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ABSTRACT

This project involves the testing of a High speed∆Σ Modulator compensated for more

than unity feedback delay. The chip tested as part of this thesis contains a fast feedback

path to compensate for delays which are greater than one clock cycle. This led to

realize very high sampling speeds on 0.18µm technology. The chip tested was a 4-bit

modulator with sampling speed of 800 MHz, whose output is decimated by a factor

of oversampling ratio (OSR) and also passed through a digital driver. The decimated

output is 16-bit digital output which is taken through logicanalyzer. The driver output

is captured through oscilloscope. The chip consumes82.07mW of power from a 1.8 V

supply. The measured dynamic range is 44 dB for OSR of 25.
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CHAPTER 1

Introduction

1.1 Introduction

Due to increase in the use of computers and advancements in other digital media there

is a tremendous demand for digital signal processing. One ofthe main reasons behind

this being lesser susceptibility of digital signals to noise and ease of computation. But

the actual interfaces to the real world are analog. This imposes need of data converters

which forms an interface between analog and digital domain.Hence, analog-to-digital

converters (ADCs) have become an essential part in today′s System-on-Chip (SoC)

trend.

∆Σ modulators (DSM) are a special class of data converters, which are oversampled

and noise shaped ADCs. They are closed loop negative feedback converters wherein

the quantization noise is high pass filtered by the loop without affecting the input signal

strength. They are implemented either as continuous time (CTDSM) or discrete time

(DTDSM) modulators.

CTDSM has many advantages over DTDSM such as inherent anti-aliasing property,

lower power consumption, higher maximum speed in a given technology. Inherent anti

aliasing saves both area and power. Also in a given technology the sampling frequency

of a CT∆Σ modulators is limited by the excess loop delay(ELD) presentin the loop

because of the quantizer and the feedback DAC.

Most of modulators have ELD compensation but they are mostlyvalid for ELD less

than one clock cycle . This again limits the sampling frequency. Thus to realize higher



sampling frequency we need to design the modulator which cancompensate for much

higher ELD. The chip [3] which is tested as part of this thesiswork employs one such

technique which can compensate for ELD between one to 2 clockcycle delays [4]. This

led to a very high sampling frequency for a 4-bit∆Σ modulator designed on 0.18µm

technology.

∆Σ modulator along with the decimation filter is tested to work at 800 MHz as a

part of this project work.

1.2 Organization

Chapter 2 explains the basic concepts of∆Σ modulators and provides background

knowledge.

Chapter 3discusses the complete architecture of the∆Σ analog to digital converter(ADC)

after combining the Decimation filter to DSM.

Chapter 4 discusses PCB design, the test setup and the measurement results.

Chapter 5 concludes the thesis.

2



CHAPTER 2

∆Σ Modulator Basics

2.1 Nyquist Theorem and Quantization Noise[3]

The Nyquist theorem states that a signal must be sampled at least twice as fast as the

bandwidth of the signal (fB) to accurately reconstruct the waveform; otherwise, the

high-frequency content will alias at a frequency inside thespectrum of interest (pass-

band). The minimum required sampling frequency, in accordance to the Nyquist The-

orem, is the Nyquist Frequency (fs,nyqt). Fig. 2.1.a shows the multibit ADC which

convert analog input signaly(t) to digital output bit streamv[n]. Fig. 2.1.b shows the

equivalent quantization noise model. The quantization noise powerσ2

q added by an

ADC sampling atfs ≥ fs,nyqt with Vlsb as the level spacing, is given byV 2

lsb/12. The

quantization noise is assumed to be white and has aPower Spectral Density (PSD) of
σ2

q

fs/2
V 2/Hz and is shown in Fig. 2.2(a). Now if the sampling rate is doubled keep-

ing thefB same, then the noise PSD will reduce to half (Fig. 2.2(b)), asthe total noise

power is constant. For every doubling of the sampling rate, the noise reduces by a

eq

ADC ADC

y(t) v[n]

(at fs)
Clock

(at fs)
Clock

Analog input Digital output Analog input 
y(t)

Digital output
v[n]

Figure 2.1: (a) ADC (b) Additive quantization noise model.[3]

factor of 3 dB (3 dB/octave). The ratio of sampling frequencyfs to the Nyquist rate2fB

is called theOversampling Ratio (OSR) which is one of the most important parameters
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Figure 2.2: Quantization noise spectrum of ADC. (a) Sampling at fs (b) Sampling at
2fs.[3]

used to characterize oversampling data converters. For an Nbit ADC with OSR as the

oversampling ratio,Signal to Quantization Noise Ratio (SQNR) is given by Eq. 2.1.

SQNRmax [dB] = 6.02N + 1.76 + 10log10OSR (2.1)

The oversampling can be used to trade speed for resolution ofADC. However, the

rate of this trading is only 3 dB/octave with plain oversampling. A better way of utiliz-

ing this advantage of oversampling is to filter away the noisein the signal bandwidth to

higher frequencies, and this what the∆Σ modulator accomplishes. The block diagram

of a discrete time∆Σ modulator is shown in Fig. 2.3.a and Fig. 2.3.b shows the dis-

crete time∆Σ modulator with additive noise model for the quantizer. A discrete time

modulator is shown for ease of explaining the operation of the modulator. The closed

loop architecture can be linearized by modeling the quantization noise as an additive

noise. Again, it is assumed that the quantization noise is uniformly distributed and not

4



Filter

L(z)

u y v
eq

∆ Σ

Filter

L(z)

u y v

∆ Σ Quantizer

Quantizer

(a)

(b)

Figure 2.3:∆Σ modulator.[3]

dependent on the input signalu. This system has two inputs,u andeq, and one output,

v. The transfer function fromu to v, which is calledSignal Transfer Function (STF ),

is given by:

STF (z) =
V (z)

U(z)
=

L(z)

1 + L(z)
(2.2)

TheNoise Transfer Function (NTF ) which is defined as the transfer function fromeq

to v, is given by:

NTF (z) =
V (z)

Eq(z)
=

1

1 + L(z)
(2.3)

If the filter L(z) is a low-pass filter with a high DC inband gain, thenSTF would be

unity in signal band andNTF would be a high-pass filter. This high-passNTF helps

in filtering out the in-band quantization noise to out of bandregion as shown in Fig 2.4.

Inside the signal bandwidth, the quantization noise is attenuated approximately by the

5
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Figure 2.4: Spectrum of the shaped quantization noise.

large gain of the filterL(z). The output spectrum of the modulator is given by,

V (z) = STF (z)U(z) +NTF (z)Eq(z) (2.4)

As an example, ifL(z) = 1/(z − 1), then from Eq. 2.4, we get

STF (z) = z−1 (2.5)

NTF (z) = 1− z−1 (2.6)

From Eq. 2.5, we see thatSTF (z) is just a delay whileNTF (z) has a high pass

response. If we want to achieve a very high in-band SQNR, we must choose a sampling

ratefs much higher than the Nyquist rate so that the total quantization noise within the

signal band is reduced.

6



2.2 Continuous-time vs discrete-time[3]

Switched-capacitor (SC) circuits form the building blocksof DT ∆Σ Modulators. SC

filters used to be the choice of design for∆Σ Modulators as they provide high accu-

racy and linearity. SC filters are unattractive for use in very high speed designs as the

settling time and power requirements of opamps used in SC filters pose a serious limita-

tion. Moreover, the need for an anti-aliasing filter before converting the continuous-time

input to a discrete-time input has led to an increase in the usage of CT modulators.

The block diagram of a Continuous-time∆Σ Modulator is shown in Fig. 2.5. A CT

clkadc

Loop Filter
L(s)

DAC

u(t) v[n]

Continuous-time Discrete-time

multi-bit
quantizer

Figure 2.5: Block diagram of a continuous-time modulator.[3]

modulator is derived from its DT counterpart by pushing the sampler from outside the

loop to within the loop. ADigital to Analog (DAC) is used in the feedback path to

convert the digital outputv [n] to an analog signal, which feeds to the input of the loop

filter. CT modulators obviate the need for anti-aliasing filters because the loop filter

does inherent anti-aliasing [2]. The maximum frequency of operation in CT modulators

is limited by the delay in the quantizer and the feedback DAC while DT modulators are

limited by the settling time of the opamps. In general, CT modulators can be operated

at a higher frequency than a DT modulator in a given technology.

7



2.3 Basic components of the CTDSM[3]

2.3.1 Loop filter

The basic circuit blocks of which a CT loop filter consists arethe CT integrators. Many

kinds of CT integrators are available but the most commonly used ones are active RC

integrators andGm-C integrators. The integrators used in this chip are active RCinte-

grators.

2.3.2 ADC

The ADC quantizes the output of the loop filter to produce the output of the modulator.

Any circuit level nonlinearities in the ADC are shaped out ofthe signal band. Hence

the design constraints on the ADC are very relaxed. The only constraint is the regen-

eration time of the latch in the ADC, which limits the maximumsampling rate. Hence

the flash architecture, which implements the fastest ADC, isthe common choice for

implementing this internal ADC of the modulator.

2.3.3 DAC

The DAC converts the output to analog and feeds back to the input. Hence, any non-

idealities in the DAC are expected to appear at the input and hence at the output of

the modulator, as the transfer function from input to outputis unity in the signal band.

The DAC elements are bound to have mismatch, which affects the inband performance

of the modulator. Standard practices like data weighted averaging (DWA) mitigate this

problem. But at high speeds delay from the DWA block becomes significant. This delay

has to be accommodated by appropriately delaying the DAC clock, leading to increase

in ELD in the loop.

8



CHAPTER 3

∆Σ ADC Architecture

3.1 Architecture

input

Decimation
filter

Digital
driver

DSM
4 bits

16 bits
 @fs/25

Outp

Outm

Figure 3.1: Block diagram of ADC

Figure 3.1 shows the complete top level block diagram of the∆Σ analog to digital

converter after combining the decimation filter to the∆Σ modulator which has been

tested as a part of this thesis work. 16 bits are taken as the output of the analog to

digital converter. Along with the decimator output of the ADC, there is a provision

to collect the output differential signal through a digitaldriver circuit, which can be

viewed using an oscilloscope. The digital driver circuit isexplained in the next section.

3.2 Digital driver[1]

A unit cell differential pair current steering DAC cell is asshown in Figure 3.2, which

consists of 600µA cascoded current source, steered using the NMOS differential pair of

current switches. The current value is chosen to drive proper current to the load. Since



X = (1µ / 0.18µ)

Y = (3µ / 0.54µ)

20X

Mn2Mn1

20X

Mn0

20Y

biasn1

biasn2

ip im

om op

Mn01

20X

Figure 3.2: Schematic of unit DAC cell[1]

we are using rail to rail drives, the switch transistors may go into triode region, there

by losing the advantage of cascode transistor for the tail current source. The switch

Transistor sizes are chosen larger to make the overdrive voltage smaller so that, the

switches act in a better way. Because of the larger sizes of the transistors the tail node

capacitance increases, which increases the current in the capacitor due to variations in

the tail node voltage. So the cascode transistor is chosen tobe of smaller size, which re-

duces the parasitic capacitance. The cascode transistor protects the tail current from any

voltage variation and also reduces modulation of current source by the output voltage.

The bias voltages are generated using a low voltage cascode current mirror as shown in

Figure 3.3.
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X = (1µ / 0.18µ)

Y = (3µ / 0.54µ)

Mp1

20X
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20X
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00
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biasn1
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Figure 3.3: Bias generation circuit for DAC cells[1]
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CHAPTER 4

Test Board and Measurement Results

4.1 Test Chip

The pin allocation of the test chip is shown in the Figure 4.1.It is in a Quad Flat No

leads (QFN) package with 64 pins. Out of the 64 pins, 8 pins arenot used. Table 4.1

shows the description of each pin.
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Figure 4.1: Pin details of the chip



Table 4.1: Pin details of the chip

Pin No. Pin Name Description
1 a0 Capacitor tuning bit
2 a1 Capacitor tuning bit
3 a2 Capacitor tuning bit
4 a4 Capacitor tuning bit
5 NC No Connection
6 Vdda 1.8 V supply voltage for the loop filter and

biasing
7 Gnda Ground
8 Clkp Differential input clock
9 Clkm Differential input clock
10 OSR_ctrl Control to chose between OSR =25 (low),

OSR =10 (high)
11 Iref_5uA Reference current source

5µA(sinking current)
12 Vref_flash Control for changing input swing of

flash ADC.Nominal value = 0.9 V
13 Gnda Ground
14 NC No Connection
15 NC No Connection
16 Vddd 1.8 V supply voltage for the flash ADC
17 Vcalon Control for making calibration on (high)

and off (low)
18 Vref_dac Control for DAC unit cell current.

Nominal value =0.9 V
19 Gnddac Ground
20 Vdddac 1.8 V supply voltage for the DAC
21 rst Reset the digital calibration logic

(Reset when high)
22 lvdsen Control for lvds buffers to enable (high)

and disable (low)
23 I_desser_100uA Reference current source

100µA(source current)
24 Clklvds Differential output LVDS clock
25 Clkblvds Differential output LVDS clock
26 Gnddemux Ground
27 Op Differential output signal from Digital driver
28 Om Differential output signal from Digital driver
29 Vdda2p5 2.5 V supply voltage
30 NC No Connection
31 Gndfil Ground
32 Clkdecfilout Output clock of Decimation filter

13



Pin No. Pin Name Description
33 decfil_out<0> Output data of Decimation filter
34 NC No Connection
35 decfil_out<1> Output data of Decimation filter
36 decfil_out<2> Output data of Decimation filter
37 decfil_out<3> Output data of Decimation filter
38 decfil_out<4> Output data of Decimation filter
39 decfil_out<5> Output data of Decimation filter
40 decfil_out<6> Output data of Decimation filter
41 decfil_out<7> Output data of Decimation filter
42 decfil_out<8> Output data of Decimation filter
43 decfil_out<9> Output data of Decimation filter
44 decfil_out<10> Output data of Decimation filter
45 decfil_out<11> Output data of Decimation filter
46 NC No Connection
47 NC No Connection
48 decfil_out<12> Output data of Decimation filter
49 decfil_out<13> Output data of Decimation filter
50 decfil_out<14> Output data of Decimation filter
51 decfil_out<15> Output data of Decimation filter
52 Vddfil 1.8 V supply voltage for the Decimation filter
53 clrb_decfil Reset decimation filter(Reset when low)
54 decfilen Control for Decimation filter to enable (high)

and disable (low)
55 decfilsel Control signal to selct one of the two clocks

for Decimation filter
56 NC No Connection
57 Gnddemux Ground
58 Vdddemux 1.8 V supply voltage
59 Gnda Ground
60 Vinm Differential input signal
61 Vinp Differential input signal
62 Gnda Ground
63 Vcm Common mode reference voltage of 0.9 V
64 Iref_25p5uA Reference current source of value

25.5µA(source current)

14



4.2 Test Board

A PCB was designed for testing the chip in ORCAD. It is four layered with layers

namely : Top, Ground, Power and Bottom. Out of these Top and Bottom layers are used

for routing and second layer is ground plane and third is power plane. It is manufactured

on a copper plate FR-4 dielectric and thickness of board is 1.6mm . The dimensions of

the board are 15.55 cmX12.1 cm. The snapshot of the test boardwith labels is shown in

the Figure 4.2.

Figure 4.2: Board used for the testing

Power Supply

Board needs different kinds of power supplies. Each of thesesupplies is regulated

through TPS74401 regulator. Regulator output is then filtered using parallel bank of

surface mount capacitors and inductor. Ferrite bead inductors are used which filter high

frequency supply noise by converting it into a tiny amount ofheat. The various supplies

15



to the chip are connected to this filtered output with the helpof jumpers at appropriate

places and decoupling capacitors near chip pins.

A solid ground plane and a ground copper pour is used on top andbottom layers of

PCB. This helps in reducing crosstalk between two adjacent traces.

Power plane is split to supply different voltages in variousregions of the board. This

is used to calculate power dissipation in different blocks within the chip by measuring

current.

Current References

Chip needs three current sources Iref_5µA, Iref_ 25p5µA and I_desser_100µA. Re-

sistive networks consisting of potentiometer and fixed resistor is used for realizing the

current references.The values of these resistors are chosen by simulating for different

process corners

Digital Buffers

The 16-bit digital output of decimator and output clock of decimator is passed through

buffers(SN74AUC16244) and its output is connected to 20-pin connector.

Baluns

An RF transformer (Mini-Circuits ADT1-1WT) is used to convert the differential sig-

nals into a single ended and vice-versa.
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Control Signals and Other Circuitry

Chip needs different kinds of control signals as listed in Table 4.1. These are given with

the help of jumpers. SMA connectors are used for differential clock inputs and signal

inputs , driver output and LVDS clock output.

4.3 Test Setup

Figure 4.3 shows the test setup arrangement. Agilent 33250Aserves as a signal which

drives an input tone to a passband filter(BPS 0500-B). The filter suppresses the harmon-

ics and the wide-band noise of the signal source. Differential input signal to the chip

is provided with the help of a balun transformer(North-Hills 100 KHz-20 MHz balun).

Balun transformer converts this spectrally purified tone into a differential signal. The

clock signal is generated by another signal source (AgilentE4422B), that generates

low-jitter sine wave at 800 MHz.

Test board

DUT
(ADC)

Bandpass
Filter

Clock

Signal source
Signal source(Agilent-33250A)

(Agilent-E4422B)

PC

Logic Analyzer
(Agilent-1682AD)

Vinp

Vinm

Vcm
PC

Balun

(Allen Avionics)

Op

Om

Vcm Balun

DSO
16-bits

Figure 4.3: Test setup

Again, as chip needs differential clock, RF transformer (Mini-Circuits ADT1-1WT)

is used to convert this clock to differential clock. The captured data is transferred to a

PC for post-processing. Figure 4.4 shows a snapshot of the test setup.
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Figure 4.4: Snapshot of test setup

4.4 Measurement Results

The total measured power consumption by chip is82.07mW . Table 4.2 shows the

power distribution in each block inside the chip.

Idle channel response of the modulator for different sampling rates and their in-band

noise values are as shown in figures 4.5 to 4.8. It has tones atfs/4 due to the input

reference subtractor used in the flash, which is operating atfs/4.

Table 4.2: Power distribution

Module Power (mW)
Modulator 48.6
Decimation Filter 8.1
Digital Driver 25.37
Total 82.07
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Figure 4.5: fs = 770MHz , In-band noise
= -67.55dB
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Figure 4.6: fs = 780MHz , In-band noise
= -67.45dB
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Figure 4.7: fs = 790MHz , In-band noise
= -67.08dB
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Figure 4.8: fs = 800MHz , In-band noise
= -67.01dB

Spectrum at the output of digital driver for an input of 5MHz is shown in Figure 4.9.

There is significant reduction in the distortion at the output due to DAC calibration

scheme as compared to a case with calibration turned off the plots are as shown in

Figure 4.10.

The plot of SQNR for different input amplitudes is shown in Figure 4.11. The

measured dynamic range is 44 dB for OSR of 25.
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20



−45 −40 −35 −30 −25 −20 −15 −10 −5 0 5
−5

0

5

10

15

20

25

30

35

40
Dynamic Range

S
Q

N
R

 in
 d

B

input power dBFS

Figure 4.11: SQNR vs input amplitude for OSR= 25 and input of 5MHz

4.5 Problems Faced During Testing

1. Decimation filter was not working for sampling frequencies greater than 250MHz.

2. Swing at the driver output is very less.
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CHAPTER 5

Conclusions and Future Work

5.1 Conclusions

The high speed CT∆Σ modulator was tested to work at 800 MHz and the tested chip

had a dynamic range of 44 dB and SNR of 40 dB for a bandwidth of 16MHz. The total

power consumed by the chip is measured as 82.07 mW.

5.2 Future Work

PCB needs to be modified for incorporating a socket and performance of all other chips

needs to be tested. Also, the reasons for the problems encountered during course of

testing need to be found out.



APPENDIX A

PCB Schematic and Layout

The schematic of the board is split into five portions. The schematic of the board with

the Chip is shown in Fig. A.1. The schematic of the board with control Signals and

reference voltages and currents is shown in Fig. A.2. The schematic of the board with

digital buffers is shown in Fig. A.3. The schematic of the board with the input and

output signals is shown in Fig. A.4. The schematic of the board with the power supply

part is shown in Fig. A.5 and Fig. A.6 .
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Figure A.1: Chip.
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Figure A.2: Control Signals and References.
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Figure A.4: Input and Output Signals.
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Figure A.5: Power Supply.
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Figure A.6: Power Supply Continued.
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Figure A.7: PCB Layout.
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