The output of the first gain block has components at fin, 2 fin, and 3 fin. The

input to the second gain block can be thought of as the sum of three separate

sinusoidal signals. The second gain block will create harmonics for each of

these signals. However, the harmonics of 2 fin and 3 fin are neglected as they

will be extremely small compared to the fundamental at fin. Therefore, it is

shown that the components at 2 fin and 3 f in pass through the second gain block

linearly with only a change in sign because of the inverting nature of the block.

The fundamental component at the input of the second gain block will have the

same strength as the original input signal. However there will be a 180◦ phase

shift because of the inversion. This signal will create harmonics at the output

that are similar in strength to the harmonics seen at the output of first stage. The

phase of the second harmonic will be the same as the phase of the correspond-

ing second harmonic at the output of the first stage. The phase of the third har-

monic will be 180◦ away from the corresponding phase of the third harmonic at

the output of the first stage. The phases associated with the harmonics at 2 fin

and 3 fin are also shown. If we consider the output of the two unity gain ampli-

fiers to be the two anti-symmetric components of a fully-differential signal, it is

clear that the second order harmonics on the two anti-symmetric lines do not

3The assumption of weak nonlinearity.
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cancel with each other. The strength of the second harmonic will be similar to

the strength of the harmonic seen at the output of the first inverting gain block.

The same argument can be extended to say that other even order harmonics

do not get cancelled. Hence the fully-differential architecture is chosen for the

preliminary design.

It is a well-known fact that in a negative feedback amplifier, the high loop-gain

will suppress the distortion. Hence having a large enough DC gain will reduce

the distortion at low frequencies. This implies that we have a knob to achieve

the total harmonic distortion of -120dB at 10Hz . Obtaining high DC gain in

an opamp running from 5V supply is not difficult as techniques like cascoding

and gain boosting can be used. The opamp designed for the preliminary driver

has a DC gain of∼100dB. Such a large gain could be obtained from a two-stage

design with the first stage being a folded cascode differential amplifier and the

second stage being a common source amplifier. With a DC gain of ∼100dB, the

specification of -120 dB at 10Hz is found to be achievable.

It is important to note that increasing the DC gain of the opamp while keeping

the unity gain frequency constant will only push the dominant pole towards

lower and lower frequencies. The loop-gain seen at frequencies higher than the

dominant pole frequency will remain the same. Therefore, increasing the DC

gain of the opamp will not help in suppressing the distortion at frequencies

higher than the dominant pole frequency.

The closed loop bandwidth for the preliminary design is chosen as 2.5MHz.

Reasoning for this choice is given in Section 3.5. With the driver designed

to have a bandwidth of 2.5MHz, the unity loop-gain frequency will also be

2.5MHz. We also know that the magnitude response should fall at the rate of

-20 dB /decade for stability reasons. Therefore, we can calculate the loop-gain

at 100 kHz to be equal to∼28dB. In the preliminary design, it is found that with

such a small value of loop-gain, achieving total harmonic distortion of around
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Figure 3.2: Output side filtering with the cascade of inverting amplifiers.
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Figure 3.3: Output side filtering with the fully-differential amplifier.

-100dB is not straightforward.

The distortion at 100 kHz can be improved by increasing the loop-gain at that

frequency. The magnitude roll-off at -20 dB/decade ensures that increasing the

loop-gain at 100 kHzwill increase the unity loop-gain frequency proportionally.
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This is essentially the same as increasing the bandwidth of the driver which re-

quires a higher power dissipation. Alongwith this disadvantage, the integrated

noise at the output will also increase. This means that for a specified value of

total noise, if the bandwidth of the driver is increased, then the input and feed-

back resistance will have to decreased proportionally which in turn leads to a

larger gain error.

To alleviate these problems, the architectures shown in Fig. 3.2 and 3.3 are pro-

posed. Here R1 and CL form first order lowpass filters at the output. The noise

from the resistors R1 do appear at the output and this contribution should also

be taken into account while designing the driver. With this arrangement, the

bandwidth of the amplifier can be kept as high as required to suppress the

distortion while the output side filter clamps the bandwidth of the driver as

necessary. This setup provides the designer with another knob to set the high

frequency distortion performance. Yet another advantage of this arrangement

is that the first order filter directly loads the output stage of the opamp and

thereby creating a left half plane zero. This can be effectively used to obtain a

higher closed loop bandwidth. This is dealt with in detail in the next section.

Cascade of inverting amplifiers with output filtering

For the architecture depicted in Fig. 3.2, the noise contribution from the input

and feedback resistors will not remain the same as what was calculated without

the output first order filters. The important difference is that the output of the

first inverting amplifier in the above case will not be bandlimited by the filter.

This gets fed into the second inverting amplifier and the overall differential

output is then bandlimited.

As before, the power spectral density of the total input referred noise voltage

of the inverting amplifier is 8kTR. The transfer function from the input of the

driver to the differential output can be written as follows.
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H( f ) =
2

(

1+ j
f

BW

) (3.1)

Following the same lines as before, we can obtain the noise contribution from

the input and feedback resistors of the first inverting amplifier as 8kTR · 4BW(π/2).

The extra factor of 4 is due to the conversion to fully-differential output. The

contribution from the input and feedback resistors of the second inverting am-

plifier remains the same as in the case without output side filters. It is equal to

8kTR · BW(π/2). Therefore, the total contribution from the input and feedback

will be equal to 8kTR · 5BW(π/2). Note that this is larger than that seen in the

corresponding architecture without output filters.

The noise contribution from the resistors R1 themselves have to be added. The

contribution from R1 is a standard result found in textbooks ([8], [9], [10]) and

is equal to kT/CL. Table 3.5 shows the noise contribution from all the sources

except for the opamps. It also shows numerical values calculated for an overall

bandwidth of 2.5MHz. Since CL is specified to be 100pF, R1 is chosen to be

636Ω so that the bandwidth is 2.5MHz. The value of the input resistor is chosen

as 2 kΩ. It should be noted that the gain error performance remains the same

as before as there are no changes to the relevant part of the circuit.

Table 3.5: Noise summary for the cascade of inverting amplifiers with output
side filtering (Fig. 3.2)

Noise source Contribution (V2) Calculated value (V2)
Input and feedback resistors 8kTR · 5BW(π/2) 1.3e-9

Low pass filters 2(kT/CL) 82.83e-12

From the table, we can see that the opamps in total can contribute ∼213e-12V2

to the integrated noise at the output. This will have to include both thermal

and flicker noise contributions. Alloting a 3:1 ratio4 for thermal to flicker noise,

4This choice was based on the experience with the process.
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the gm requirement for the first stage of the opamp will be ∼20mS. Assuming

that we use two-stage opamps5, roughly, the gm of the second stage should

also be ∼20mS. Since there are two such opamps, the total transconductance

required for the driver is 80mS. Assuming a gm /ID of 15V−1, the total current

requirement will be ∼6mA.

Fully-differential amplifier with output filtering

Fig. 3.3 illustrates the architecture. The power spectral density of the total input

referred noise voltage due to the input and feedback resistors is 12kTR. This

follows similar lines as to what was shown with the fully-differential amplifier.

The transfer function from the input to the differential output is also the same

as in the fully differntial amplifier case. Therefore the total noise contribution

from the input and feedback resistor remains the same. It is given by 12kTR ·

4BW(π/2).

The only difference is that in the case of the fully-differential amplifier, the unity

loop-gain frequency of the opamp along with the relevant feedback factor de-

cides the overall bandwidth of the driver, while in this case the output filters

decide the bandwidth. The noise contribution of R1 is straightforward. It is

also clear that the gain error of the driver will not change because of the addi-

tion of these lowpass filters.

The input resistor R is chosen as 2 kΩ, CL is specified as 100pF, and the closed

loop bandwidth of the driver (BW) is 2.5MHz. Therefore R1 is chosen to be

636Ω. These values are used to find contribution from various sources. The

summary is presented in Table 3.6.

From the above summary, it is evident that the total contribution from the input

and feedback resistors and the two lowpass filters itself exceeds the specifica-

tion. Hence, the above architecture will not be a good choice for the implemen-

5Atleast two-stages are required for the necessary swing.
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Table 3.6: Noise summary of the fully-differential amplifier with output side
filtering

Noise source Contribution (V2) Calculated value (V2)
Input and feedback resistors 12kTR · 4BW(π/2) 1.56e-9

Low pass filters 2(kT/CL) 82.83e-12

tation of the prototype.

3.3.2 Filtering the noise from input and feedback resistors

The previous section highlights the advantages of the filters at the output of the

driver. The total noise at the output and the gain error is found out for typical

values of the components for both the inverting amplifier based configurations.

It is seen that the for a 2 kΩ input resistor (R), the fully-differential amplifier

architecture is a very bad choice for implementation as the noise from the in-

put, feedback, and the filter resistors exceed the specification. The cascade of

two inverting amplifiers is a better option as the total noise from the resistors

does not exceed the specification leaving some room for the opamp. A rough

calculation yields that nearly 6mA current is required for the implementation

of such a driver. A key point to be noted here is that the fully-differential ampli-

fier gives a lower gain error with a 2 kΩ input resistor compared to the cascade

of inverting amplifiers.

One way of reducing the power consumption in the previously discussed ar-

chitectures is by reducing the noise contribution from any of the sources. The

contribution from the output lowpass filter can be reduced only by increas-

ing the load capacitor deliberately which will entail extra power consumption.

Therefore it is not considered as a solution at this point.

Reducing noise contribution from any of the input resistor, feedback resistor

or the opamp will allow extra margin for the opamp. That is to say that the
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Figure 3.4: Filtering in an inverting unity gain amplifier.

opamp can contribute more noise at the output and this directly reduces the

power consumption of the opamp. A more subtle advantage is that with lower

current levels in the opamp, choosing transistors to have a small overdrive volt-

age is easy. [17] demonstrates the fact that if a transistor is biased such that the

drain-source voltage is greater than their overdrive voltage (VDS > VDSAT) the

distortion contribution from the transistor is small. So, with smaller current in

the opamp, it is easier to design the opamp for low distortion. In the follow-

ing paragraphs, a scheme that filters noise from the above mentioned sources

is considered.

The filtering scheme is explained with an inverting amplifier as illustrated in

Fig. 3.4. The explanation can be easily extended to the fully-differential ampli-

fier. The figure shows a filtering capacitor placed in parallel to the feedback

resistor. The effect of this capacitor on the noise from each of the noise sources

is considered separately.

First, let us consider the noise from the input resistor alone. The noise source

is represented as an ideal voltage source vn,R. The original input is shorted as

usual. This is shown in Fig. 3.5. Since the non-inverting input terminal of the

59



−

+
R

R

C

vout

vn, R

Figure 3.5: Filtering of the input resistor noise in an inverting unity gain ampli-
fier.

opamp is at ground, we can assume that the inverting input terminal of the

opamp to be also at ground. This is based on the assumption of virtual short.

If the inverting input terminal of the opamp is at ground potential, then there

is a current flowing through the input resistor R. The value of this current is

vn,R/R. Since no current flows through the input terminal of the opamp, all

this current has to flow through the feedback path which is a parallel combina-

tion of the feedback resistor R and the filtering capacitor C. The noise voltage

that appears at the output will be equal to the total voltage drop across the

feedback path. Because of the filtering capacitor, the impedance of the feedback

path decreases with frequency. This implies that the noise voltage seen at the

output will decrease with the frequency. This is how the noise from the input

resistor gets filtered. It should be noted that the filteing is of first order and the

associated bandwidth is only controlled by the resistor and the capacitor in the

feedback path.

Let us now consider the noise from the feedback resistor alone. Fig. 3.6 shows

the circuit diagramwhere the noise voltage from the feedback resistor is shown.

Based on the assumption of virtual short, and the fact that the non-inverting
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Figure 3.6: Filtering of the feedback resistor noise in an inverting unity gain
amplifier.
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Figure 3.7: Filtering of the opamp noise in an inverting unity gain amplifier.

input terminal of the opamp is grounded we can say that the inverting input

terminal is also at ground. It can now be seen clearly that the noise at the output

is the lowpass filtered version of the noise of the resistor. It is interesting to note

that again the feedback path resistor and capacitor are involved in the filtering

process. The input and feedback resistor noise gets filtered by essentially the

same filter.

61



−

+

R

C

vout

R

C

vin

Figure 3.8: Alternative technique for noise filtering of noise in an inverting
unity gain amplifier.

Fig. 3.7 shows the input referred noise voltage of the opamp as an ideal voltage

source. Again, based on the assumption of virtual short the inverting input

terminal of the opamp will be at ground. However the summing node will

not be at the ground potential because of the presence of the noise source. The

summing nodewill be at a potential of vn, opamp. This implies that a proportional

current flows through the input resistor. Applying KCL at the summing node

and from the assumption that the input terminals of the opamp do not carry any

current, it can be infered that all the current flowing through the input resistor

will have to pass through the feedback branch. With this the voltage drop seen

across the feedback branch will decrease with an increase in the frequency. It

should be noted that the total noise voltage at the output will be equal to the

sum of the total input referred noise voltage of the opamp and the voltage drop

seen across the feedback path6. Therefore only a part of the total noise voltage

at the output will be filtered. However the interesting point is to see that again

the feedback path resistor and capacitor form the filtering path.

6Another way to analyse this is to refer the total input referred noise voltage to the non-
inverting input terminal and use the overall transfer function to evaluat the final output. How-
ever the author feels that this is not as intuitive as the other method.
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To summarize, the effect of having a capacitor in parallel with the feedback

resistor is that the noise from the input resistor, feedback resistor and the opamp

will get filtered. The bandwidth of this filter will be dependent only on the

resistor and the capacitor in the feedback path. The disadvantage of this sort

of filtering is that the overall transfer function from the input to the output will

also be a lowpass transfer function. This can be easily seen by replacing the

noise source of the input resistor in Fig. 3.5 with the actual input. Because of

this lowpass transfer function, the response of the amplifier to step inputs will

be slow if we choose an aggressive noise filtering option

Fortunately, the solution to overcome this problem is simple and can be con-

ceived very easily. The problem with the arrangement in Fig. 3.4 can be al-

ternatively viewed as follows. The input impedance of the amplifier remains

constant with frequency as it is dependent only on the resistor R. However the

impedance in the feedback path is frequency dependent because of the presence

of the capacitor. Therefore the gain of the circuit, which is dependent on the ra-

tio of the two impedances will also be frequency dependent. To remove this

frequency dependence of the gain, one option is to introduce frequency depen-

dence in the input impedance also. Further the dependence should be similar

to the feedback impedance. This can be easily achieved by adding a suitable

capacitor in parallel to the input resistor. This arrangement is shown in Fig. 3.8.

With this change in the filtering scheme, the contribution from each of the

sources is investigated again with the help of Fig. 3.9. First we consider the

noise from the input resistor. The relevant circuit diagram is Fig. 3.9(a). The

summing node will be at ground potential as per the principle of virtual short.

The voltage across the capacitor in the input path is zero and hence no current

flows through it. The noise voltage vn,R appears directly across the resistor

in the input path and hence a current vn,R/R will flow through it. All of this

current will flow through the feedback path as the inverting input terminal of
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Figure 3.9: Circuit diagram to evaluate the contribution from (a) the input re-
sistor (b) feedback resistor and (c) the opamp in the architecture depicted in
Fig. 3.8

the opamp does not support any current. The impedance of the feedback path

decreases with frequency and so does the voltage drop across it and thereby fil-

tering the noise. Therefore the presence of the capacitor in the input path does

not alter the noise filtering as far as the input resistor is concerned.
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We now consider the noise from the feedback resistor. See Fig. 3.9(b) for ref-

erence. The virtual short principle tells us that the summing node will be at

ground potential. This means that the input path does not carry any current.

No current flows through the input terminals of the opamp. Therefore effec-

tively we see a lowpass filtered version of the noise voltage vn,R at the output.

The presence of the input path capacitor does not affect the filtering of noise

from the feedback resistor either.

The noise from the opamp is shown as an ideal voltage source referred to the

inverting input terminal in Fig. 3.9(c). Based on the principle of virtual short,

the two input terminals of the opamp will be at ground potential. Because of

this, the summing node will see a potential equal to the noise voltage vn, opamp.

Therefore the input path will carry a current that is equal to vn, opamp/Zin. Here,

Zin represents the impedance due to the parallel combination of the resistor R

and the capacitor C in the input path. This current will have to flow through the

feedback path. Since the frequency dependence of the input and the feedback

impedances are the same, the voltage drop across the feedback path will also

be equal to vn, opamp. Therefore, we see 2vn, opamp at the output. Therefore the

addition of the capacitor in the input path will not allow for the filtering of

the noise from the opamp. This is a clear disadvantage of this scheme. The

improved step response comes at the cost of higher noise contribution from the

opampwhen compared to the architecture in Fig. 3.8. Yet another disadvantage

of this arrangement is the fact that the input impedance is dependent on the

frequency. At higher frequencies, the input impedance will be small and will

lead to gain error as described in the previous chapter.
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3.4 Final architectures

This section presents the summary of the evolution of the architectures. The

final architectures are then presented. It is then followed by a detailed noise

analysis and based on the results of this analysis and the choice of the architec-

ture for the implementation of the prototype is justified.

The cascade of inverting amplifiers and the fully-differential amplifier are can-

didate topologies for low distortion drivers. If they are used as it is, acheiving

low distortion and noise simultaneously will be very hard. This is because, to

achieve low levels of distortion at high frequencies we need copious amount

of loop-gain at those frequencies. Stability concerns ensure that to obtain large

loop-gain at higher frequencies the bandwidth of the driver is proportionally

large. A large bandwidth translates to larger noise at the output. To mitigate

this problem, output side filtering is introduced. This helps one to have low

distortion because of the higher loop-gain and low noise because of the ban-

dlimiting offered by the filters.

Further reducing the noise contribution from the input and feedback resistors

and the opamp will help in reducing the overall power dissipation. To this end

adding a capacitor in parallel to the resistor in the feedback will filter out noise

from the input resistor, feedback resistor as well as the opamp. However, the

input will also be filtered. This is fatal for step like inputs as the response can be

very slow based on the lowpass transfer function. Having a suitable capacitor

in the input path will help to solve this problem as the gain is again made inde-

pendent of frequency. With this arrangement, the input will not see a lowpass

transfer function to the output. Along with the input, the input referred noise

of the opamp will also not get filtered. Therefore, only the input and feedback

resistor noise will be filtered.
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Figure 3.10: Circuit diagram of the cascade of inverting amplifiers with filtering.

3.4.1 Cascade of inverting amplifiers with filtering

Fig. 3.10 shows the architecture with filtering. To keep things consistent with

other parts of the dissertation, we again show the single-ended to differential

converter with a gain of 2.

The actual bandwidth of the driver will be set by the first order filter created by

the series combination of R1 and CL. The closed loop bandwidth of each of the

individual amplifiers will be kept as high as required to supress the distortion.

It can now be seen that the input and the feedback resistors’ noise will be first

filtered by the RC filter formed in the feedback branch. Further, it will be fil-

tered even more at the output side filter (R1CL). In order to obtain meaningful

filtering with each of them, the time constants associated should be comparable
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Figure 3.11: Cascade of two RC filters without loading.

to each other. If this is not the case, then the net effect will be almost the same

as having only one filter that has the largest time constant. Therefore by design,

we have to ensure that these time constants are comparable to each other.

Cascade of two RC sections

To find the contribution of the noise from the input and feedback resistors, we

will have to take into account the filtering in both the places. One important

observation that eases the mathematical calculation is that the net filtering in

the architecture is similar to what will be achieved with two independent first

order filters in cascade. By independent, we imply that there is no loading or

interaction between the two stages. This is illustrated in Fig. 3.11where an ideal

voltage controlled voltage source with unity gain separates the two stages and

prevents loading between them.

We first analyse the cascade of two RC sections without loading. Then, the

results can be used to calculate the noise contribution from input and feedback

resistors easily. The same results will be used even in the analysis of fully-

differential amplifier architecture. The overall transfer function can be written

as follows.
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H( f ) =
vout( f )

vin( f )
=

1

1+ j2π f C1R1
·

1

1+ j2π f C2R2
(3.2)
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∣
∣
∣
∣

vout( f )

vin( f )

∣
∣
∣
∣

2

=
1

1+ 4π2 f 2C1
2R1

2
·

1

1+ 4π2 f 2C2
2R2

2
(3.3)

We calculate the noise contribution from the resistor R1 to the output of the

filter. The power spectral density of the input referred noise voltage can be

written as

Sv, in( f ) = 4kTR1 (3.4)

where k and T have their usual meaning. The power spectral at the output can

be written as follows.

Sv, out( f ) = 4kTR1 · |H( f )|2 (3.5)

The mean square noise voltage can be calculated easily as shown below.

vout2 =
∫ ∞

0
Sv,out( f ) d f (3.6)

vout2 =
∫ ∞

0

4kTR1

(1+ 4π2 f 2C1
2R1

2) · (1+ 4π2 f 2C2
2R2

2)
d f (3.7)

Substituting f = (tan θ/2πR1C1) and changing the limits of integration, we

obtain the following.

vout2 =
4kTR1

2πR1C1

∫ π
2

0

1

1+ C2
2R2

2

C1
2R1

2 · tan
2 θ

dθ (3.8)

To solve this integral, we can consider a = R2C2
R1C1

. The equation is rewritten as

below.
∫ π

2

0

1

1+ C2
2R2

2

C1
2R1

2 · tan
2 θ

dθ =
∫ π

2

0

1

1+ a2 · tan2 θ
dθ (3.9)

Substituting x = a · tan θ and suitably changing the limits of integration yields
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the following.

∫ π
2

0

1

1+ a2 · tan2θ
dθ = a

∫ ∞

0

1

1+ x2
·

1

a2 + x2
dx (3.10)

Resolving this into partial fractions, we obtain the following.

a
∫ ∞

0

1

1+ x2
·

1

a2 + x2
dx =

a

a2 − 1

[∫ ∞

0

1

1+ x2
dx−

∫ ∞

0

1

a2 + x2
dx

]

(3.11)

=
a

a2 − 1

[

tan−1 x
∣
∣
∞

0
−

1

a
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(x

a

)
∣
∣
∣
∣

∞

0

]

(3.12)

=
1

a+ 1
·

π

2
(3.13)

=

[
R1C1

R1C1 + R2C2

]
π

2
(3.14)

Therfore,

∫ ∞

0

1

(1+ 4π2 f 2C1
2R1

2) · (1+ 4π2 f 2C2
2R2

2)
d f =

1

4

[
R1C1

R1C1 + R2C2

]

(3.15)

Substituting this in the original equation,

vout2 =
kT

C1

[
R1C1

R2C2 + R1C1

]

(3.16)

This concludes the analysis of the cascade of two RC sections with no loading

between them. The result shown in eqn. 3.16 will be used in the noise analysis

of the architecture.

Noise analysis

First, we find the contribution of the input and feedback resistor of the first

inverting amplifier to the output. A qualitative explanation of the circuit that

aids the analysis is given as follows. The noise voltage from both input and
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feedback resistors will first get filtered by the capacitor in the feedback branch

of the first inverting amplifier. This filtered version of noise passes through the

other inverting amplifier and appears at its output as it is with an inversion.

Therefore, we see a gain of 2.

Note that the use of output side filters decouple the noise and distortion perfor-

mance of the driver. The decoupling is achieved as follows. By having a larger

bandwidth for the closed loop amplifier (larger loop-gain), we obtain lower dis-

tortion at the output but only with higher noise. The output side RC filter will

then limit the overall bandwidth and reduce the noise seen at the final output.

Since the RC filter is made only out of passive circuit elements, its addition will

not degrade the linearity at the final output. It is not unreasonable to assume

that the bandwidth of the inverting amplifier to be large when compared to the

bandwidth of the filter7. Further, it was mentioned in the previous paragraphs

that the bandwidth of the two RC sections should be comparable to each other

to achieve the advantage of additional filtering. Therefore, the bandwidth of

the filter in the feedback branch will also be smaller than the bandwidth of the

inverting amplifier. Therefore the noise that appears at the output of the first

inverting amplifier will appear as it is at the output of the second inverting

amplifier but for an inversion.

The noise at the output of both of the inverting amplifierswill then pass through

the output filters. Therefore the overall mechanism can be thought of as a cas-

cade of RC section corresponding to the feedback branch filtering, ideal gain

block with a gain of 2 corresponding to the cascade of inverting amplifiers, and

another RC section corresponding to the output filter. Therefore the overall

transfer function can be written as follows.

H( f ) =
2

1+ j2π f CR
·

1

1+ j2π f CLR1
(3.17)

7In the actual design, the amplifier bandwidth is nearly 10 times the bandwidth of the output
filter
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The power spectral density of the total input referred noise voltage is as given

below. The expression for this is presented in the previous chapter.

Sv, in( f ) = 8kTR (3.18)

Following similar lines to that shown in the analysis of the cascade of two RC

sections, we obtain the following.

vout2 = 8kTR · 4 ·
1

2πRC

[
RC

RC+ R1CL

]
π

2
(3.19)

The contribution from the resistors in the second inverting amplifier is found

out. The only difference when compared to the calculation of the contribution

from the resistors in the first inverting amplifier is that the noise voltage does

not encounter a gain of 2. However it sees the two filters as expected. Therefore,

the only change in eqn. 3.19 is that the factor of 4 will be reduced to 1. Therefore

the contribution is

vout2 = 8kTR · 1 ·
1

2πRC

[
RC

RC+ R1CL

]
π

2
(3.20)

The noise contribution from the two output filters can be calculated easily. The

noise from the two resistors that appear in the filter on each of the antisymmet-

ric paths will be uncorrelated and will get summed in powers. Therefore,

vout2 =
2kT

CL
(3.21)

3.4.2 Fully-differential amplifier with filtering

The fully-differential amplifier with filtering is as shown in Fig. 3.12. The am-

plifier is configured as a single-ended to differential converter with a gain of

72



C

R

C

R

C/ 2

2R

C/ 2

2R

R1

R1

CL

CL

vin

VCM

vout

Figure 3.12: Circuit diagram of the fully-differential amplifier with filtering.

2. The impedances in the feedback network are so chosen that we obtain the

required gain independent of the input frequency.

Noise analysis

The analysis of noise is very similar to the one that was carried out for the case

of cascade of inverting amplifiers. In that topology, we calculate the contribu-

tion from the resistors of in each of the inverting amplifiers separately. With the

fully-differential amplifier, as there is only one gain stage, the contribution of

the resistors in the amplifier is found out in a single step.

The overall transfer function from the input to the output can be written as

follows. This is based on the assumption that the closed loop amplifier has a

bandwidth that is larger than the bandwidth of the filters employed for noise

filtering.

H( f ) =
2

1+ j2π f CR
·

1

1+ j2π f CLR1
(3.22)
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The power spectral density of the total input referred noise voltage is as shown

below. The proof is presented in the previous chapter.

Sv, in( f ) = 12kTR (3.23)

Based on the results obtained (eqn. 3.16), we can easily calculate the noise at the

output to be

vout2 = 12kTR · 4 ·
1

2πRC

[
RC

RC+ R1CL

]
π

2
(3.24)

The contribution from the output filters is the same as it is for the cascade of

inverting amplifier case and is reproduced here for the sake of easy reference.

vout2 =
2kT

CL
(3.25)

3.4.3 Comparison

In this section, the two architectures are compared for their performance. For

the comparison, the following values of R = 2 kΩ, C = 20pF, R1 = 636Ω, and

CL = 100 pF are used. The load CL comes from the specification. The overall

bandwidth required is shown to be equal to 2.5MHz . Therefore R1 is set to

636Ω. R is chosen as 2 kΩ based on the gain error specfication. C = 20 pF

gives a time constant that is close to that of the output filter. This is necessary

to obtain useful filtering from both the filters.

Opamp noise

The results obtained in the previous sections for the noise contribution from

various sources are used to calculate the respective numerical values. Table 3.7

gives the details for component values as chosen in the above paragraph. With

this we get an idea for the available room for the opamp noise. With this, we
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can obtain the required gm for opamps in the two archiectures. This allows us

to compare them with respect to their total power consumption.

Table 3.7: Noise contributions from different sources of the two architectures

Cascade arch. Fully diff. arch.

Input and feedback resistors (V2) 800e-12 960e-12
Lowpass filters (V2) 84e-12 84e-12

Allowable opamp noise (V2) 716e-12 556e-12

From the table, it is clear that the amount of noise contributed by the resistors

is lesser in the case of the cascade of inverting amplifiers architecture.

Opamp noise: Cascade of inverting amplifiers

We first consider the case of cascade of inverting amplifiers. From the analysis

in previous subsection, in a unity gain inverting amplifier, it is seen that the

input referred noise voltage of the opamp appears at the output with a gain of

2. Since the overall gain is unity, we can effectively refer it as it is to the input

of the inverting amplifier.

First we shall calculate the noise contribution from the first opamp. The total

input referred noise voltage of the opamp when referred to the input of the

driver will see a gain of 2. From the input of the driver to the antisymmetric

output as seen at the outputs of the inverting amplifiers will further see a gain

of 2. Note that the feedback branch will not filter out any of the noise because of

the frequency independent gain. However, the output side filters will filter the

noise. The exact calculation should involve the effect of the finite bandwidth of

the inverting amplifiers. This is neglected here for the sake of easy calculation.

The assumption is reasonable as the bandwidth of the inverting amplifiers is

assumed to be larger than the bandwidth of the output filters.

Let us assume that the power spectral density of the total input referred noise

voltage of the opamp is denoted by Svn, opamp( f ). Then the power spectral density
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of the noise voltage when it is referred to the input of the driver, denoted by

Svn, in( f ), is given as follows.

Svn, in( f ) = 4Svn, opamp( f ) (3.26)

Because of the single-ended to differential conversion, we see a gain of 2. This is

followed by the output filtering. Therefore the transfer function from the input

of the driver to its output can be written equivalently as below. BW refers to

the bandwidth of the output filter in Hz .

H( f ) =
2

1+ j
f

BW

(3.27)

The calculation of the total integrated noise at the output is as shown below.

vout2 =
∫ ∞

0
|H( f )|2 · Svn, in( f ) d f (3.28)

vout2 = Svn, in( f )
∫ ∞

0

4

1+ f 2

BW2

d f (3.29)

As usual, substituting f = tan θ/BW, and chaning the limits of integration, we

obtain the following

vout2 = Svn, in( f ) · 4
∫ π

2

0

BW sec2 θ

1+ tan2 θ
dθ (3.30)

= Svn, in( f ) · 4 · BW
[π

2

]

(3.31)

= 4Svn, opamp( f ) · 4 · BW
[π

2

]

(3.32)

The contribution from the opamp in the second inverting amplifier is straight-

forward and is given as below. The only change that is seen is that the gain is

76



unity instead of 2.

vout2 = 4Svn, opamp( f ) · 1 · BW
[π

2

]

(3.33)

From Eqn. 3.32 and 3.33, we can see that the total noise power due to the two

opamps will be 4Svn, opamp( f ) · 5 · BW(π/2).

Opamp noise: Fully-differential amplifier

The analysis is very similar to the cascade architecture. To achieve a gain of

2, we use a feedback factor of 1/3. With this, the noise gain of the circuit is 3.

That is to say that if vn, opamp represents the total input referred noise voltage of

the fully-differential opamp, then the noise voltage seen at the output will be

amplified by a factor of 3. Since the overall gain of the circuit is 2, the input re-

ferred noise voltage of the opamp when referred back to the input of the driver

will be 3vn, opamp/2. Therefore, if Svn, opamp( f ) represents the total input referred

noise voltage of the opamp, then the power spectral density when it is referred

to the input of the driver, denoted by Svn, in( f ) can be as follows.

Svn, in( f ) =
9

4
Svn, opamp( f ) (3.34)

Because of the frequency independent gain, the feedback branch will not filter

the noise from the opamp. However the output filters do provide filtering. It

is assumed that the bandwidth of the closed loop amplifier is larger than the

bandwidth of the output filters and therefore the effect of the finite bandwidth

of the opamp is not taken into consideration for noise calculations. Therefore

the effective transfer function can be written as follows. BW refers to the band-

width of the output filter.

H( f ) =
2

1+ j
f

BW

(3.35)
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Following the same lines as before, we obtain the total integrated noise at the

output as shown below.

vout2 =
9

4
Svn, opamp( f ) · 4 · BW

[π

2

]

(3.36)

Therefore, from the results of the two architectures, we can see that for the same

gm in the input stage of the opamps, the fully-differential architecture provides

for a lower noise than the cascade of the inverting amplifiers. This is because

the total noise power seen at the output (due to the opamp only) in the cascade

of inverting amplifiers architecture is more than double the total noise power

seen in the case of the fully-differential amplifier. Further, to have the same

amount of gm , we will have to burn twice the power in the cascade of inverting

amplifiers architecture just because of the presence of two opamps. Therefore,

even though the total resistor noise is smaller in the cascade of inverting am-

plifiers architecture, the amount of power that has to be dissipated to meet the

noise requirement is more. Hence the fully-differential architecture is better

suited for implementation as far as the noise performance is concerned.

Distortion

As explained in Section 3.3, the fully-differential amplifier architecture is better

suited for low distortion design because the even order harmonics get cancelled

perfectly (assuming matching between the transistors). In the cascade of invert-

ing amplifier architecture, it was seen that the even order harmonics do not get

cancelled.

A more subtle disadvantage for achieving low distortion in the cascade of in-

verting amplifiers architecture is that the first inverting amplifier is loaded by

the input resistance of the second inverting amplifier in cascade. From the noise

analysis, it is seen that this resistance cannot be very high. Therefore the output
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stage of the opamp in the first inverting amplifier will have to support a sig-

nificantly large bias current which will cause extra nonlinearity. Therefore, the

distortion performance of the fully-differential amplifier is also expected to be

better than that of the cascade of inverting amplifiers architecture.

Output offset

The comparison of the two architectures for their total output offset follows the

opamp noise comparison very closely. In the case of fully-differential amplifier

architecture, the input-referred offset of the opampwill get amplified by a factor

of 3 to the differential output. This is because the feedback factor in use is 1/3.

In the case of cascade of inverting amplifiers architecture, the input-referred

offset voltage of the opamp in the first inverting amplifier will get amplified by

a factor of 2 to its output and will further get amplified by a factor of 2 to the

total differential output. Also, the input referred offset voltage of the opamp in

the second inverting amplifier will also get amplified by a factor of 2 to the total

differential output. Therefore, for the same mismatch between the input pair

transistors in the opamps of the two architectures, the total output offset seen

in the fully-differential architecture will be smaller.

Gain error

In the previous chapter, it is shown that the for the same value of input resistor,

the input resistance of the fully-differential architecture is larger. Therefore the

gain error from the fully-differential architecture should be smaller among the

two. Yet another disadvantagewith the pseudo-differential nature of the output

in the cascade architecture is that any delay between the two anti-symmetric

components of the output can cause gain error.
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Settling time

The pseudo differential nature of the output in the cascade architecture is ex-

pected to have a larger settling time when compared with the fully-differential

architecture for the same small-signal bandwidth. This is because a part of the

signal has to pass through a cascade of two individual amplifiers as opposed to

a single amplifier in the fully-differential architecture.

Based on the above arguments, it is clear that the fully-differential architecture

is a better option than the cascade of inverting amplifiers. Hence, the fully-

differential architecture is chosen for the implementation of the prototype.

3.5 Schematic design

3.5.1 Bandwidth

The closed loop bandwidth of the driver is derived from the settling time spec-

ification. It is given in Table 3.2 that the output of the driver should settle to

18-bit accuracy within 1 µs. To arrive at the required closed loop bandwidth

specification, we assume that the output of the driver will follow first order be-

haviour. The assumption is justified because, at the output, we have first order

lowpass filters anyway as shown in Fig. 3.12. The settling at the output of the

opamp will have some effect to the settling at the final driver output. Since

we choose to keep the loop bandwidth to be much larger than the output filter

bandwidth, the effect is expected to be smaller. Towards this end, we choose to

keep the loop bandwidth to be ten times the bandwidth of the filter at the out-

put. Therefore the closed loop bandwidth as seen at the output of the opamp is

25MHz.

Assuming first order response at the output, it can be seen that we require 13τ
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to reach 18-bit accuracy. The maximum settling time allowed is 1 µs. Therefore

τ should be ≤ 80 ns. This implies that the bandwidth of the driver should be ≥

2MHz. With some margin, we choose to implement the driver to have a closed

loop bandwidth of 2.5MHz.

For a 2.5MHz output filter with the load capacitor being 100pF, the value of

the series resistor R1 gets fixed to 636Ω. Also, based on the gain error and total

noise specification, a choice of 2 kΩ for the input resistor R is valid. See 2 for

details. As discussed in Section 3.3, to get the advantage of additional filtering

from the frequency dependent feedback impedance, the time constant of the

filter present in the feedback path should be close to the time constant of the

filter present at the output. We choose a value of 4MHz for the bandwidth of

the filter in the feedback path. This fixes the value of C to 20pF. Note that these

are exactly the same values that were used for the comparison in Section 3.4.3

3.5.2 Input gm required

The noise contributions from various sources in the fully-differential amplifier

is found out analytically in Section. 3.4. Table 3.8 summarizes the contributions.

R =2Ω, C = 20pF, R1=636Ω, CL=100pF, and BW=2.5MHz are used to find out

the numerical contributions. It is seen that the opamp in total can contribute

556e-12V2 of noise power to the output.

Table 3.8: Noise summary of the fully-differential amplifier architecture

Noise source Analytical expression Calculated value (V2)
Input & feedback resistors 12kTR/(RC + R1CL) 960e-12

Output resistors 2kT/CL 84e-12
Opamp 9Svn, opamp · BW · (π/2) 556e-12 (available)

The thermal noise spectral density of the input referred noise voltage of an

opamp which has a differential pair with active load as the first stage is given
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as below.

Svn, opamp( f ) = 8kTγ

[

1

gm1

+
gm2

g2m1

]

(3.37)

Here, k and T have their usual meaning. γ=2/3 for transistors in the long chan-

nel operation and is typically found higher under short-channel operation of

the transistor. gm1
refers to the transconductance of the input pair transistors

and gm3 refers to the transconductance of the load transistors. The noise from

the subsequent stages will be insignificant compared to the noise from the first

stage and is therefore neglected.

Along with thermal noise, the transistors also contribute frequency dependent

flicker noise. A 3:1 ratio is chosen for the thermal noise to flicker noise con-

tribution. Therefore, the opamp should be designed such that its flicker noise

contribution is ≤139e-12V2 and the thermal noise contribution is ≤417e-12V2.

Based on this, we can write the following.

417e-12 = 9 · 8kTγ

(

1

gm1

+
gm3

g2m1

)

BW ·
π

2
(3.38)

We now assume that gm3 to be half of gm1
. By design, we need to ensure that this

condition holds true and this is not an unreasonable assumption. Substituting

the values of γ = 2/3, BW=2.5MHz, T=273K, the Boltzmann’s constant, and

gm1
of 10mS the contribution from the first stage is close to 300e-12V2. With

this, we have a room of around 100e-12V2 to accomodate for deviations. There-

fore, the transconductance of the input pair transistors should be designed to

be close to 10mS and the transconductance of the load transistors in the first

stage should be designed to be close ot 5mS.
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Figure 3.13: Small-signal model of the driver amplifier.

3.5.3 Small-signal details

Since a 0.6µm CMOS process with a nominal power supply of 5V is chosen for

the implementation of the prototype, obtaining high DC gain will not require

many stages. Techniques like cascoding and gain-boosting can be implemented

easily. However, the output has to support rail-to-rail swing and because of this,

we choose a two-stage architecture for the opamp.

The small-signal model of the feedback amplifier is as shown in Fig. 3.13. Gm1

represents the transconductance of the input stage. In Section 3.5.2 it is shown

that Gm1 should be ∼10mS. Go1 represents the output conductance of the first

stage. In the process it is seen that the transistors easily have an intrinsic gain of

∼100. With this, if cascoding is employed in the first stage, then we can obtain

Go1 of ∼2 µS. C1 represents the parasitic load capacitance of the first stage. This

is assumed to be ∼5 pF.

Gm2 represents the transconductance of the second stage. With a feedback factor

of 1/3, it is shown in Section A that for stability, Gm2 ≥ 0.5Gm1. Therefore,

with some margin, we choose a value of ∼10mS for Gm2. As before, assuming

an intrinsic gain of 100 and without cascoding, we obtain Go1 to be close to

∼100 µS. Co2 is assumed to be ∼5 pF and is the parasitic load of the second

stage.

83



The feedback network comprising of R and C is shown in the model. The out-

put lowpass filters consisting of R1 and CL are also shown. Cin represents the

parasitic capacitor at the input of the opamp. A value of 10 pF is assumed for

small-signal bandwidth simulations.

The approximate locations of all the poles and zeros are found out. A 8 pF ca-

pacitor is used as the compensation capacitor (CC). Table 3.9 has the details of

the poles and zeros of the small-signal model in question. p1, the pole associ-

ated with the Miller capacitor is the dominant pole. In the expression for p1,

Gain2 represents the gain from the second stage alone.

With the presence of the frequency dependent impedances in the feedback path

and RC filter at the output of the opamp, two poles—one associated with the

CL and the other associated with [Co2||(series combination of Cand0.5C)]—are

created. The approximate locations are easily evaluated as shown in Section B.

In the expressions for p2 and p3, R′
o2 represents the parallel combination of Go2

and Gm2CC/(CC + C1). It is seen that p2 is within the attempted unity loop-

gain frequency of 25MHz. It should be noted that the zero z1 formed by the

output filter is very close to p2 and compensates it. p3—pole associated with

Co2 + C/3 and z2—RHP zero formed due to the feedforward path through the

Miller capacitor are seen to be beyond the unity loop-gain frequency and hence

are neglected. One important thing that has to be noted here is that the presence

of Cin creates a closely spaced pole-zero pair at 2.98MHz. Although this does

not cause any degradation in the phase margin in the loop, it can lead to slow

settling components as described in [18].

With this small-signal model, the simulated unity loop-gain frequency is seen

to be ∼35MHz. The aim was to have a closed loop bandwidth of ∼25MHz.

With the above setup, we have enough room to support the parasitic poles that

arise from cascode and other circuit additions.
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Table 3.9: Pole-Zero summary of the small-signal model

Expression Frequency
p1 Go1/2πCC(1+ Gain2) ∼ 1 kHz
p2 1/ (2π ((R′

o2||3R) + R1)C1) ∼ 2MHz
p3 1/2π(R′

o2||3R||R1)(Co2 + C/3) ∼ 80MHz
z1 1/2πR1C1 ∼2.5MHz
z2 Gm2/2πCC ∼200MHz (RHP zero)

M0

M0C

M0 : 800[40/2]

M0C : 400[40/2]
M1 M2

M6M5

im ip

op1 om1

M1, 2 : 200[2.8/1.4]

M5, 6 
: 10[24/2]

M7

M3 M4

M8

cmfb

M3, 4 : 100[15/1.5]

M7, 8 : 100[15/4.5]

1.1mA

Vdd

Figure 3.14: Input stage of the opamp.

3.5.4 Opamp design

First stage

We made the assumption of cascodes in the first stage while dealing with the

small-signal model of the amplifier so as to obtain a very high DC gain. There

are two ways of employing cascodes—telescopic and folded. We choose the

telescopic cascode for the implementation. The advantages of this choice over

the folded cascode are (a) smaller power consumption as there is no folding

arm, (b) higher gain because of the reduced loading, and (c) lesser noise because
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of the absence of current sources required to bias the folding arm.

Further, as pMOS transistors contribute lower flicker noise and offset, input

pair is made a pMOS input pair. To reduce the noise and offset contribution

from the load nMOS transistors, we choose the natural flavor over the standard

VT flavor. The natural transistors are indicated by a dashed line in the symbol.

Based on noise considerations, we have shown that the input stage gm should

be ∼10mS. Assuming a gm/ID of 15, the current required through the input

transistors is ∼667 µA. We choose a current of 550 µA for the input transistors.

The transistors are sized so that the gm obtained is ∼9.3mS. The cascodes are

chosen such that the output resistance seen looking into the pMOS side alone is

∼3.5MΩ.

In the discussion on opamp noise, it was also assumed that the gm of the load

transistors in the first stage is half of the gm of the transistors in the input stage.

So, the nMOS load transistors are sized such that they provide a gm of 5.4mS.

Again, cascodes are sized such that the output resistance looking into nMOS

side alone is ∼2.5MΩ. Therefore, the total output resistance seen at the out-

put of the first stage is ∼1.5MΩ and the DC gain of the stage is ∼80 dB. The

schematic of the first stage is as shown in Fig. 3.14

It can be seen from Fig. 3.14 that a cascode transistor is used in the implementa-

tion of the tail current source. The design of this current source is tricky because

of the very small headroom available. The available headroom is small be-

cause the fully-differential amplifier is configured to be used as a single-ended

to differential converter by holding one input of the amplifier at a common-

mode value. This configuration causes the input terminals of the opamp to

see a swing that is 1/3rd of the total swing of the input to the amplifier. With

a 5V power supply, the input terminals of the opamp can see a swing be-

tween ∼1.8V to ∼3.3V around 2.5V common-mode. Allowing for sufficient

VGS for the input pair, the worst case headroom available to bias the tail current
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Figure 3.15: Second stage of the opamp.

source is∼500mV. Each of the transistors is biased to have overdrive voltage of

∼200mV. The total output resistance provided by this current source is 640 kΩ.

Second stage

In order to obtain maximum gm for a given current in the output stage, we

choose the class-AB output stage. Fig. 3.15 shows the circuit diagram of the

second stage. The biasing setup used to obtain the class-AB operation was first

demonstrated in [19]. [20] and [21] provide insight into the operation of the

same with more details. Yet another reason to choose a class-AB output stage

is because of its superior settling performance compared to the class-A output

stages.

From the small-signal model, we know that the second stage should provide a

total gm of 10mS. Since the design is a class-AB type, we can share the gm be-

tween the output nMOS and pMOS transistors. Therefore, from a single tran-
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sistor, we need a gm of ∼5mS. Assuming a gm/ID of 15, the current required

in the output branch is ∼333 µA. We choose to bias the output transistors at

300 µA.

Mab1−4 form the bias transistors for the stage and Mabn, p form the control tran-

sistors. The stage is based on the translinear loops formed (see [22]). Mab1,

Mab2, Mabn, and Moutn form one loop and a similar loop consisting of pMOS

transistors can also be seen. To ensure that the biasing is stable, the VT of Mab1

and Moutn should match well. This can taken care by having them close to each

other and having dummy fingers around them. Simulatenously, the VT of Mab2

and Mabn should also match. Achieving this is not as straightforward as the

previous case because of the presence of the signal. With the presence of the

signal at the source of Mabn, the body effect of that transistor comes into play

and because of that the threshold voltage of Mabn gets modulated. The bias

transistor Mab2 does not experience this effect. Therefore, the output stage cur-

rent gets modulated and will lead to significant nonlinear distortion. To ensure

good matching between these transistors, we use “isolated“ nMOS transistors

(comes with a triple well process). With this flavor, the body of the devices

can be connected to their respective sources and thereby mitigating the prob-

lem. Similar arguments can be made with the pMOS side of the output stage as

well. The fact that the body of the pMOS transistors is easily available helps in

achieving the necessary matching.

We use a ratio of 1:10 between Mab1 and Moutn. This will ensure that the current

through the output stage will be 10 times the current through Mab1. Since we

need the output stage current to be equal to 300 µA, we bias the Mab1 transistor

with 30 µA. A 1:10 ratio is also maintained between Mab4 and Moutp and Mab4

is also biased to carry a current of 30 µA. With this arrangement, the other bias

transistors Mab2 and Mab3 will also carry 30 µA. Therefore, we bias each of the

control transistors Mabn and Mabp with 30 µA.
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A disadvantage of using class-AB operation is that the gm of the output stage

varies with the input signal. In order to keep the modulation of gm of the output

stage small, the biasing is done such that even with peak signal, both the output

transistors remain in saturation. This is achieved by suitably choosing the gm

and the bias current of the control transistors. The choice should be such that

even at peak signal operation, none of the control transistors should completely

turn off. Effectively, the arrangement is the same as two class-A common source

amplifiers in parallel. Further it is seen that the distortion performance of the

output stage is better if the two control transistors have the same gm . In or-

der to ensure this, we size the pMOS three times as large as the nMOS control

transistor.

The gm of the Moutn is seen to be ∼4.8mS and that of Moutp is ∼4.6mS . Also,

the output resistance seen from the stage is around 20 kΩ.

TheMiller-compensation capacitor of 8 pF is realised as two 4pF capacitors and

are connected across the two output transistors. Further, series resistors (RC) are

also used to bring the RHP zero formed because of the Miller-compensation to

the left half plane to improve the phase margin. The zero is now placed at 1.5

× the unity loop-gain frequency.

Common-mode feedback

A single error amplifier scheme is used to set the output common-mode voltage

of both the stages. Fig.3.16 shows the common-mode detector, error amplifier

and the load of the first stage of the opamp. The second stage is not shown in

the figure to avoid clutter. Since the swing at the output is rail-to-rail, a highly

linear common-mode detector is required. Hence, a resistive common-mode

detector is used. 250 kΩ resistors are used so that the gain of the second stage

of the opamp is not reduced. However, this large resistor along with the input

capacitance of the error amplifier creates a low frequency pole and reduces the
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Figure 3.16: Common-mode feedback circuitry.

phase margin. In order to overcome the effect of phase margin degradation due

to this pole, additional capacitors of 1 pF are placed in parallel to the resistors.

It can be seen that the common-mode loop is effectively a three-stage struc-

ture including the error amplifier. The compensation capacitor which is used to

compensate the differential loop itself also acts as the compensation capacitor

to the common-mode loop. Since, there is no freedom in changing the com-

pensation capacitors, the gain of the three-stage structure should be controlled

such that the loop is stable. This requires the error amplifier to have a very low

gain. The error amplifier in Fig. 3.16 is a low gain amplifier. The error amplifier

itself can be interpreted as a fully-differential single stage amplifier with resis-

tive common-mode feedback. Low valued resistors (1.5 kΩ) are used to bring

down the differential gain of this single stage amplifier. Without the resistors,

the gain obtained from the error amplifier is found to be large enough to reduce

the phase margin.
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The output of the error amplifier is fed to the load of the first stage (M3 and M4

in Fig. 3.14) of the opamp. The gm of these transistors decides the gain of the

this stage as far as the common-mode loop is concerned. The load transistors

M3 and M4 have a gm of∼5mS. Such a high value rendered the common-mode

loop unstable. In order to reduce the gm seen by the common-mode feedback

signal, transistors M3 (and M4) are split into two parts M3a and M3b (M4a and

M4b) such that M3a (M4a) carries 440 µA and M3b (M4b) carries only 110 µA.

Note that originally M3 carried a current of 550 µA. The common-mode feed-

back signal is now only fed to M3a and M4a as shown in Fig. 3.16. Since they

carry much lower current, the gm offered by them to the common-mode feed-

back signal is proportionally smaller and this helps us achieve stability.

M3a and M4a are explicitly biased to carry 440 µA each. The error amplifier is

biased to carry a tail current of 110 µA. This current source is obtained from

the same source that controls the first stage tail current. Replica biasing is used

to match Mc3 with M3b (and Mc4 with M4b). A 11.5 pF capacitor is placed in

parallel to the tail current source of the error amplifier. Doing this will create a

pole-zero pair at the associated tail node and the pole is found to be at twice the

frequency of the zero. Therefore, the phase lead provided by this zero is used

to improve the phase margin of the common-mode feedback loop.

The intuition on the zero creation is as follows. At low frequencies, the tail

node of the error amplifier will be at vin/2, where vin is the voltage at the input

of the error amplifier. Now, the gain of the error amplifier can be calculated

to be gm RL/2, where RL is the effective load resistance. At high frequencies,

the capacitor shunts the current source and the tail node will be effectively at

ground and the corresponding gain will be gm RL. We can see that the setup

has created a left half plane zero at gm /C, where C is the capacitor is used in

parallel to the current source.

91



Figure 3.17: Snapshot of the layout view of the prototype driver.

3.6 Layout and Simulation results

3.6.1 Layout

Fig. 3.17 shows the layout of the prototype driver. The various blocks are also

annotated. It should be noted that to obtain very good matching between the

input pair transistors, the fingers are interleaved.

3.6.2 Simulation results

Unless otherwise mentioned, the simulation results are obtained from the ex-

tracted netlists from the layout. For extracting the netlist with parasitics, mini-

mum R setting of 0.1Ω and a minimum C setting of 1 fF is used. Further, 5 nH

inductances are also used with relevant nodes to include the effect of the bond-

wire inductance. Simulations are done at three different temperature settings

of -40◦, 25◦, and 125◦ C and at three different power supply voltage settings of

4, 5, and 6V and across the three different process corners.

Differential loop-gain

Figures 3.18 and 3.19 shows the loop-gain magnitude and phase response for

the 27 different combinations respectively. In these simulations, the output fil-

ters (636Ω + 100pF) with 2.5MHz bandwidth are present as load to the fully-
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Figure 3.18: Magnitude response of the differential loop-gain over PVT varia-
tions.

differential amplifier.

In the nominal corner, the unity loop-gain frequency obtained is 26.76MHz

with 71◦ phase margin. Across the PVT corners a minimum phase margin

of 62◦ is maintained. The minimum unity loop-gain frequency obtained is

∼11.6MHz. This occurs with weak corner, 135◦ C and with 4V power supply.

Common-mode loop-gain

Figures 3.20 and 3.21 shows the common-mode loop-gain magnitude and phase

response for the 27 different combinations respectively. In these simulations,

the output filters (636Ω + 100pF) with 2.5MHz bandwidth are present as load

to the fully-differential amplifier.

In the nominal corner, the unity loop-gain frequency obtained is 8.5MHz with

65.6◦ phase margin. Across the PVT corners a minimum phase margin of 58◦ is
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Figure 3.19: Phase response of the differential loop-gain over PVT variations.
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Figure 3.20: Magnitude response of the common-mode loop-gain over PVT
variations.
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Figure 3.21: Phase response of the common-mode loop-gain over PVT varia-
tions.

maintained. The minimum unity loop-gain frequency obtained is ∼3.25MHz.

This occurs with weak corner, 135◦ C and with 4V power supply.
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Figure 3.22: Magnitude response of the differential loop-gain over PVT varia-
tions in no load condition.

Differential loop-gain without load

Figures 3.22 and 3.23 shows the loop-gain magnitude and phase response for

the 27 different combinations respectively. In these simulations, the output fil-

ters (636Ω + 100pF) with 2.5MHz bandwidth are removed. This is important

because the driver amplifier should remain stable even when the SAR ADC is

in the conversion mode.

In the nominal corner, the unity loop-gain frequency obtained is 26.76MHz

with 71◦ phase margin. Across the PVT corners a minimum phase margin

of 47◦ is maintained. The minimum unity loop-gain frequency obtained is

∼18.5MHz. This occurs with weak corner, 135◦ C and with 4V power supply.
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Figure 3.23: Phase response of the differential loop-gain over PVT variations in
no load condition.

Common-mode loop-gain without load

Figures 3.24 and 3.25 shows the common-mode loop-gain magnitude and phase

response with no load for the 27 different combinations respectively. In the

nominal corner, the unity loop-gain frequency obtained is 8.5MHz with 65.6◦

phase margin. Across the PVT corners a minimum phase margin of 55.5◦ is

maintained. The minimum unity loop-gain frequency obtained is ∼4.5MHz.

Closed loop response

Figures 3.26 and 3.27 show the magnitude and phase response of the driver in

the presence of the output filter load. It can be seen that the gain is equal to two

and is constant over the 100 kHz bandwidth. The phase response is also flat up

to 100 kHz . It should also be seen that the bandwidth of the driver is close to

2.5MHz. This can be seen by the magnitude plot where the gain reduces by
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Figure 3.24: Magnitude response of the common-mode loop-gain over PVT
variations in no load condition.
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Figure 3.25: Phase response of the common-mode loop-gain over PVT varia-
tions in no load condition.
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3dB as well as in the phase plot where is a phase lag of 45◦ is seen.

Figures 3.28 and 3.29 show the magnitude and phase response of the driver in

the absence of the output filter load. It can be seen that the gain is equal to

two and is constant over a 1MHz bandwidth. The phase response is also flat

up to 1MHz. Without the load, the bandwidth of the driver is above 25MHz.

Peaking in the response is also seen. This should not be a cause of concern as

we are interested in signal frequencies up to 100 kHz only.
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Figure 3.26: Magnitude response of the closed loop transfer function over PVT
variations.
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Figure 3.27: Phase response of the closed loop transfer function over PVT vari-
ations.
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Figure 3.28: Magnitude response of the closed loop transfer function over PVT
variations under no load condition.
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Figure 3.29: Phase response of the closed loop transfer function over PVT vari-
ations under no load condition.

Table 3.10: Lookup table for RRMOD

RRMOD Temp. Vdd Corner RRMOD Temp. VDD Corner
1 -40◦ 4 Nominal 15 30◦ 5 Strong
2 -40◦ 4 Weak 16 30◦ 6 Nominal
3 -40◦ 4 Strong 17 30◦ 6 Weak
4 -40◦ 5 Nominal 18 135◦ 6 Strong
5 -40◦ 5 Weak 19 135◦ 4 Nominal
6 -40◦ 5 Strong 20 135◦ 4 Weak
7 -40◦ 6 Nominal 21 135◦ 4 Strong
8 -40◦ 6 Weak 22 135◦ 5 Nominal
9 30◦ 6 Strong 23 135◦ 5 Weak
10 30◦ 4 Nominal 24 135◦ 5 Strong
11 30◦ 4 Weak 25 135◦ 6 Nominal
12 30◦ 4 Strong 26 135◦ 6 Weak
13 30◦ 5 Nominal 27 135◦ 6 Strong
14 30◦ 5 Weak
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Lookup table

Table 3.10 shows the PVT corners associated with each of the RRMOD value.

The results of noise, distortion and step response simulations are shown with

reference to RRMOD.

Noise

Table 3.11: Integrated output noise across PVT variations

RRMOD Noise power (V2)
1 1.135e-9
2 1.197e-9
3 1.053e-9
4 1.089e-9
5 1.143e-9
6 1.016e-9
7 1.057e-9
8 1.105e-9
9 988.6e-12
10 1.542e-9
11 1.637e-9
12 1.423e-9
13 1.469e-9
14 1.549e-9
15 1.364e-9
16 1.417e-9
17 1.488e-9
18 1.321e-9
19 2.220e-9
20 2.384e-9
21 2.029e-9
22 2.081e-9
23 2.214e-9
24 1.918e-9
25 1.986e-9
26 2.100e-9
27 1.840e-9

Table 3.11 shows the total integrated noise power at the output of the driver in

the presence of output filters. It can be seen that RRMOD = 13 corresponds to

102



the nominal corner and in this case, the specification is met. The bandwidth

over which integration is carried out is 1mHz to 1 THz.

Step response

Large-signal:

A full scale (0.1Vdd -0.9Vdd ) input step is applied to the driver and the settling

time for an 18-bit accurate response is found out. The simulated results across

the PVT corners are shown in Fig. 3.30 and 3.31. The results are shown for

rising as well as falling step inputs. For these simulations, the nonlinearity of

the 100pF capacitor in the output load is modeled. Further an overall mismatch

of 1% is explicitly added to the output filter sections. This is to account for the

mismatch seen at the board level. From the plots, it is seen that driver meets

the specification of ≤1 µs.

Small-signal:

Fig. 3.32 and 3.33 depict the settling time for 18-bit accurate response with

small-signal rising and falling step at the input respectively. A 10mV input step

is used for the simulations. The error band is also made proportionally smaller

while calculating the settling time. The variation of the settling time with PVT

changes is very small indicating a very good small-signal performance of the

driver.
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Figure 3.30: Settling time for 18-bit accurate response over PVT variations for
rising input step.
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Figure 3.31: Settling time for 18-bit accurate response over PVT variations for
falling input step.
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Figure 3.32: Settling time for 18-bit accurate response over PVT variations for
rising small-signal input step.
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Figure 3.33: Settling time for 18-bit accurate response over PVT variations for
falling small-signal input step.
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Distortion

Table 3.12 shows the total harmonic distortion seen at the output of the driver

for 10Hz as well as 100 kHz . Simulations are carried out with the presence

of the lowpass filters at the output. A peak-to-peak of 0.8Vdd input signal is

used for the simulation. Also, the load nonlinearity is modeled along with 1%

mismatch introduced in the output filters. From the table, it is seen that the

driver meets the low frequency THD specification while the high frequency

linearity is slightly off from the original specifications.

Table 3.12: Total harmonic distortion across PVT variations

RRMOD THD @ 10Hz ( dB ) THD @ 100kHz ( dB )
1 -123.697 -99.749
2 -125.015 -96.3625
3 -123.906 -101.244
4 -127.45 -99.224
5 -128.898 -98.0279
6 -127.575 -99.431
7 -130.239 -97.4531
8 -131.786 -97.0971
9 -130.378 -97.6143
10 -127.797 -96.7554
11 -129.005 -93.7421
12 -127.745 -98.6105
13 -131.286 -96.6045
14 -132.477 -95.1183
15 -131.21 -97.4628
16 -134.425 -95.5645
17 -135.476 -94.7776
18 -134.721 -96.1787
19 -130.758 -95.2616
20 -132.429 -91.363
21 -129.162 -98.0924
22 -133.109 -96.2561
23 -134.726 -93.788
24 -130.458 -97.5142
25 -135.879 -95.3898
26 -137.576 -94.047
27 -131.143 -96.1339
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Offset

To find the output offset of the driver, a 100-run monte carlo simulation with

process variation and mismatch is carried out. Table 3.13 shows the simulation

results at different VDD. The results show the 3σ number. It is to be noted that

the simulation is done using the schematic and not on the extracted netlist as

monte carlo simulation on the extracted netlist was extremely resource inten-

sive.

Table 3.13: Output offset across power supply variation

VDD(in V) Output offset(in mV)
4 1.82
5 2.16
6 1.75

3.7 Conclusions

In this chapter, the specifications chosen for the implementation of the proto-

type driver is presented. Detailed noise analysis of architectures based on the

inverting amplifier configuration with output side filtering are given. Output

side filtering is used to remove the trade-off between the distortion and noise

performance of such drivers. Additional filtering scheme to reduce the noise

contribution from the input and feedback resistors in such architectures is pre-

sented. The noise analysis of the architectures with additional filtering is re-

done. In depth performance comparison between the cascade of inverting am-

plifiers and the fully-differential amplifier is presented. It is shown that the

fully-differential amplifier outperforms the cascade of inverting amplifier in all

aspects and is therefore made the choice for the implementation of the proto-

type driver. The design procedure is dealt with thoroughly. This is followed by

simulation results which prove the performance of the design. The simulated
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performance summary of the design is as shown in Table 3.14

Table 3.14: Performance summary of the driver

Specification Simulated performance Comment

Offset < 2.5mV < 2.5mV
Gain error < 5% < 5%

THD at 10Hz < -120dB -131.2 dB spec. at nominal condition
THD at 100 kHz < -100dB -96.6 dB spec. at nominal condition
Sampled noise < 40µV < 38.07µV spec. at nominal condition
18 bit settling in 1 µs < 1µs

VDD = 5 ± 1 V works satisfactorily
Temp range -40◦ to 135◦ works satisfactorily

Power 14.5mW at nominal condition
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CHAPTER 4

Measurement Results

4.1 Frequency response

Fig. 4.1 shows the setup used to measure the frequency response of the driver

amplifier. A single-ended input signal from the signal generator is applied to

the driver. The other input of amplifier is held at common-mode voltage. To

facilitate this, we have used a dual power supply for the chip. With this ar-

rangement, directly connecting the relevant input terminal to the ground plane

will set the necessary common-mode voltage. At the output of the driver, a

series combination of 636Ω in series with 100pF capacitor is used as the load.

The output is fully-differential and to probe the signal a high impedance active

differential probe is used. The probed signal is then fed into an oscilloscope to

make the measurements. For the measurement of the small-signal frequency

response, a 100mV peak-to-peak signal is used.

The measured frequency response at room temperature and across three dif-

ferent power supplies is as shown in Fig. 4.2. From the response, it can be

seen that the gain of the driver is 2. The gain remains flat for frequencies

upto 100 kHz and this ensures satisfactory performance of the device over the

frequency range of interest. Further, this matches with the simulated results.

However, we see that there is high frequency peaking that is unexpected. We

expect it to be an artefact of the measurement setup. One possible cause could

be that of the board trace inductance interfering with the active probe circuitry.

In the current setup, the output traverses through a long trace (with a 0Ω resis-

tor in the path) before it is picked up by the probe through Berg connectors.
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Figure 4.1: Measurement setup used for frequency response.
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Figure 4.2: Measured small-signal frequency response across different power
supplies.

4.2 Output offset

Fig. 4.3 shows the setup used to measure the output offset of the driver ampli-

fier. To measure the output offset, the inputs of the driver are hard connected

to the ground plane of the board through 0Ω resistors. To ensure compatibility

with the input common-mode voltage, dual power supplies are used for the

measurement. At the output of the driver, a series combination of 500Ω in se-
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Figure 4.3: Setup used for output offset measurement.

ries with 100pF capacitor is used as the load. Output pins are accessed on the

board with Berg pins. A Berg to Banana adapter cable is used and the signal is

fed into a multimeter using Banana connectors for measurement.

Measurements were done across 8 chips. Further, for each of the chips, mea-

surements were done at 3 different power supply voltage settings (4, 5, and

6V) and 3 different temperature settings (-40◦, 25◦, and 125◦ C). The measured

output offset was always found to be less than 1.36mV. This indicates satisfac-

tory performance of the driver in terms of output offset.

4.3 Output noise

Fig. 4.4 shows the setup used to measure the output noise of the driver am-

plifier. Similar to the offset measurement, the inputs of the driver are hard

connected to the ground plane of the board through 0Ω resistors. To ensure

compatibility with the input common-mode voltage, dual power supplies are

used for the measurement. To measure the noise, we use the AP2722 audio an-

alyzer from Audio Precision. The input impedance of this analyzer is specified

as 100 kΩ ||185 pF. To drive this high capacitive load provided by the analyzer,

we use 500Ω resistors in series with the output.

The analyzer provides some standard filtering options for the measurement of

111



2.5 V

-2.5V

AP2722

Analog 
analyzer

Figure 4.4: Setup used for output noise measurement.

noise. 20Hz to 80 kHz is the largest bandwidth over which the measurements

can be made and is therefore the choice in our measurements. The equivalent

circuit is used to simulate the noise for comparison. One important thing that

has to be ensured is that the cable carrying the signal from the board to the

analyzer should be twisted nicely so that any environmental common-mode

noise is rejected completely.

Two measurements are made to find out the contribution from the driver. The

first measurement is made using the setup as shown in Fig. 4.4. This measures

the noise from driver amplifier along with the noise from measurement equip-

ment. To determine the noise contribution from the measurement equipment, a

large capacitor (10 µF) is placed across the input terminals of the analyzer. This

filters the noise from the driver almost completely and the measurement read-

ing will correspond to the noise contribution from the measurement equipment

alone. The contribution from the measurement equipment is calibrated out to

find the exact contribution of the driver.

The simulated and measured noise performance of a driver at three different

temperature settings are given in Table 4.1. The simulated and the measured

values match closely. The matching seems to be better with increased tempera-

ture. The reason for this discrepancy could be due to the die temperature being

established to value that is different than the read temperature on the tempera-

ture source (especially for lower values).
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Table 4.1: Measured noise performance of the driver

Temperature Measured ( µV) Expected ( µV)
-40◦ 5.61 5.36
25◦ 6.29 6.12
125◦ 7.17 7.14

2.5 V

-2.5V

AP2722

Analog & Digital
analyzer

AP2722

Analog 
generator

Figure 4.5: Setup used for THD measurement.

4.4 Total harmonic distortion

Fig. 4.5 shows the setup used to measure the distortion at the output of the

driver amplifier. The low distortion analog sinewave generator available in

AP2722 from Audio Precision is used as the input signal for the measurements.

By default, the output common-mode voltage of the sinewave generator is zero.

In order to obtain a sine signal with a different common-mode, an extra DC

voltage source needs to be used in conjunction with the generator. To reduce

the complexity of the test setup, we choose a common-mode voltage of zero by

the use of dual power supply.

To measure the distortion in the output signal from the driver, we use the ana-

lyer from the same device AP2722. To drive the analyzer without any prob-

lems, we use a series resistor of 500Ω. Internally, a 24-bit ∆ − Σ ADC with a

sampling rate of 65.536kS/s is used to measure the frequency response of the

output signal. To reduce the nonlinearity introduced by the analyzer itself, we

try to reduce the swing of the signal at the input of the analyzer itself by adding
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a parallel combination of 180pF and 100 kΩ in series with the analyzer. This is

to mock the input impedance of the analyzer so that the analyer sees only half

the signal swing at the output of the driver by voltage division. To further re-

duce the nonlinearity contribution from the ADC, the internal notch filter that is

available in AP2722 is also used. The notch is set at the fundamental frequency

itself so that the swing at the input of the ADC is very small. With this setup,

the harmonics seen in the signal generator output for a 1.414V peak signal were

below -130dB.

The THD performance of the driver is measured using this setup. Since the

ADC sampling rate is 65.536 kS/s, it is impossible to characterize signals be-

yond 32.768 kHz with this setup. Since we are interested in finding out the

nonlinearity of the amplifier, we can characterize the THD performance upto

only 10 kHz (3rd harmonic at 30 kHz).

Table 4.2 shows the strengths of the second and third harmonics at the out-

put with a 4V peak-to-peak signal at the input. These measurements were

made at room temperature with 5V power supply voltage. The results for

three different frequency settings are shown. It is seen that only the second and

third harmonics have significant strengths. The THD performance at 300Hz is

∼118.5 dB . This confirms the satisfactory linearity performance of the driver.

Fig. 4.6 shows the spectrum of the output signal measured with this setup. The

input signal frequency is 1 kHz. The use of the notch filter can be easily seen.

From the spectrum, it is clear that only the second and third harmonics are sig-

nificant.

Table 4.2: Measured linearity performance of the driver across input frequency

Fund. freq. Second harmonic ( dB ) Third harmonic ( dB )
300Hz -128 -115.7
1 kHz -133.65 -116.5
10 kHz -123.13 -127.5
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Figure 4.6: Output spectrum with notch filter at the fundamental.
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Figure 4.7: Setup used for setting time measurement.

4.5 Step response

Fig. 4.7 shows the setup used to measure the settling time of the driver ampli-

fier. The step input required to excite the amplifier is also created on the board

and is shown in the figure. A reference IC is used to the high and low val-

ues (using resistive divider) of the step input. These high and low values are

buffered using THS4031 opamps. An analog mux TS5A3159 is used to switch

between the buffered high and low values to create the step input.
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An 18-bit ADC is used to make the measurements. A scheme similar to equiva-

lent time sampling is used. The scheme is explained in detail in [23]. Tomeasure

the settling time to 18-bit accuracy, it is seen that the switch used to create the

step should have very good isolation between the two channels and the output.

This is to ensure that transients due to the load switching does not get coupled

to the other channel and thereby reducing the quality of the input step itself.

An alternative way to reduce the effect of load switching is to have a replica

step generation circuit with the switching happening in the opposite way. With

this arrangement, the total load seen by the opamps buffering the high and low

values remains constant and eliminates transients due to switching.

The low distortion analog sinewave generator available in AP2722 from Audio

Precision is used as the input signal for the measurements. By default, the out-

put common-mode voltage of the sinewave generator is zero. In order to obtain

a sine signal with a different common-mode, an extra DC voltage source needs

to be used in conjunction with the generator. To reduce the complexity of the

test setup, we choose a common-mode voltage of zero by the use of dual power

supply.

In our setup we use ADS8881 for the measurements. The reference voltage of

the ADC is set at 4V. TheADC has an ESD diode between the input pins and the

reference pin. Therefore to not turn on the ESD diode, the voltage on the input

terminals cannote exceed 4V. Therefore we choose a 1V input stepwith suitable

common-mode such that the voltage on the input terminals are well below 4V

even in the case of overshoot. The results for 0.1% and 0.01% accurate settling

times are measured for three different temperature settings. Table 4.3 shows the

details. Fig. 4.8 shows the corresponding waveforms.
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Table 4.3: Measured settling times across temperature

Accuracy Cold Room Hot
0.1% 160ns 160 ns 200 ns
0.01% 240ns 280 ns 360 ns
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Figure 4.8: Measured response of the driver for 1V input step.
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CHAPTER 5

AModel-Agnostic Technique for Simulating

Per-Element Distortion Contributions

5.1 Introduction

Distortion due to nonlinearity and noise due to inherent randomness are the

most important disturbances in signal processing circuits. Circuits must be de-

signed such that these are kept below certain specified levels. Knowing indi-

vidual contributions of these disturbances from different elements to the overall

output is useful for optimizing circuits. Determining noise contributions from

individual elements is routinely done in standard circuit simulators. For dis-

tortion though, such facility is not usually available. The total output distortion

can however be determined easily by running a transient or periodic steady

state analysis with nonlinear device models.

To determine the distortion or noise contribution of each element, we need to

know the equivalent nonlinear distortion or noise source in that element, and

the transfer function from that source to the output. The difficulty in resolving

individual distortion contributions is that, unlike in the case of noise, it is not

straightforward to calculate the equivalent distortion source of the element. If

the nonlinear device were described by a Taylor or Volterra series in the port

variables, the nonlinear source would consist of the higher order terms in the

series. In practice, the device models are a lot more complicated and not de-

scribed in simple closed form. Also, unlike noise, equivalent distortion source

strongly depends on the signal levels in the element.



We present a technique that bypasses both these steps of explicitly computing

the distortion source of the device or the transfer functions to the output [24].

To do this, we first simulate the output distortion of the original circuit. We

then replace the element whose contribution we want to determine by another

element whose operating point and first order terms are exactly the same as the

original, but whose nonlinear terms are changed by known factors. We show

that such a device can be constructed based on elementary circuit theory and with-

out any knowledge of the device model. We simulate the output distortion of the

modified circuit as many times as there are significant nonlinear terms, with

the scaling factors of nonlinear terms changed each time. The relationship be-

tween the output distortion in these simulations and distortion contributions

from different nonlinear terms is a set of linear equations whose coefficients

are the (known) scaling factors of nonlinear terms in the modified element. We

extract the contributions from different terms by solving this set of equations.

For weakly nonlinear circuits, the extracted contribution of an element is the

reduction in distortion when nonlinear terms disappear from that element. For

circuits with high distortion, the extracted contributions are sensitivities of out-

put distortion to nonlinear terms of the element.

In the rest of this section, we first briefly discuss techniques which are fre-

quently used by designers or have been published in the literature for deter-

mining distortion contributions from different elements of a circuit and then

provide an outline for the rest of the chapter.

In case of a cascade of open loop stages, the difference in distortion between the

input and output of a stage can be attributed to that stage. Loading of one stage

by another makes it harder to isolate contributions from a stage. For closed loop

systems, this technique cannot be used. Alternatively, distortion contribution

from an element can be determined by replacing it by its linear equivalent (e.g.

opamp by a voltage controlled voltage source) and the observing the change
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in distortion. This typically oversimplifies the circuit and misses many details

such as loading.

Using the probing and nonlinear current injection method (also called the per-

turbation method) described in [25], and suitable Taylor or Volterra series mod-

els for nonlinear elements, numerical values or symbolic expressions for output

distortion components can be derived (e.g. [26, 27, 28, 17, 29]). The distortion

contribution of an element is obtained by selectively injecting nonlinear cur-

rents or by identifying terms containing constants belonging to that element.

Key difficulties here are finding suitable models and extracting numerical val-

ues of model parameters (which has to be manually carried out at the relevant

operating point). Algebraic complexity is an additional difficulty with symbolic

calculations.

[30] circumvents the extraction of nonlinear device models by using an appro-

priate multi-sine excitation with which one can determine the equivalent addi-

tional distortion source of each element. This is essentially a missing tone test,

and it may not be easy to relate this to conventional single-tone harmonic dis-

tortion and two-tone intermodulation distortion tests. It also involves choosing

an appropriate multi-tone input signal which entails additional labor.

[31] describes an efficient technique that finds the nonlinear contribution of an

element by subtracting the operating point and first order terms from the non-

linear function describing the element. But, this algorithm has to be coded into

the simulator and cannot be used by a circuit designer running a conventional

SPICE-like simulator.

Recent versions of Virtuoso Spectre ([32, 33]) provide small signal distortion

summary based on the perturbation method and small signal transfer func-

tions around a dc or periodic operating point. The contribution of each element

is calculated as the output distortion of the circuit when only that element is

nonlinear. Consequently, distortion arising from interaction between different
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nonlinear elements are not identified in per-element contributions.

Compared to these, the proposed technique eliminates the need for symbolic

analysis or model (and parameter) extraction, does not oversimplify or oth-

erwise alter the circuit to first order, can identify contributions arising from

interaction between nonlinearities of different elements, and can be run on a

conventional SPICE-like simulator. All these come at the expense of having to

run multiple simulations.

In the next section, we show how to synthesize a new nonlinear element which

has the same operating point and linear characteristics as a given element, but

different nonlinear characteristics. We start with the simplest realization of such

an element, discuss its limitations, and describe a more elaborate realization

which is usable in all cases. Such nonlinearity scaling is illustrated with an ex-

ample in Section 5.3. In Section 5.4, additional scaling factors that come into

play when the nonlinear element is embedded in a circuit are discussed. In

Section 5.5, we show how to use this element with scalable nonlinear terms to

obtain individual distortion contributions. The interpretation of per-element

distortion contributions and its contrasting features with noise are discussed

in Section 5.6. In Section 5.7 the proposed technique is verified by applying

it to several examples. Section 5.8 compares our technique to other published

techniques for computing per-element distortion contributions. Section 5.9 con-

cludes the chapter.

5.2 Obtaining a device with scaled nonlinearity

5.2.1 Scaling nonlinearity using two copies of the element

For simplicity, the principle is first illustrated with a memoryless one-port ele-

ment. Fig. 5.1(a) shows a nonlinear element E with a current-voltage relation-
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I1s = I1a+I1b+I1c

Figure 5.1: (a) Nonlinear one-port element E, (b) Operating point, (c) Nonlinear
one-port element constructed from two instances of E driven by V1a and V1b.

ship I1 = f (V1). Fig. 5.1(b) shows the same element E at a certain operating

point (V10, I10). Defining incremental voltage v1 and current i1 respectively as

v1 = V1 − V10 and i1 = I1 − I10 and expanding the nonlinear relationship in a

Taylor series around the operating point, we get

I1 = f (V10)
︸ ︷︷ ︸

I10

+ f
(1)
V10

v1 +
f
(2)
V10

2!
v21 +

f
(3)
V10

3!
v31 + . . .

︸ ︷︷ ︸

i1

(5.1)

where f
(k)
V10

is the kth derivative of f evaluated at the operating point V10. The

first term is the operating point, the second term is the linear part, and succes-

sive terms are nonlinearities of corresponding orders.

Now consider the one-port in Fig. 5.1(c) which is constructed from two in-

stances of elements E driven with voltages V1a and V1b. These voltages are

related to V1, the voltage across the one-port, as follows:

V1a = V10 + a1 (V1 −V10) , V1b = V10 + (1− a1) (V1 −V10) (5.2)

where a1 is a scaling factor. In other words, the two copies of E experience
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differently scaled versions of the incremental voltage v1 = V1 −V10 around the

same operating point (V10) as the original. The current I1s in the new one-port

element is defined as I1s = I1a + I1b − I10. Using (5.1) and (5.2), we get the

Taylor series representation for I1s.

I1s = f (V10) + f
(1)
V10

v1 +
(

a21 + (1− a1)
2
) f

(2)
V10

2!
v21

+
(

a31 + (1− a1)
3
) f

(3)
V10

3!
v31 + . . . (5.3)

It is clear from (5.1) and (5.3) that I1s, the current in the nonlinear one-port

element in Fig. 5.1(c), has the same operating point and linear terms as I1 in

the original one-port element in Fig. 5.1(a), but scaled nonlinear terms. The Nth

order term in the series is scaled by α(N) = aN1 + (1− a1)
N . The scaled element

reduces to the original when α(N) = 1 for all N (a1 = 0 or a1 = 1).

This reasoning can be easily extended to a two-port element. Fig. 5.2(a) shows

a two-port element E with voltages V1,V2 and currents I1, I2. Fig. 5.2(b) shows

the operating point condition. Fig. 5.2(c) shows a new two-port network con-

structed from two instances of E which receive scaled versions of the incremen-

tal voltages above the operating point. The voltages applied to the copies of the

two-port are given by the following relationships:

V1a = V10 + a1 (V1 −V10) , V1b = V10 + (1− a1) (V1 −V10)

V2a = V20 + a2 (V2 −V20) , V2b = V20 + (1− a2) (V2 −V20) (5.4)

The currents I1a,1b and I2a,2b in the two networks are combined with the operat-

ing point currents I10 and I20 to obtain I1s and I2s in Fig. 5.2(c). These are given

by

I1s = I1a + I1b − I10, I2s = I2a + I2b − I20 (5.5)
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Figure 5.2: (a) Nonlinear two-port element E, (b) Operating point, (c) Nonlinear
two-port constructed from two instances of E driven by V1a,2a and V1b,2b.

Using similar reasoning as with the one-port, it is clear that I1s and I2s of the

composite two-port network in Fig. 5.2(c) consist of the same operating point

and first order terms as I1 and I2 in the original two-port in Fig. 5.2(a), but

have scaled higher order terms. Table 5.1 lists the scaling factors for second and

third order terms in I1 and I2. The pattern for higher order terms is obvious.

Different nonlinear terms of a given order are scaled differently, ensuring that

their contributions can be distinguished from one another.

If we use the same scaling factor a1 for both ports instead of different factors

a1, a2, the scaling factor for all nonlinear terms of a given order will be the same

as in the one port case. These are also shown in the table. In general, the scaling

factor for the Nth order term is α(N) = aN1 + (1− a1)
N .
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Table 5.1: Scaling factors for the two-port of Fig. 5.2(c)

Second order Differently scaled ports Identically scaled ports

v21 α(2,0) = a21 + (1− a1)
2

α(2) = a21 + (1− a1)
2v1v2 α(1,1) = a1a2 + (1− a1)(1− a2)

v22 α(0,2) = a22 + (1− a2)
2

Third order

v31 α(3,0) = a31 + (1− a1)
3

α(3) = a31 + (1− a1)
3v21v2 α(2,1) = a21a2 + (1− a1)

2(1− a2)

v1v
2
2 α(1,2) = a1a

2
2 + (1− a1)(1− a2)

2

v32 α(0,3) = a32 + (1− a2)
3

The concept can be easily generalized to an M-port element. In an M-port el-

ement, we need M scaling factors a1, . . . aM to scale the incremental port volt-

ages v1, . . . vM. Each Nth order nonlinear term in the scaled network will be

of the form ∏
M
k=1 v

lk
k where 0 ≤ lk ≤ N and ∑

M
k=1 lk = N. The scaling factor

for this term would be α(l1,...,lM) = ∏
M
k=1 a

lk
k + ∏

M
k=1(1− ak)

lk . If all ports are

scaled by the same factor a1, the scaling factor for all Nth order terms would be

α(N) = aN1 + (1− a1)
N .

5.2.2 Dependence of coefficients under simultaneous presence

of both even and odd order nonlinearities

The scaling factors α(k) for kth order nonlinear term in the scaled one-port of

Fig. 5.1(c) are given below for 1 ≤ k ≤ Ne + 1. Ne is even.

α(1) = 1 α(Ne) = aNe
1 + (1− a1)

Ne

α(2) = a21 + (1− a1)
2 = 2aNe

1 − Nea
Ne−1
1 + . . .

= 2a21 − 2a1 + 1

α(3) = a31 + (1− a1)
3 α(Ne+1) = aNe+1

1 + (1− a1)
Ne+1

= 3a21 − 3a1 + 1 = (Ne + 1)aNe
1 −

(Ne + 1)Ne

2
aNe−1
1 + . . .

=
Ne + 1

2

(

2aNe
1 − Nea

Ne−1
1

)

+ . . .
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In the expression for α(3), a31 terms cancel out and the highest power term is

a21. Also, the terms containing a21 and a1 are in the same proportion in α(3) and

α(2). By inspection, it is clear that α(3) = 1.5α(2) − 0.5α(1). Similarly, for any

even Ne, the highest power in both α(Ne+1) and α(Ne) will be aNe
1 because aNe+1

1

terms cancel out in the former. Again, the terms containing aNe
1 and aNe−1

1 are

in the same proportion in α(Ne+1) and α(Ne). There is a similar dependence be-

tween lower power terms of α(Ne+1) and α(Ne). Therefore, α(Ne+1) can be written

as a linear combination of {α(Ne), α(Ne−1), . . . , α(2), α(1)}. This causes the linear

equations that will be set up (described in the next section) to extract the con-

tribution of the nonlinear element to be linearly dependent and consequently

unsolvable. Therefore, the composite element realized using two copies of the

original element as shown in Fig. 5.1 or 5.2, though it scales the nonlinear terms

in a predictable and distinct manner, cannot be used when the nonlinear ele-

ment has terms with both an even power Ne and the next odd power Ne + 1. It

can be used when only odd or only even nonlinear terms are present.

5.2.3 Scaling nonlinearity using three copies

Dependence between scaling factors can be eliminated by constructing the com-

posite element using three copies of the original element. Fig. 5.3(c) shows a

composite one-port network so constructed. The three copies in the compos-

ite one-port element are driven by voltages V1a, V1b, and V1c as defined below

(v1 = V1 −V10):

V1a = V10 + a1v1, V1b = V10 + b1v1, V1c = V10 + c1v1 (5.6)

The scaling factors a1, b1, and c1 are chosen such that their sum is unity. The

current I1s in the new one-port is defined as

I1s = I1a + I1b + I1c − 2I10 (5.7)
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Figure 5.3: (a) Nonlinear one-port element E, (b) Operating point, (c) Nonlinear
one-port element constructed from three instances of E driven by V1a, V1b, and
V1c.

Summing the three individual one-port currents and subtracting twice the op-

erating point current ensures that the operating point of the new one-port ele-

ment is exactly the same as that of the original. The sum of scaling factors being

unity ensures that the new one-port element has exactly the same first order

behavior as the original. The scaling factor for the Nth order term is given by

α(N) = aN1 + bN1 + cN1 . These scaling factors can be chosen to be independent for

all N.

Generalization to two or more ports is straightforward. An M-port element

with scaled nonlinearity and independent scaling factors can be similarly con-

structed using three copies of the original M-port. For port k, the scaling factors

for the three copies would be ak, bk, ck with ak + bk + ck = 1. The scaling factor

for Nth order nonlinear term of the form ∏
M
k=1 v

lk
k (0 ≤ lk ≤ N and ∑

M
k=1 lk = N)

would be α(l1,...,lM) = ∏
M
k=1 a

lk
k + ∏

M
k=1 b

lk
k + ∏

M
k=1 c

lk
k . As before, scaling factors
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for all ports can be chosen to be identical (ak = a, bk = b, ck = c for all k), if one

is not interested in distinguishing between different nonlinear terms of each

order. In this case, all Nth order terms would be scaled by α(N) = aN1 + bN1 + cN1 .

5.2.4 Generalization to nonlinearity with memory

Memoryless nonlinear elements are chosen above for simplicity, however, the

method is equally applicable to nonlinearity with memory. Such elements are

described using a Volterra series, which is similar in spirit to the Taylor series.

Instead of the kth order term containing vk1 as in the latter, the former has k inte-

grals underwhich v1 is time shifted andmultiplied k times. The first and second

order terms in Taylor and Volterra series are shown below for illustration.

f
(1)
V10

v1 ↔
∫

h
(1)
V10

(τ1) v1(t− τ1)dτ1

f
(2)
V10

2!
v21 ↔

∫∫

h
(2)
V10

(τ1, τ2) v1(t− τ1)v1(t− τ2)dτ2dτ1 (5.8)

h
(1)
V10

is the first order Volterra kernel (impulse response of the linearized ele-

ment) and h
(2)
V10

is the second order Volterra kernel, both evaluated at the oper-

ating point V10. The pattern continues for higher order terms.

Though the terms in the series expansion appear more complicated, it must

be noted that v1 appears only once under the integral (a linear operation) in

the first order term, it is multiplied by itself under the integral in the second

order term and so on. Therefore, it is easy to see that, when three such series in

which the incremental voltage v1 is scaled by a1, b1, and c1 respectively (with

a1 + b1 + c1 = 1) are added together, the first order term is retained as is, the

second order term is scaled by a21 + b21 + c21 and so on. Generalization to more

ports is similar to earlier cases. Therefore the proposed technique for scaling

nonlinearity works equally well for nonlinear elements with memory.
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Figure 5.4: Scaling of the Nonlinear one-port element E in impedance form.
(a) Nonlinear element E (b) Operating point, (c) Nonlinear one-port element
constructed from three instances of E driven by I1a, I1b, and I1c.

5.2.5 Generalization to other representations

In the description above, the admittance form (current as a function of voltage)

has been used. This is the most convenient form for frequently used nonlinear

elements such as the MOS or bipolar transistor and diodes. Nonlinearity scal-

ing can equally well be accomplished in impedance form. For this, the voltage

controlled voltage sources used to apply port voltages to the copies of the ele-

ment in Fig. 5.3(c) are replaced by current controlled current sources to apply

port currents. The current controlled current source that sets the port current in

Fig. 5.3(c) is replaced by a voltage controlled voltage source that sets the port

voltage. The controlled sources are defined as in (5.6) with the roles of voltage

and current interchanged. This representation may sometimes be necessary, for

instance, with inductors. Generalizing further, a multi-port network could have

some or all ports driven by current sources instead of voltage sources.
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Figure 5.5: (a) Common source amplifier, (b) With M1 replaced by its scaled
version M1s, (c) Amplifier in its quiescent condition, (d) Scaled transistor.

5.3 Verification of nonlinearity scaling

Nonlinearity scaling is illustrated using the common source amplifier circuit in

Fig. 5.5(a). It has a single nonlinear element M1. This circuit is simulated to de-

termine the contribution from the first five terms of its Taylor series. The input

signal is a single sinusoid whose amplitude is such that the dominant contribu-

tion to the Nth harmonic is from the Nth order nonlinear term, i.e. the transistor

is in the weakly nonlinear regime. In Fig. 5.5(b), the transistor M1 is replaced
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Figure 5.6: Illustration of nonlinearity scaling. Simulated values are distortion
components in Fig. 5.5(b) for different scaling factors of M1s. Expected values
are distortion in Fig. 5.5(a) multiplied by expected scaling factors. Difference
between simulated and expected values are shown in thick black lines against
y-axes on the right.

by its scaled version M1s. Fig. 5.5(c) shows the amplifier in its quiescent condi-

tion. The scaled transistor M1s is shown in Fig. 5.5(d). For simplicity, only two

copies are used as in Fig. 5.2. Also, since the bulk is tied to source in Fig. 5.5(a),

the transistor is treated as a three terminal two-port element instead of a four

terminal three-port element. The two ports (gate-source and drain-source) use

identical scaling factors a1. The controlled sources in the scaled transistor use

the operating point information from Fig. 5.5(c). The Nth harmonic in Fig. 5.5(b)

is expected to be α(N) = aN1 + (1− a1)
N times the Nth harmonic in Fig. 5.5(a).

Fig. 5.6 shows the simulated and expected values of the second, third, fourth,

and fifth harmonics in Fig. 5.5(b). The harmonics scale as expected. The simu-

lated and expected values are very close to each other. The difference between

them is plotted against expanded y-axis on the right, and is seen to be smaller

than 0.5 dB in all cases. The fundamental component (not shown here) is seen to

be constant with scaling factor a1. These results validate the scaling technique.
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5.4 Scaling of terms with embedded elements

Table 5.2: Scaling factors for an embedded nonlinear one-port element

Additional factors
Order Scaling factor Interacting terms from interaction

2 α(2) — —

3 α(3) (2, 1)(2) α(2)2

4 α(4) (3, 1)(2), (2, 1, 1)(3), (2, 2)(2) α(2)α(3), α(2)3

5 α(5) (4, 1)(2), (2, 1, 1, 1)(4), α(2)α(4),

(3, 1, 1)(3), (3, 2)(2), (2, 2, 1)(3) α(3)2 , α(2)2α(3)

Table 5.3: Scaling factors for an embedded nonlinear two-port element

Additional factors
Order Scaling factor Interacting terms from interaction

2 α(2,0), α(1,1), α(0,2) — —

3 α(3,0), α(2,1), (2, 1)(2) α(2,0)2 , α(0,2)2 ,

α(1,2), α(0,3) α(1,1)2 , α(0,2)α(2,0),

α(2,0)α(1,1),

α(1,1)α(0,2)

The previous section described a technique to alter the nonlinear terms of an

element by known factors. If a nonlinear element is driven by an independent

voltage source, the kth order nonlinear term in the current is scaled by α(k).

When the element is embedded in a network, the voltage across the element

is influenced by the current in the element, which in turn is a nonlinear func-

tion of the voltage across it. This interaction results in additional scaling fac-

tors for terms of each power in the nonlinear function. It is possible to derive

these scaling factors by going through iterative steps of analyzing the effect of

nonlinearity of an element, e.g., by the probing and nonlinear current injection

method in [25]. Due to lack of space, we only give an intuitive justification and

the final results. Table 5.2 summarizes the results for a one-port element. The

second and third columns show the order of terms and corresponding scaling

factors arising from scaling the nonlinearity. The fourth column shows possi-
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ble interactions between lower order terms which can give rise to terms of a

given order. For instance, a third order term (v3) can be generated by a second

order interaction (= number of terms being multiplied) of second and first or-

der terms (v2 × v). This is indicated as (2, 1)(2). The number in the superscript

indicates the order of interaction and the numbers in the lower parentheses in-

dicate the order of interacting terms. The scaling factor for this term would be

the product of scaling factors for each of the interacting terms and the scaling

factor for the order of interaction, i.e. α(2) × α(1) × α(2) = α(2)2 . By construction,

α(1) = 1. Different interactions can give rise to the same scaling factor, e.g.,

(3, 1)(2) and (2, 1, 1)(3) both result in α(2)α(3). Since we are dealing with weakly

nonlinear systems, a component arising from interaction between two or more

higher order terms would be weaker than that arising from interaction between

first order terms and a single higher order term. The former are shown in gray

in Table 5.2 and can usually be ignored.

Table 5.3 shows the scaling factors for the two-port case. They are many more

in number, but conceptually similar to those for a one-port element. In place of

α(2)2 = α(2) × α(2) for the third order case we have all possible pairwise prod-

ucts of {α(2,0), α(1,1), α(0,2)}. As usual, if both ports of a two-port are scaled

identically, the scaling factors are same as in the one-port case. These additional

factors have to be accounted for when extracting the contributions (described

in the next section). Depending on the circuit configuration, some of the inter-

action terms maybe absent.

5.5 Determining an element’s contribution

Fig. 5.7(a) shows a circuit with a nonlinear element E whose contribution to

distortion has to be determined. For clarity of discussion, we consider a single

input voltage vs, an output voltage vo, and an element E which has nonlinear
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Figure 5.7: (a) Original circuit with element E, (b) Circuit with E replaced by its
scaled version Es, (c) Original circuit at its operating point. This information is
used in the scaled element Es.

terms only up to the second order. But the technique is general and works in

the same way for multi-tone inputs, currents instead of voltages, and elements

with higher order nonlinearity. Vb and Ib represent sources used to setup the

operating point.

First, the output voltage vo,sim1 of the circuit in Fig. 5.7(a) is simulated. Then,

the schematic in Fig. 5.7(b) is generated from the original schematic. It consists

of the circuit with the nonlinear element E replaced by its scaled version Es

comprising three copies1 of E. For simplicity, we initially assume that either E

is a one-port element, or a multi-port element with all ports scaled by the same

1If a nonlinear element is known to have terms only up to the second order, scaled elements
with only two copies can be used as in Section 5.2.1. To be general, this discussion uses three
copies.

134



factor. The scaling factor for the second order nonlinearity α(2) = a21 + b21 + c21,

where a1, b1, c1 are the scaling factors for the incremental voltages in the three

copies. The scaled element Es requires the original operating point information.

Therefore, a copy2 of the original circuit in quiescent condition is included in the

schematic (Fig. 5.7(c)) to provide this. The output voltage vos,sim2 is simulated in

this modified circuit. The linear equations below relate different contributions

to the output voltages in the two simulations.






1 1

1 α
(2)
sim2











v
(rest)
o

v
(2)
oE




 =






vo,sim1

vos,sim2




 (5.9)

In the above, v
(2)
oE is the contribution from the second order nonlinear term of

E. v
(rest)
o is due to everything other than the second order nonlinear term. This

comprises of contributions from the rest of the circuit and also from the linear

term of E. The first equation simply states that the output is the sum of all these

contributions. In the second equation, only v
(2)
oE is scaled differently, because

the scaled element Es is designed that way, and the contribution of the rest of

the circuit is assumed to remain unchanged. Solving this set of linear equations

results in v
(2)
oE and v

(rest)
o .

In the above description, vo,sim1 and vos,sim2 are assumed to be time domain volt-

ages. The method is general and works with any type of input. One could,

for instance, compute the contribution of nonlinear terms to the step response.

Most often though, distortion analysis is carried out with sinusoidal inputs at

one or more frequencies. In that case, the output voltages could be, say, for one

period of the fundamental signal, obtained from transient or periodic steady-

state simulations. It is clear that any linear transformation of the output volt-

ages can be used equally well in (5.9), and the result would be the same linear

2For convenience, the technique is illustrated with a duplicated circuit for the operating
point. But this duplication is not essential. As an alternative, the operating point could be
simulated first (in the same simulation or a separate one) and appropriate information could be
fed to the scaled network E.
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transformation of v
(2)
oE and v

(rest)
o . This enables us to work directly with the dis-

tortion component of interest. For example, one could rewrite the above in

terms of phasors corresponding to the second harmonic as follows:






1 1

1 α
(2)
sim2











H
(rest)
o2

H
(2)
oE2




 =






Ho2,sim1

Hos2,sim2




 (5.10)

Ho2,sim1 and Hos2,sim2 are the output second harmonic phasors in the two simu-

lations and H
(2)
oE2 and H

(rest)
o2 are respectively the output second harmonic con-

tributed by the second order term of E and the rest of the circuit. In general, one

could choose the time or frequency domain representation of a single harmonic

or intermodulation distortion component or a combination of several compo-

nents and extract the contribution of nonlinear terms of E to those components.

One can also extract the contribution to the fundamental component, which

denotes compression or expansion, and contribution to dc, which denotes off-

set due to nonlinearity. Working directly with harmonics is convenient, for in-

stance, when using Fourier integral based distortion analysis. This analysis is

built into SPICE-like circuit simulators and avoids aliasing. It is calculated on

the fly as the simulation is running. Its outputs are the phasors at different

harmonics.

If E is a two-port and one is interested in extracting contributions from its dif-

ferent second order terms (see Table 5.1) one needs four simulations instead of

two, but the procedure is essentially the same. The linear equations relating the

contributions from different terms to the output voltages in different simula-
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tions are given below:
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(5.11)

v
(2,0)
oE , v

(1,1)
oE , v

(0,2)
oE respectively denote contributions from v21, v1v2, and v22 terms

(v1 and v2 are the port voltages of E). α(2,0), α(1,1), and α(0,2) are the correspond-

ing scaling factors and are given in Table 5.1. For each simulation, these values

must be chosen such that the equations above are independent. A simple way

to ensure this is to choose a, b, and c (scaling factors for the incremental voltages

in the three copies) to be different from each other in each simulation, and to be

different from any of the a, b, or c values used in previous simulations.

In the above, the element E had nonlinear terms only up to the second order.

For higher orders, more simulations have to be carried out. The number of

simulations equals one plus the number of relevant scaling factors α (Table 5.2).

For instance, if both second and third order nonlinearity are present, and the

total distortion contribution of the element is to be extracted, four simulations

are required3 and a set of linear equations analogous to (5.9) is setup as given

below
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(5.12)

The terms above have the usual meaning. v
(2)2

oE is the nonlinear contribution

3By choosing a, b, c such that α(3) = α(2)
2
, we can eliminate one simulation. Then it will not

be possible to distinguish between these two contributions.

137



due to mixing of first and second order voltages in the second order term of E.

The number of significant nonlinear terms has to be initially determined by trial

and error. A priori knowledge that some terms are insignificant (e.g. even order

terms in a fully differential two-port) can reduce the number of simulations.

The steps required to extract the distortion contribution from an element E are

summarized below.

1. Simulate the original circuit to obtain its operating point

2. Simulate the original circuit to obtain its output (transient waveform or
periodic steady-state waveform or distortion phasor as desired)

3. Create Es, the scaled counterpart of the desired element Ewith the scaling
factors a, b, c as parameters and the operating point information (from step
1) as additional inputs.

4. Make a copy of the circuit with the desired element E replaced by its
scaled counterpart Es.

5. Determine K, the number of significant nonlinear terms from which the
distortion contribution has to be determined. For many nonlinear circuits,
accounting for nonlinear terms up to third order is sufficient.

6. Choose K sets of {a, b, c} to be used in Es and construct the matrix [A]
of scaling factors (e.g. on the left hand side of (5.12)) such that it is not
singular.

7. Simulate the new circuit (with the result from step 1 as operating point
inputs to Es) to obtain its output (transient waveform or periodic steady-
state waveform or distortion phasor as desired). This step has to be re-
peated K times with new scaling factors (chosen in the above step) each
time. Form vo,sim, the vector of simulated outputs from the results in step
2 and this step.

8. The equation relating the vector of contributions [v
(rest)
o vTE]

T to the vec-

tor of simulation results vo,sim is [A][v
(rest)
o vTE]

T = vo,sim (e.g. see (5.12)).

Extract the vector of contributions [v
(rest)
o vTE]

T = [A]−1 vo,sim.

A note of caution is in order here. If an element has significant nonlinear terms

up to, say, fifth order, and we are interested only in the contribution from the

second order term, we must still extract the contributions from all nonlinear

terms up to fifth order. This is because, a key assumption in (5.9), (5.11), or
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Figure 5.8: Cascade of two nonlinear stages.

(5.12) is that the contribution of v
(rest)
o to the output remains the same when the

nonlinear element is scaled. Choosing not to extract the contribution of a non-

linear term means that it is clubbed with v
(rest)
o . Because all nonlinear terms are

scaled when the element is scaled, ignoring significant nonlinear terms violates

the above assumption.

5.6 Interpretation

Consider a cascade of two stages as shown in Fig. 5.8, each nonlinear up to third

order: y = x+ β2x
2 + β3x

3, z = y+ γ2y
2 + γ3y

3. The overall nonlinearity from

x to z is given by

z = x+ (β2 + γ2)x
2 + (β3 + 2β2γ2 + γ3)x

3 + . . . (5.13)

The third order term in the overall nonlinearity consists of three components:

• Third order output of the first stage going through first order term of the
second stage (β3x

3).

• First order output of the first stage going through third order term of the
second stage (γ3x

3).

• First and second order outputs of the first stagemixing in the second order
term of the second stage (2β2γ2x

3).

Applying the technique described in this chapter, the contribution of the two

stages to the third order nonlinearity of the overall function can be identified as
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(β3 + 2β2γ2)x
3 and (γ3 + 2β2γ2)x

3 respectively. The former has all terms con-

taining βs and the latter, those containing γs. The component arising from the

interaction of the two nonlinearities, 2β2γ2x
3, is counted against both stages.

To interpret these results correctly, it is first useful to recall the possible interpre-

tations of the random noise contribution SoE( f ) of an element E to the output

noise (assuming as usual that noise from different elements are uncorrelated).

• If E became noiseless, the total output noise would reduce by SoE.

• If all elements other than E became noiseless, output noise would be SoE.

• The sum of noise contributions SoEk of all elements Ek in the circuit equals
the total output noise.

Inspection of the calculated nonlinear contributions of the two stages quickly

reveals that only the first of the above interpretations holds true for distortion.

That is to say, if voE is the distortion contribution of an element E, it means that,

if Emagically became linear, the output distortion reduces by voE. But, if Ewere

the only nonlinear element, distortion products which are solely due to interac-

tion between nonlinearities (2β2γ2x
3 in the example above) won’t be produced

at all and the output distortion would not be necessarily equal to voE. Also, if

contributions from individual elements were summed together, the terms due

to interaction between nonlinearities are “double counted” and the sum would

not equal the total distortion. This introduces a subtlety in the interpretation of

H
(rest)
o2 in (5.11). It is not the same as the second harmonic contribution of the

rest of the circuit. It is the difference between the total distortion and the sum

of extracted contributions.

A common circuit where distortion is generated only by interaction between

nonlinearities is a differential pair consisting of purely square law devices and

an ideal tail current source. The drain voltages have only odd order distortion,

though each device has only second order nonlinearity.
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Figure 5.9: Circuits used to verify the extraction procedure. (a) nMOS common
source amplifier with an nMOS diode connected load, (b) Diode load in (a)
replaced by a resistor.

The sum of contributions from different elements does not equal the total dis-

tortion. However, if the contribution from an element is large, it means that

the output distortion is very sensitive to the nonlinear terms of that element.

This points designers to where their distortion optimization efforts must be fo-

cussed.

5.7 Examples

5.7.1 Common source amplifier with a MOS transistor load

Fig. 5.9(a) shows an nMOS common source amplifier with an nMOS diode con-

nected load. Since the load nonlinearity is a replica of the amplifier’s, nonlinear-

ities should cancel. The circuit is simulated with a 1 kHz input and distortion

contributions from the amplifier and the load are calculated using the method

in Section 5.5. Fig. 5.10(a) shows the contributions from each transistor and

Fig. 5.10(b) shows the distortion at the output. It can be seen that the contri-
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Figure 5.10: (a) Extracted contributions from M1 and M2 in Fig. 5.9(a) and the
reduction in distortion when M2 turns linear (Fig. 5.9(b)), (b) Output second
harmonic distortion in Fig. 5.9(a).

butions from the two components are almost equal in magnitude. They turn

out to have opposite phase, leading to cancellation. This can also be seen from

the fact that the output second harmonic distortion is about 35 dB below the

contribution from either device.

To verify that the extracted values are correct, the nMOS load is replaced by a

resistor (of value 1/gm +gdsof nMOS load) as shown in Fig. 5.9(b). The supply

voltage is changed to maintain the same operating point for the amplifier de-

vice. As discussed in the previous section, when the load is made linear, the

distortion reduces by an amount equal to the contribution of the load in the

original circuit in Fig. 5.9(a). That reduction is also plotted in Fig. 5.10(a) and is

seen to be the same as the extracted contribution of M2 in Fig. 5.9(a).
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Figure 5.11: (a) Second order RC filter with nonlinear resistors, (b) Resistor
model.

5.7.2 Lowpass filter with nonlinear resistors

Fig. 5.11(a) shows a second order RC filter with nonlinear resistors. The resis-

tors are modeled (Fig. 5.11(b)) as i = (v+ K2v
2 + K3v

3)/R. R1 = R2 = R and

C1 = C2 = C. K2R1 = K2R2 = 0.2V−1, K3R1 = K3R2 = 0.1V−2. The total dis-

tortion and the distortion contribution of each stage can be calculated using the

probing and current injection method ([25, 26, 27, 28, 17]). The expression for

the output second harmonic phasor when the input is Vp cos(ω t/RC) is given

below (ω is the signal frequency normalized to 1/RC).

Ho2 =
V2
Pω2(

R1 / First stage
︷ ︸︸ ︷

K2R1

(

−ω2 + j4ω + 4
)

+

R2 / Second stage
︷ ︸︸ ︷

K2R2 (j2ω + 1) )

8ω6 − j60ω5 − 162ω4 + j192ω3 + 102ω2 − 24jω − 2
(5.14)

The corresponding expression for the third harmonic is much longer and is not

given here. From these expressions, the second and third harmonic distortion

of this circuit are calculated for Vp = 0.3V. The contribution of each resistor

is evaluated by collecting the terms containing nonlinear coefficients of that

resistor as shown in (5.14). The calculated values are shown as solid lines in

Fig. 5.12.

The distortion contribution of each nonlinear resistor is extracted using the pro-

posed technique. For this, we use the schematic in Fig. 5.7 with the element E
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being R1 or R2 in Fig. 5.11(a) and solve (5.12). The distortion contributions are

plotted in Fig. 5.12 using the symbols “+” and “×” for R1 and R2 respectively.

It is seen that the extracted and calculated contributions match very closely.

The circuit can also be thought of as two RC stages in cascade, as shown in

Fig. 5.11(a). The contributions of these stages are extracted. For this, the el-

ement E in Fig. 5.7 is the two-port corresponding to the first or second stage

in Fig. 5.11(a). The contributions of the first and second stage are plotted in

Fig. 5.12 using the symbols “♦” and “�” respectively. Since the only nonlinear

element in each stage is the resistor, the corresponding stage and resistor contri-

butions must be identical, and the results show them to be so. The insets show

slight differences between the calculated and the two extracted contributions.

These may be attributed to various approximations and numerical errors. Each

stage in Fig. 5.11(a) is a nonlinear two-port with memory and these results also

validate the reasoning in Section 5.2.4.

5.7.3 Closed loop amplifier using an opamp

Fig. 5.13(a) shows an inverting amplifier of gain 4with a bandwidth of∼3MHz.

Fig. 5.13(b) shows the opamp architecture. It has two gain stages with local

common mode feedback (CMFB) for each stage. Fig. 5.14 shows the transistor-

level schematic of the opamp[34]. The first stage has a nonlinear commonmode

detector formed by splitting the transistors of the CMFB error amplifier. The

feedback is applied to the gates of the first stage load transistors. The second

stage has a linear resistive common mode detector followed by an error ampli-

fier. The feedback currents are added to the output nodes.

The distortion in the differential output of Fig. 5.13(a) is simulated for a 40mV

peak-to-peak differential input across a range of frequencies, and distortion

contributions from the two gain stages A1 and A2, and the two CMFB stages
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Figure 5.12: Output HD2 and HD3 of the filter in Fig. 5.11(a). Lines are from
calculations (e.g. (5.14)). Markers are from simulations.

CMFB1 and CMFB2 are extracted using techniques outlined earlier. For this,

the gain stages are treated as four-port networks and the CMFB stages as two-

port networks. These stages and the ports are marked in Fig. 5.13(b) and 5.14.

For purposes of extraction, all ports of each stage are scaled by the same fac-

tor. Fig. 5.16 shows the total distortion and contributions from different stages.

Contributions from the second gain stage (A2) and the first stage CMFB dom-

inate. The contribution from the first gain stage is very small because of its

small input swing, and the contribution from the second stage CMFB is very

small because of linear common mode detection. Fig. 5.17(a) and (b) show the

composition of contributions from A2 and CMFB1. It is seen that the second

order nonlinear term (scaled by α(2)) is dominant in both cases.

We can draw the following conclusions with the aid of Fig. 5.15. The first
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Figure 5.13: (a) 4× inverting amplifier (b) Opamp architecture.
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Figure 5.14: Opamp schematic [34]

stage CMFB generates second harmonic commonmode at the output of the first

stage. The fundamental and second harmonic mix in the second order nonlin-

earity (scaled by α(2)) of the second stage to generate differential third harmonic

components. The third harmonic distortion in this opamp is therefore predom-

inantly caused by interaction between the second order nonlinearities in the

first stage CMFB and the second gain stage. This example underscores the util-

ity of decomposing distortion from different stages, and from different sources

in each stage. It points the designer to the part of the circuit that needs im-
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Figure 5.16: Distortion contributions for the amplifier in Fig. 5.13 versus fre-
quency. Second gain stage (A2) and the first stage CMFB dominate.

provement. In this example, linearizing the first stage common mode detector

can improve the distortion performance of the opamp.
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Figure 5.17: Composition of distortion contributions from (a) A2, (b) CMFB1.

The examples above consisted of signals applied over a dc operating point. The

technique can equally well be applied to circuits such as mixers which have

large-signal operating point excursions. In such cases, the time varying large

signal source (such as the local oscillator in a mixer) must be considered as

part of the operating point setup (like Vb and Ib in Fig. 5.7(c)) and retained in

operating point simulations.

5.8 Comparison to other techniques

In Section 5.1, we briefly discussed a few existing techniques used to deter-

mine per-element distortion contributions. The proposed technique is similar

in spirit to replacing an element by its linear counterpart (e.g. an opamp by a

voltage controlled voltage source), and observing the change in distortion. But,

by construction, the linear behavior including loading are exactly the same as

the original, and the circuit is not oversimplified in any way. Also, the proce-

dure for constructing the modified element is systematic and not ad hoc.

Calculating the distortion components using the probing method in [25] is very

quick since it consists of linear analysis used iteratively. The difficult part is

deriving suitable models for the components, extracting their parameters at the
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desired operating points, and complexity of calculations if symbolic analysis is

used. Also, changes made to the circuit require re-derivation of such expres-

sions.

The method in [31] specifically addresses the calculation of per-element distor-

tion contributions, and is an efficient technique. But, it appears that this algo-

rithm is not presently implemented on commonly used circuit simulators and

cannot be used by a circuit designer running a conventional SPICE-like simu-

lator. A shortcoming of this technique is that it is not possible to identify the

distortion coming from different nonlinear terms of each element.

The implementation in Virtuoso Spectre ([32, 33]) identifies per-element contri-

butions as the output distortion when only the relevant element is nonlinear.

Because of this, distortion arising from interaction between two nonlinear ele-

ments are not identified. For instance, when applied to third order nonlinearity

in the two-stage system described in Section 5.6, interaction term 2β2γ2x
3 will

be omitted and the contribution of the two stages would be predicted as β3x
3

and γ3x
3 respectively.

[30] describes a method that is model-agnostic in the same sense as the pro-

posed method. But, choosing an appropriate multi-sine excitation, interpolat-

ing as required in case of odd order distortion, and interpreting the results is a

lot more complicated than in the proposed method.

The proposed technique does not require model extraction and can be imple-

mented on conventional circuit simulators in a simple manner. It can be applied

not only to basic elements but also composite circuit blocks (such as the stages

of the opamp in Section 5.7.3). Therefore, the proposed technique can also be

used to construct nonlinear models for arbitrary circuits. A disadvantage of the

proposed technique is that it requires multiple simulations, with a correspond-

ing increase in simulation time. Aminimum of three simulations (See (5.12) and

footnote 3) are required for extraction of total nonlinear contributions (which is
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usually the requirement) up to third order of a given element. To further resolve

the contributions from different cross terms, more simulations are required—A

total of 13 simulations for a two-port, up to third order terms, as listed in Ta-

ble 5.3. On the other hand, during the exploratory phase, circuits are not very

large, and simulation times with today’s computers are very short. Therefore

we feel that this is not always a severe shortcoming, and is more than balanced

by its model agnostic nature, ability to be implemented on any simulator, and

applicability to arbitrary circuit blocks and analysis types.

5.9 Conclusions

Wehave proposed amethod bywhich a circuit designer can conveniently deter-

mine distortion contributions from different elements and from different terms

of each element without going into device model details. It does not require

the designer to extract Taylor or Volterra series models for individual circuit

elements. The method is based on changing only the nonlinear characteristics

of the element in a known manner and observing changes in output distortion.

We have demonstrated the technique on a number of examples.

Since the modified element is based on instances of the original element, and

not an abstracted model, the proposed technique also allows us to determine

distortion contributions with process or temperature variations. This is in con-

trast to the methods where Taylor/Volterra models are used in which case these

models have to be generated at each corner. The technique can be applied to

blocks (e.g. stages of an opamp, or the entire opamp) as well as to individual

transistors to produce a hierarchical summary of distortion contributions.

The published literature on distortion analysis falls into two categories: Those

that describe algorithms that can be implemented in a circuit simulator (e.g. [30,

31, 32, 33]), and those that analyze specific circuits (e.g. [28, 29, 35, 36, 37]). The
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former are not implemented in most circuit simulators. The latter are usually

too cumbersome to be used quantitatively for arbitrary circuits. The approach

presented here mitigates both these difficulties. It can be used in a conventional

circuit simulator to accurately determine distortion contributions. The results

can point to parts of the circuit that need optimization. Then, if warranted, one

can resort to symbolic analysis to get a qualitative understanding. This is akin

to how noise summary listing is typically used by the circuit designer. Because

of its ease of use, the proposed technique can serve as a convenient tool for

optimizing distortion or investigating the robustness of distortion cancellation

and predistortion schemes.
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CHAPTER 6

Effect of CMFB on the Slew Rate in Class-A

Fully-Differential Amplifiers

6.1 Introduction

Several applications such as switched-capacitor filters, input buffers for ADCs,

or output buffers for DACs require operational amplifiers which can drive large

capacitive loads. Such opamps should ideally have high DC gain and slew rate.

A high DC gain will ensure the accuracy of the settled values. A high slew

rate will ensure that the settling time is as small as possible for a given small-

signal bandwidth. This is because, typically, for large output steps, settling is

dominated by slewing.

Because of the associated low supply voltage, obtaining high DC gain with a

large output swing in fine-line CMOS technologies requires the use of multi-

stage architectures as opposed to techniques such as cascoding and gain boost-

ing. It is a well-known fact that fully differential architectures are highly toler-

ant to common-mode noise sources, and are therefore the automatic choice in

many designs. One complication with the implementation of the fully differen-

tial high DC gain opamps is the need to set the output common-mode voltages.

This is in contrast with single-ended opamps where the external feedback net-

work provides the necessary DC negative feedback for stable operating point

([8], [10], and [9]).

[38] classifies the different schemes of common-mode feedback into two gen-

eral categories. One which employs dual loops and the other employing single



loop. We refer to the dual loop scheme as local common-mode feedback and the

single loop scheme as global common-mode feedback. Opamps in [39] and [40]

serve as examples for the local and global common-mode feedback schemes

respectively.

[41] demonstrates the use of local common-mode feedback to achieve high slew

rates in single-ended opamps—local common-mode feedback is used to imple-

ment a fully differential high DC gain first stage and subsequently the anti-

symmetric outputs are used to obtain a class-AB output stage which provides

a high slew rate. Compared to class-A output stages, class-AB output stages

provide higher slew rates. With lower supply voltages, biasing the class-AB

output stage is not straightforward [42].

In this chapter, we present an analysis of the effect of two schemes of common-

mode feedback on the slew rate of the closed loop amplifier using a fully differ-

ential class-A opamp. It is shown that slew rate is higher with local common-

mode feedback than with global common-mode feedback. Class-A opamps

with local common-mode feedback can be a convenient alternative to class-AB

stages for providing high slew rates with capacitive loads.

In the next section, we review the slewing behavior in a fully differential two-

stage Miller-compensated opamp with global common-mode feedback. In Sec-

tion 6.3, we analyze the slewing behavior with local feedback around each

stage. In Section 6.4, we present simulation results corroborating the analy-

sis. It is demonstrated that the architecture with local feedback settles faster for

both continuous-time and discrete-time amplifiers. Section 6.5 concludes the

chapter.
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Figure 6.1: Two stage opamp with global common-mode feedback. Thick gray
line indicates common-mode feedback path.

6.2 Analysis with global CMFB

Fig. 6.1 shows a two stage Miller-compensated opamp with global common-

mode feedback. The first stage is a telescopic cascode stage with a tail current

2I1. The second stage has common source amplifiersM5 and M6 biased at a cur-

rent I2 from current sources M7 and M8. The series RC branch Rc-Cc stabilizes

the opamp. The output common-mode voltage is sensed and fed back through

the error amplifier Acm to the gates of M3 and M4, the load transistors of the

first stage. The common-mode feedback loop is shown in gray. Negative feed-

back around this loop will set the output common-mode of the second stage to

vcmref2 and the output common-mode of the first stage such that M5 and M6

carry a current I2.

When a differential input is applied to the opamp, the currents in M1 and M2
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Figure 6.2: Unity gain amplifier using the opamp in Fig. 6.1.

differ from each other, and differential currents are pumped out of the first

stage. These are shown as currents Ic flowing through compensation capaci-

tors. Assuming the second stage inputs (op1 and om1) to be virtual shorts to

ground, the outputs op and om will respectively rise and fall at a rate Ic/Cc[8].

This implies that the load capacitors CL carry a current Ic × CL/Cc. With this

background, slewing in a closed loop amplifier is analyzed below.

Fig. 6.2 shows the unity gain amplifier used for the slew rate analysis. When

a differential step is applied to the input, the output does not change instan-

taneously, and a fraction (half in this case) of the input step is applied across

the input terminals ip and im of the opamp. For a sufficiently large input step,

transistor M2 (in Fig. 6.1) turns OFF and M1 carries all of the tail current 2I1.

Under these conditions, the current Ic through the Miller-compensation capac-

itors equals I1. From the analysis in the previous paragraph, we infer that the

outputs op and om start respectively rising and falling at I1/Cc and the load ca-

pacitors carry a current I1×CL/Cc. Thismeans that, under these conditions, the

currents through M5 andM6 will be I2+ I1 (1+ CL/Cc) and I2− I1 (1+ CL/Cc).

But the latter can be valid only if I2 > I1 (1+ CL/Cc). If this is not the case, M6

cuts off and the negative slew rate will be limited to I2/(CL + Cc). That is, op

rises faster than the rate at which om falls. Consequently, their common-mode

voltage rises. The common-mode feedback attempts to keep the output nodes

symmetrical by changing the currents in M3 and M4 in accordance with the
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output common-mode. In this case, the currents in M3 and M4 increase, which

results in reducing the rate of increase of op. Both outputs settle to a slew rate

of I2/ (CL + Cc) which is smaller than I1/Cc.

In applications where large capacitive loads are to be driven—cases where CL is

an order of magnitude greater than CC—I2 should be almost an order of mag-

nitude greater than I1 for the negative slew rate to be limited by the first stage

current. This entails a larger power dissipation in the circuit. In the next sec-

tion, it will be shown that the usage of local common-mode feedback will help

relax this condition. That is, a smaller bias value for I2 can be chosen, while still

obtaining a slew rate that is limited by the first stage current.

6.3 Analysis with local CMFB

Fig. 6.3 shows a two stage Miller-compensated opamp with local common-

mode feedback around each stage. The output common-mode voltage of the

first stage is sensed1, amplified by the error amplifier Acm1, and fed back to the

gates of load transistors of the first stage M3 and M4. Under steady state, they

supply a current I1. The common-mode feedback loop is shown using a dashed

gray line. The negative feedback around the loop will ensure that the output

common-mode voltage of the first stage is same as vcmref1.

Transistors M5 and M6 form the common source class-A output stage. vcmref1,

the nominal output common-mode voltage of the first stage, is derived from a

replica circuit such thatM5 andM6 are biased at a current I2 when this voltage is

applied to their gates. The output common-mode of the second stage is sensed

and fed back through the error amplifier Acm2 to the gates of load transistors M7

and M8. Under steady state, they carry a current I2. The second stage common-

mode feedback loop is shown using a solid gray line. Negative feedback around

1For simplicity, a resistive common-mode detector is shown for both stages. The actual
implementation for the first stage is shown in Section 6.4.3.
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Figure 6.3: Two stage opamp with local common-mode feedback. Dashed gray
line shows common-mode feedback around the first stage. Solid gray line
shows common-mode feedback around the second stage. Series RC branches
shown in gray may be needed depending on the implementation of common-
mode feedback amplifiers Acm1 and Acm2.

the loop ensures that the output common-mode voltage is set to vcmref2, which

is typically at half the supply voltage.

Analyzing the circuit in the same manner as the previous section, we obtain

the positive slew rate to be the same as I1/CC. This is based on the fact that

the drain current of transistor M5 will get adjusted such that a current I1 flows

through the compensation capacitor. Further, if we assume that I2 is not suf-

ficiently large (I2/(CC + CL) < I1/CC), then the negative slew rate will be

I2/(CL + CC). With this, we can see that net common-mode voltage at the out-

put of the second stage increases. Because of this, the output voltage of the

error amplifier Acm2 in the second stage common-mode feedback loop starts to
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increase. This increases the currents in M7 and M8 thereby effectively increas-

ing I2 and consequently, the negative slew rate. We can see that the use of two

loops has effectively made the output stage behave similar to a class-AB stage

under slewing conditions. Both outputs settle to a slew rate of I1/Cc.

6.4 Verification of slew rate enhancement

The analysis in the previous sections are verified by simulating amplifiers us-

ing two stage Miller-compensated opamps in a 0.18µm process with a 1.8V

supply. The same opamp is implemented with local and global common-mode

feedback and tested in a closed loop setting.

6.4.1 Common-mode feedback circuits

Fig. 6.4 shows the common-mode feedback circuitry used for global feedback

with Fig. 6.1. Fig. 6.4(a) shows the common-mode detector and error amplifier.

A resistive detector is used for linearity. The feedback cmfb1 is given to the

gates of M3 and M4 in Fig. 6.1. The loop includes three stages—M3,4, second

stage of the opamp M5,6, and error amplifier Acm. Therefore, a low gain error

amplifier with a diode connected pMOS load is used. Rc and Cc used for stabi-

lizing the opamp in Fig. 6.1 also stabilize the common-mode feedback loop.

Fig. 6.4(b) shows the switched capacitor counterpart [45]. Since there are two

stages of the opamp in the common-mode feedback loop, an inverting stage is

necessary to provide negative feedback. This is provided by the stage formed

by Mc11 and Mc13. A capacitive common-mode detector using two identical

capacitors C1 is used to drive the gate of Mc11. The charge on C1 is periodically

refreshed by placing a capacitor C2 charged to the difference between vcmref2

(the desired common-mode output of the first stage) and vbiasn11 (the voltage
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Figure 6.4: Circuitry used for global common-mode feedback (Fig. 6.1): (a):
Continuous-time common-mode detector and error amplifier, (b): Switched-
capacitor common-mode detector followed by an inverting stage.

required at the gate of Mc11) across them. The net effect is similar to placing

a battery with an appropriate voltage between the output common-mode and

the gate of Mc11. As with Fig. 6.4(a), Rc and Cc used for stabilizing the opamp

also stabilize the common-mode feedback loop.

Fig. 6.5 shows the common-mode feedback circuitry used for local feedback

with Fig. 6.3. Fig. 6.5(a) shows the common-mode detector and error amplifier

Acm1 for the first stage. A single differential pair with a current mirror load is

used as the error amplifier. The input transistor of the error amplifier is split

into Mc11a and Mc11b to form the common-mode detector with a high input re-

sistance so that the dc gain of the first stage is not affected. The feedback cmfb1

is given to the gates of M3 and M4 in Fig. 6.3. Since the common-mode feed-

back loop around the first stage consists of two gain stages (the error amplifier

in Fig. 6.5(a) and M3, 4 in Fig. 6.3), series RC networks Rcm1-Ccm1 are used for

stability. Fig. 6.5(b) shows the common-mode detector and error amplifier for

the second stage. A resistive divider with parallel RC branches is used for lin-

earity. A high resistance ensures no loading and parallel capacitors ensure that

there is no phase shift at high frequencies. The feedback cmfb2 is provided to

the gates of M7 and M8 in Fig. 6.3. Again, there are two gain stages in feedback
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Figure 6.5: Circuitry used for local common-mode feedback (Fig. 6.3): (a, b):
Continuous-time common-mode detector and error amplifier, (c, d): Switched-
capacitor common-mode detector.

and series RC networks Rcm2-Ccm2 are used for stability.

Fig. 6.5(c, d) show the switched capacitor counterparts of Fig. 6.5(a, b). The

common-mode feedback structure used around the first stage is as shown in

Fig. 6.5(c). A capacitive divider using two identical capacitors C1 detects the

common-mode and provides feedback to the gates of M3 and M4. The charge

on C1 is periodically refreshed by placing a capacitor C2 charged to the differ-

ence between cmref1 (the desired common-mode output of the first stage) and

vbiasp1 (the voltage required at the gate of M3 and M4 in Fig. 6.3 for them to

be biased at a current I1) across them. In this case, there are no error ampli-

fiers, and the common-mode loop gain is provided by M3 and M4. This results

in a lower dc loop gain and higher loop bandwidth compared to the continu-

ous time common-mode feedback case shown in Fig. 6.5(a). Rcm1 and Ccm1 in

Fig. 6.3 are not necessary. Fig. 6.5(d) shows the common-mode feedback struc-
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Figure 6.6: Closed loop amplifier examples: (a) Continuous-time amplifier, (b)
Switched capacitor amplifier and inverting low gain stage.

ture used around the second stage. It is similar to that used for the first stage

and provides feedback to M7 and M8 in Fig. 6.3. Again, there is a single gain

stage in feedback and Rcm2 and Ccm2 are not required.

6.4.2 Closed loop amplifier examples

The amplifiers in Fig. 6.6 were used to verify the slewing behavior with global

and local common-mode feedback. Fig. 6.6(a) shows a continuous-time ampli-

fier with a differential gain of 1. The input and feedback resistors are 20 kΩ

each. The amplifier is tested with differential step inputs of up to 2.8V peak-

to-peak around a common-mode voltage of 0.9V. This amounts to the single

ended signals swinging up to 200mV off the supply rails.

Fig. 6.6(b) shows a switched capacitor amplifier with a differential gain of 2. In

161



φ2, the opamp’s input and output are reset to the common-mode and the input

is sampled on both capacitors C. In φ1, the total charge is transferred to one of

the capacitors by connecting it in feedback and connecting the other capacitor

across the virtual short input of the opamp. This is a structure typically used

in pipelined ADCs[44]. The capacitor C = 4pF. In this case, the amplifier is

tested for step-like outputs of 1.4V from the reset state. In φ1, the amplifier in

Fig. 6.6(b) has a feedback fraction of 0.5, the same as that in Fig. 6.6(a). There-

fore, the amplifiers are expected to have a similar settling behavior.

Both of the amplifiers in Fig. 6.6 are tested with (a) Purely capacitive load of

100pF and a parallel RC load of 100pF——2kΩ , and (b) Continuous-time and

switched capacitor common-mode feedback.

The two-stage Miller-compensated opamps in Figs. 6.1 and 6.3 used for these

simulations have a quiescent current of 400 µA (2I1) in the differential pair and

550 µA ,(I2) in each common source amplifier of second stage. In the global

feedback case, the error amplifier consumes 120 µA . In the local feedback case,

the first and second stage error amplifiers consume 40 µA and 100 µA respec-

tively. The opamp characteristics are summarized in Table 6.1. The unity loop

gain frequency ( fu,loop) and phase margin (φM) of different feedback loops are

calculated for the continuous-time amplifier (Fig. 6.6(a)) with continuous-time

common-mode feedback circuits (Fig. 6.4(a) or Fig. 6.5(a,b)) under quiescent

condition. It is seen that I2/(Cc + CL) is nearly 4× smaller than I1/Cc. For the

second stage not to limit the slew rate with global common-mode feedback a I2

is required to be 2.2mA, increasing the total current in the opamp to 4.92mA.

6.4.3 Simulation results

Fig. 6.7 shows the step response of the continuous-time amplifier in Fig. 6.6(a).

For this comparison, continuous-time common-mode feedback circuits shown
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Table 6.1: Opamp characteristics

Global Local
First stage I1 200 µA 200 µA

Second stage I2 560 µA 560 µA
Error amplifiers 120 µA 140 µA

Total 1.62mA 1.64mA
I1/Cc 20V/ µs 20V/ µs

I2/(Cc + CL) 5.1V/ µs 5.1V/ µs
Differential loop 11.4MHz, 11MHz,

( fu,loop, φM) 60◦ 57◦

Common-mode 11.8MHz, 12.7MHz, 10.6MHz,
feedback loop 68◦ 71◦ 72◦

( fu,loop, φM) (first stage) (second stage)
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Figure 6.7: Output voltages of the amplifier in Fig. 6.6(a) for a 2.8V differential
output step and 100pF||2 kΩ load.

in Fig. 6.4(a) (global feedback) and Fig. 6.5(a,b) (local feedback) were used.

Also, a 2 kΩ||100 pF load is used. The differential output step seen is 2.8V. It is

clearly seen that the amplifier with local common-mode feedback settles much
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Figure 6.8: Output slopes of the amplifier in Fig. 6.6(a) for a 2.8V differential
output step and 100pF||2 kΩ load.

faster and has a more symmetric settling of op and om. With global common-

mode feedback, om settles much slower than op.

It is is also evident that op follows a piecewise linear profile while slewing. i.e.

it begins to rise rapidly, and settles to a slower slew rate. Fig. 6.8 shows the

slopes of op and om under the same conditions. With local feedback, both op

and om slew nearly at I1/Cc = 20V/ µs . With global common-mode feedback,

the slope of om is significantly lower and close to I2/(Cc + CL) = 5.1V/ µs .

op starts off with a higher slope and, and settles to the lower value after a short

interval. This behavior is because it takes a little time for the common-mode

feedback loop to kick in and restore symmetry on the two sides.

Table 6.2 shows the settling time (in nanoseconds) to 0.1% accuracy for the

continuous-time amplifier in Fig. 6.6(a). For the continuous-time amplifier, all
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Table 6.2: Settling time (in ns) for the continuous-time amplifier with local and
global CMFB

CT cmfb SC cmfb
o/p step 100pF 100pF 100pF 100pF

|| 2 kΩ || 2 kΩ

25% 197 187 248 244
Global 50% 286 257 347 309

feedback 75% 466 332 515 360
100% 1149 416 782 451
25% 96 108 163 170

Local 50% 120 139 150 172
feedback 75% 114 159 176 159

100% 144 192 250 202

combinations of common-mode feedback—global continuous-time (Fig. 6.4(a)),

local continuous-time (Fig. 6.5(a & b)), global discrete-time (Fig. 6.4(b)), local

discrete-time (Fig. 6.5(c & d))—are used. All these combinations are simulated

for two different loads (100pF and 100pF||2 kΩ). Further, simulations are done

for different values of output steps and the results are shown. For the case un-

der consideration, 100% corresponds to 2.8V differential output step (-1.4 V to

1.4V).

Table 6.3: Settling time (in ns) for the discrete-time amplifier with local and
global CMFB

CT cmfb SC cmfb
o/p step 100pF 100pF 100pF 100pF

|| 2 kΩ || 2 kΩ

25% 185 170 166 160
Global 50% 315 231 236 211

feedback 75% 455 275 323 250
100% 1636 327 612 294
25% 115 160 130 128

Local 50% 157 184 146 136
feedback 75% 159 193 159 133

100% 147 208 201 139

The simulations are run for the case of discrete-time amplifier in Fig. 6.6(b).

Again, all possible combinations of common-mode feedback circuits, load con-
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ditions, and output steps are used for the simulations. For this case, a 100%

output step corresponds to 1.4V differential output step. Table 6.3 shows the

settling times.

In every case it is seen that local common-mode feedback results in quicker

settling—more than 1.5× better with a purely capacitive load, and more than

3× better with an additional resistive load. The settling and slopes of the out-

puts are similar to that seen in Fig. 6.7 and Fig. 6.8 in all cases.

6.5 Conclusions

Wehave analyzed the slewing behavior of two stageMiller-compensated opamps

with global and local common-mode feedback loops. We have shown that,

while slewing, both pull-up and pull-down currents in the output stage are

signal dependent when local common-mode feedback is used. This effectively

makes a class-A output stage act like a class-AB output stage. Simulations un-

der various conditions show at least a 2× quicker settling with local common-

mode feedback for the same quiescent current in the opamp. Achieving a simi-

lar reduction with global common-mode feedback entails an increase in current

of more than 2×. We therefore conclude that, to achieve a given settling time,

using local common-mode feedback is more power efficient than using global

common-mode feedback, especially in opamps which are required to drive

large capacitive loads. This is in spite of the extra error amplifier or switched

capacitor feedback stage that is required for local common mode feedback.
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CHAPTER 7

Conclusions and Suggestions for Future Work

7.1 Conclusions

There has been a continuous effort to reduce the power consumption of high

resolution converters. Chapter 1 deals with the history and evolution of such

high resolution converters and the associated driver circuitry. The past decade

has seen a tremendous reduction (nearly two orders of magnitude) in the power

consumption of the converter. However there was very little effort into reduc-

ing the power consumption of the driver circuitry. With this, the current sce-

nario is that the driver circuitry consumes more power than the converter itself.

This dissertation is aimed at bridging this gap.

A detailed study of possible architectures for the driver circuitry is given in

Chapter 2. It is shown that architectures based on inverting amplifier configu-

ration are best suited for this problem. Based on the results obtained in Chap-

ter 2, a driver based on the fully-differential amplifier architecture is fabricated.

The design and simulation details of the same are presented in Chapter 3. The

measurement results given in Chapter 4 confirms satisfactory performance of

the driver.

In Chapter 5, we propose a technique to determine the distortion contributions

from individual elements or sub-blocks. The technique is based on elementary

circuit theory and does not require the designer to have the knowledge of mod-

els. Further, the technique can be easily used with SPICE-like simulators and

is therefore a very handy tool to optimize circuits for low distortion and to ex-

plore several distortion cancellation/reduction schemes. Further, it can be used



to understand the distortion behaviour of circuits.

Chapter 6 dealt with the effect that the common-mode feedback scheme has on

the slew rate of a fully-differential amplifier. The advantages obtained by hav-

ing local common-mode feedback instead of global common-mode feedback

are presented.

7.2 Suggestions for future work

In this dissertation, the possibility of charge pump based design was not in-

vestigated in depth. To reduce the problems of clock feedthrough and mix-

ing, one could choose a pulse position modulated clock in the charge pump

as demonstrated in [46]. With this arrangement, the power of the feedthrough

tone will not appear at a single frequency but will be spread over the entire

range over which the clock frequency varies. The scheme trades SNR for a bet-

ter SFDR. Another solution to prevent the aforementioned problems is to use

the ADC clock itself in the charge pump circuitry. With this arrangement, the

feedthrough tone will be seen at fs/2 at the output of the ADCwhile the mixing

tone will be seen on the signal bin itself.

The fabricated driver is not integrated with the converter. Integrating the driver

with the converter will alleviate problems related to bondwire inductances along

with those associated with board traces. Further, it will greatly reduce the com-

plexity and area of the board.

The simulation technique for determining the individual distortion contribu-

tions can also be used to extract Volterra-type models for individual elements

or circuit subblocks. Then, with these extracted models, in principle, ac-type

simulations can be performed on the circuits while capturing their nonlinear

behaviour. This can be a convenient alternative to the otherwise time consum-

ing transient simulation.

168



APPENDIX A

Relationship Between Gm1 and Gm2 for Stability in

Two-Stage Opamp

Fig. A.1 shows the small-signal model of a two-stage opamp. The compensation

scheme is also shown. Gm1, Go1, and C1 represent the first stage transconduc-

tance, output conductance and output capacitance respectively. Similarly, Gm2,

Go2, and C2 represent the second stage transconductance, output conductance

and output capacitance respectively. CC represents the Miller compensation ca-

pacitor.

The transfer function of the opamp (A(s)) is found out and is as given below.

A(s) =
Gm1(Gm2 − sCc)

Go1Go2 + s(CC + C2)Go1 + s(CC + C1)Go2 + sCCGm2 + S2(C1C2 + C1CC + C2CC)
(A.1)

If we use this opamp to make a closed loop amplifier of gain 2, we will use a

feedback factor of 0.5. We can calculate the transfer function of the closed loop

Gm1 Gm2Go1 Go2Co1 Co2

CC

vin vout

Figure A.1: Small-signal model of a two-stage opamp.



amplifier (CLTF(s)) as shown below.

CLTF(s) =
2A(s)

2+ A(s)
(A.2)

The denominator of the above transfer function is as shown below.

2
(
Go1Go2+ s(CC+C2)Go1+ s(CC+C1)Go2+ sCCGm2+S2(C1C2+C1CC+C2CC)

)
+Gm1(Gm2− sCc)

(A.3)

For left half plane roots, all the coefficients must be positive. If we now con-

sider the coefficient of the term in s, then it can be seen that the coefficient is

mainly dominated by the terms involving Gm1 and Gm2. This is because by de-

sign, Gms will be larger than Gos by several orders of magnitude. Based on this

assumption, if we consider only the significant terms in s, we can see that

2Gm2 > Gm1

is required for the coefficient to be positive.
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APPENDIX B

Pole Zero Estimation

R2 and C2 in Fig. B.1 are representative of the series resistor R1 and load capaci-

tor CL in the original small-signal model depicted in Fig. 3.13 respectively. R1 in

the above circuit is representative of the parallel combination of the Go2 (output

conductance of the second stage), Gm2CC/(CC + Co1) (conductance due to the

feedback through the compensation capacitor), and 3R (feedback network). C1

in the above network is representative of the parallel combination of Co2 (load

capacitance of the second stage) and C/3 (feedback network). From the values

that were seen, we assume that C2 > C1 and R1 ≈ R2.

Based on the above approximation, we can see that there will be widely sepa-

rated poles with the low frequency pole associated with C2 and high frequency

pole associated with C1. To determine the low frequency pole, we see that C1

will present a very high impedance. R1 dominates the parallel combination of

R1 and C1. Therefore, the pole associated with C2 will be 1
2π(R1+R2)C2

.

Similarly, to determine the high frequency pole associated with C1, we see that

R2

C2

C1R1

Figure B.1: Equivalent circuit used to find out the pole zero locations of the
small-signal model shown in Fig. 3.13.



the impedance of the series combination of R2 and C2 will be dominated by R2.

With this, the pole associated with C1 will be 1
2π(R1||R2)C1

.

172



REFERENCES

[1] J. L. McCreary and Paul R. Gray, “All-MOS charge redistribution analog-

to-digital conversion techniques. I,” IEEE Journal of Solid-State Circuits, vol.

10, no. 6, pp. 371-379, Dec. 1975.

[2] Ricardo E. Suarez et al., “All-MOS charge-redistribution analog-to-digital

conversion techniques. II,” IEEE Journal of Solid-State Circuits, vol. 10, no.

6, pp. 379-385, Dec. 1975.

[3] K. R. Lakshmikumar et al., “Characterisation and modeling of mismatch

in MOS transistors for precision analog design,” IEEE Journal of Solid-State

Circuits, vol. 21, no. 6, pp. 1057-1066, Dec. 1986.

[4] Marcel Pelgrom et al., “Matching properties of MOS transistors,” IEEE

Journal of Solid-State Circuits, vol. 24, no. 5, pp. 1433-1440, Oct. 1989.

[5] Peter Kinget, “Design mismatch and tradeoffs in the design of analog cir-

cuits,” IEEE Journal of Solid-State Circuits, vol. 40, no. 6, pp. 1212-1224, Jun.

2005.

[6] C. P. Hurrell et al., “An 18 b 12.5 MS/s with 93 dB SNR,” IEEE Journal of

Solid-State Circuits, vol. 45, no. 12, pp. 2647-2654, Dec. 2010.

[7] R. Widlar et al., “A monolithic power Op Amp,” IEEE Journal of Solid-State

Circuits, vol. 23, no. 2, pp. 527-534, Apr. 1988.

[8] D. Johns and K. Martin, Analog Integrated Circuit Design, 1st ed., Wiley In-

dia Pvt. Ltd., 2008.

[9] Nagendra Krishnapura, “EE5390: Analog Integrated Circuit Design,”

Available: http://www.ee.iitm.ac.in/∼nagendra/videolectures

173



[10] Behzad Razavi, Design of Analog CMOS Integrated Circuits, New York:

McGraw-Hill, 2000.

[11] Robert A. Blauschild et al., Differential amplifier circuit with rail-to-rail capa-

bility, United States Patent 4 532 479, Jul. 30, 1985.

[12] Johan H Huijsing and D. Linebarger, “Low voltage operational amplifier

with rail-to-rail input and output ranges,” IEEE Journal of Solid-State Cir-

cuits, vol. 20, no. 6, Dec. 1985.

[13] Shouli Yan et al., “Constant-gm techniques for rail-to-rail CMOS amplifier

input stages: a comparative study,” Proceedings of the International Sympo-

sium on Circuits and Systems, pp. 2571-2574, May 2005.

[14] T. A. F. Duisters and E. C. Dijkmans, “A -90 dB THD Rail-to-Rail Input

Opamp Using a New Local Charge Pump in CMOS,” IEEE Journal of Solid-

State Circuits, vol. 33, no. 7, Jul. 1998.

[15] Y. Nakagome et al., “Experimental 1.5V 64Mb DRAM,” IEEE Journal of

Solid-State Circuits, vol. 26, no. 4, pp-465-472 Apr. 1995.

[16] David J. Comer and Donald T. Comer, “Using the weak inversion region

to optimize input stage design of CMOS op amps”, IEEE Transactions of

Circuits and Systems II: Express Briefs, vol. 51, no. 1, pp. 8-14, Jan. 2004.

[17] B. Hernes and T. Saether, Design Criteria for Low Distortion in Feedback

Opamp Circuits, Kluwer, 2003.

[18] Kamath, B. Y. T. et al., “Relationship between frequency response and set-

tling time of operational amplifiers”, IEEE Journal of Solid-State Circuits,

vol. 9, no. 6, pp. 347-352, Dec. 1974.

[19] D. M. Monticelli, “A quad CMOS single-supply opamp with rail-to-rail

output swing ,” IEEE Journal of Solid-State Circuits, vol. SC-21, no. 6, Dec.

1986.

174



[20] R. Hogervorst et al, “A compact power-efficient 3 V CMOS rail-to-rail in-

put/output operational amplifier for VLSI cell libraries ,” IEEE Journal of

Solid-State Circuits, vol. 29, no. 12, Dec. 1994.

[21] K. de Langen and J. Huijsing, “Compact low-voltage power-efficient oper-

ational amplifier cells for VLSI,” IEEE Journal of Solid-State Circuits, vol. 33,

no. 10, Oct. 1998.

[22] Barrie Gilbert, “Translinear circuits: a proposed classfication,” Electronics

Letters, vol. 11, no. 1, pp. 14-16, Jan. 1975.

[23] Rajiv Mantri et al., “Accurately measuring ADC-driving circuit settling

time,” Available: http://www.ti.com/lt/an/slyt262/slyt262.

[24] Nagendra Krishnapura and Rakshitdatta K. S., “A model-agnostic tech-

nique for simulating per-element distortion contributions,” Proc. 2013

IEEE Custom Integrated Circuits Conf., San Jose, 2013.

[25] J. J. Bussgang et al., “Analysis of nonlinear systems with multiple inputs,”

Proc. IEEE, vol. 62, pp. 1088-1119, Aug. 1974.

[26] P. Wambacq andW. Sansen,Distortion Analysis of Analog Integrated Circuits,

Boston, MA: Kluwer, 1998.

[27] P. Wambacq et al., “Symbolic simulation of harmonic distortion in analog

integrated circuits with weak nonlinearities,” Proc. 1990 International Symp.

on Circuits and Systems, New Orleans, 1990, pp. 536-539.

[28] B. Hernes and W. Sansen, “Distortion in single-, two- and three-stage am-

plifiers,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, pp. 846-856, May

2005.

[29] S. O. Cannizzaro et al., “Distortion analysis of miller-compensated three-

stage amplifiers,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, pp. 961-

976, May 2006.

175



[30] A. Cooman et al., “Determining the dominant nonlinear contributions in a

multistage op-amp in a feedback configuration”, Proc. 2012 SMACD, Sep.

2012, pp. 205-208.

[31] P. Li and L. T. Pileggi, “Efficient per-nonlinearity distortion analysis for

analog and RF circuits,” IEEE Trans. Comput.-Aided Des. Integr. Integrated

Circuits and Systems Circuits Syst., vol. 22, pp. 1297-1309, Oct. 2003.

[32] Virtuoso R© Spectre R© Circuit Simulator and Accelerated Parallel Simulator RF

Analysis User Guide, Product Version 12.1, Cadence Design Systems, Oc-

tober 2012.

[33] Virtuoso R© Spectre R© Circuit Simulator RF Analysis Theory, Product Version

12.1, Cadence Design Systems, October 2012.

[34] S. Pavan et al., “A power optimized continuous-time delta-sigma modula-

tor for audio applications,” IEEE J. Solid-State Circuits, vol. 43, pp. 351-360,

Feb. 2008.

[35] Y. Miao and Y. Zhang, “Distortion modeling of feedback two-stage ampli-

fier compensated with miller capacitor and nulling resistor”, IEEE Trans.

Circuits Syst. I, Reg. Papers, vol. 59, pp. 93-105, Jan. 2012.

[36] G. Palumbo and S. Pennisi, “High-frequency harmonic distortion in feed-

back amplifiers: analysis and application,” IEEE Trans. Circuits Syst. I, Fun-

dam. Theory Appl., vol. 50, pp. 328-340, Mar 2003.

[37] J. Chun and B.Murmann, “Analysis andMeasurement of Signal Distortion

due to ESD Protection Circuits,” IEEE J. Solid-State Circuits, vol. 41, pp.

2354-2358, Oct. 2010.

[38] Y. Papananos et al., “Design and implementation of a CMOS operational

amplifier architecture with dual common-mode feedback loop,” Proc. 1996

176



IEEE International Conference on Electronics, Circuits, and Systems, May 1990,

pp. 904-907.

[39] N. Krishnapura et al., “A high-IIP3 third-order elliptic-filter with current-

efficient feedforward-compensated opamps,” IEEE Transactions of Circuits

and Systems II: Express Briefs, vol. 58, no. 4, pp. 205-209, Apr. 2011.

[40] W. G. Garrett et al, “A monolithic differential-output operational ampli-

fier,” Proc. 1972 IEEE International Solid State Circuits Conference, pp. 174-

175, 1972.

[41] J. Ramirez-Angulo et al., “High slew rate two stage A/AB and AB/AB

op-amps with phase lead compensation at output node and local common

mode feedback,” Proc. 2008 IEEE International Symposium on Circuits and

Systems, pp. 288-291, May 2008.

[42] K. de Langen and J. H. Huijsing, Compact Low-Voltage and High-Speed

CMOS, BiCMOS and Bipolar Amplifiers, Springer, 1999.

[43] M. Banu et al., “Fully differential operational amplifiers with accurate out-

put balancing,” IEEE Journal of Solid-State Circuits, vol. 23, no. 6, June 1988.

[44] O. Rajaee and U. Moon, “Highly Linear Noise-Shaped Pipelined ADC Uti-

lizing a Relaxed Accuracy Front-End”, IEEE Journal of Solid-State Circuits,

vol. 48, no. 2, pp. 502-515, Feb. 2013.

[45] O. Choksi and L. R. Carley, “Analysis of switched-capacitor common-

mode feedback circuit”, IEEE Transactions of Circuits and Systems II: Analog

and Digital Signal Processing, vol. 40, no. 12, pp. 906-917, Dec. 2003.

[46] Chembiyan Thambidurai and Nagendra Krishnapura, “On pulse position

modulation and its application to PLLs for spur reduction”, IEEE Transac-

tions of Circuits and Systems I: Regular Papers, vol. 58, no. 7, pp. 1483-1496,

July 2011.

177



List of publications based on thesis

International Journals

1. Nagendra Krishnapura and Rakshitdatta K. S., “A Model-Agnostic Tech-

nique for Simulating Per-Element Distortion Contributions,” IEEE Transactions

on Circuits and Systems-I: Regular Papers, Vol. 61, no. 8, Aug. 2014 (to appear).

International Conferences

1. Nagendra Krishnapura and Rakshitdatta K. S., “A Model-Agnostic Tech-

nique for Simulating Per-Element Distortion Contributions,” Proceedings of the

2013 IEEE Custom Integrated Circuits Conference, San Jose, Sep. 2013.

178


	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	Introduction
	Motivation
	SAR based ADCs
	SAR ADCs with capacitive DAC
	Total capacitance of the DAC
	Switched-capacitor load

	State of the art of ADC driver amplifiers
	Evolution
	Common trends

	Overview of the thesis

	A Study of Driver Architectures
	Introduction
	Architectures employing non-inverting amplifier configuration
	Cascade architecture
	Parallel architecture
	Fully-differential opamp based architecture

	Rail-to-rail signal swing
	Differential amplifier with active current mirror load
	Telescopic cascode
	Folded cascode
	Complementary input pair
	Charge pump based design
	Summary

	Architectures employing inverting amplifier configuration
	Cascade of two inverting amplifiers
	Fully-differential amplifier
	Asymmetrical feedback around fully-differential opamp
	Summary

	Noise and gain error
	The trade-off
	An example


	Design of the Prototype Driver
	Introduction
	Specifications
	Additional filtering
	Filtering at the output
	Filtering the noise from input and feedback resistors

	Final architectures
	Cascade of inverting amplifiers with filtering
	Fully-differential amplifier with filtering
	Comparison

	Schematic design
	Bandwidth
	Input gm required
	Small-signal details
	Opamp design

	Layout and Simulation results
	Layout
	Simulation results

	Conclusions

	Measurement Results
	Frequency response
	Output offset
	Output noise
	Total harmonic distortion
	Step response

	A Model-Agnostic Technique for Simulating Per-Element Distortion Contributions
	Introduction
	Obtaining a device with scaled nonlinearity
	Scaling nonlinearity using two copies of the element
	Dependence of coefficients under simultaneous presence of both even and odd order nonlinearities
	Scaling nonlinearity using three copies
	Generalization to nonlinearity with memory
	Generalization to other representations

	Verification of nonlinearity scaling
	Scaling of terms with embedded elements
	Determining an element's contribution
	Interpretation
	Examples
	Common source amplifier with a MOS transistor load
	Lowpass filter with nonlinear resistors
	Closed loop amplifier using an opamp

	Comparison to other techniques
	Conclusions

	Effect of CMFB on the Slew Rate in Class-A Fully-Differential Amplifiers
	Introduction
	Analysis with global CMFB
	Analysis with local CMFB
	Verification of slew rate enhancement
	Common-mode feedback circuits
	Closed loop amplifier examples
	Simulation results

	Conclusions

	Conclusions and Suggestions for Future Work
	Conclusions
	Suggestions for future work

	Relationship Between Gm1 and Gm2 for Stability in Two-Stage Opamp
	Pole Zero Estimation

