
Remotely Controlled Electronics Laboratory

Workbench

A Project Report

submitted by

MADAKASIRA MANJUNATH

in partial fulfilment of the requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY MADRAS

JUNE 2011

CERTIFICATE

This is to certify that the thesis titled Remotely Controlled Electronics Lab-

oratory Workbench, submitted by Madakasira Manjunath, to the Indian

Institute of Technology Madras, for the award of the degree of Bachelor of Tech-

nology, is a bona fide record of the work done by him under my supervision. The

contents of this thesis, in full or in parts, have not been submitted to any other

Institute or University for the award of any degree or diploma.

Dr. Nagendra Krishnapura

Advisor,

Associate Professor,

Dept. of Electrical Engineering,

IIT-Madras, 600 036

Place: Chennai

Date: 27 May 2011

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank my project advisor Prof. Nagendra

Krishnapura for giving me an opportunity to work on an exciting project which

can have an impact on the students of our department and for his support and

guidance throughout the project. His lectures in Analog Circuits and Analog

IC Design courses have always left me in awe and inspired me. His dedication,

meticulousness, enthusiasm and work ethic are some of the qualities that I hope

to pick up. I would also like to thank Prof. Nitin Chandrachoodan whose help

with setting up the web server was invaluable.

Back in Sweden, I would like to thank Prof. Ingvar Gustavsson for helping

me understand the overall structure of the VISIR project and tirelessly replying

to our mails and providing all the help needed. I would also like to thank Johan

Zackrisson for his patience in answering every question regarding the installation

of software packages and Mohammed Tawfiq for providing the installation guide

that was very helpful for installing web server.

I would like to thank my wingmate Anmol Kachroo for all the insightful talks

we had on various issues and motivating me with his infinite enthusiasm in analog

circuits. I would like to thank Shravan, Rajesh and others for providing a con-

ducive and joyous atmosphere in the testing lab with their witty jokes. I would

also like to thank my buddy friends Yashwanth and Chaitanya for helping me out

with certain server issues.

Finally I would like to evince my gratitude to my parents, whose support and

guidance throughout these years cannot be expressed in measurable terms.

i

ABSTRACT

KEYWORDS : VISIR ; Switching Matrix .

This project involves understanding and implementing the Virtual Instrument

Systems In Reality (VISIR). VISIR is a remote laboratory for undergraduate elec-

tronic circuits practice. It allows a student to wire a real circuit remotely and get

results from real instruments on their PC screen. It’s purpose is to supplement

the regular supervised lab sessions and enable students to perform experiments

round the clock. The advantage of the system is in the fact that the same set of

instruments can be used by many students through time-sharing.

It is realized by using two hardware components: a National Instruments PXI

chassis that generates and measures signals and a Switching Matrix that acco-

modates circuit components which are connected through relays. These hardware

components are controlled using various servers installed on the host computer.

This work reflects the acquired experience during the set up and the installa-

tion process of VISIR. The guide contains all the stages of the installation and

the necessary configurations required for the VISIR start-up, correct usage and

administration.

ii

TABLE OF CONTENTS

LIST OF TABLES v

LIST OF FIGURES vii

ABBREVIATIONS viii

1 Introduction 1

1.1 Motivation . 1

1.2 Organization . 2

2 HARDWARE DESCRIPTION 3

2.1 National Instruments PXI-Platform 3

2.2 Relay Switching Matrix . 4

2.2.1 Types Of Boards . 5

2.2.2 Nodes . 5

2.2.3 Relays . 6

2.2.4 Internal Connections . 6

2.2.5 Control Of Matrix . 8

3 SOFTWARE DESCRIPTION 12

3.1 Equipment Server . 12

3.1.1 IVI Standards . 13

3.1.2 Components List . 14

3.1.3 Process Flow . 18

3.2 Measurement Server . 18

3.2.1 Maxlists . 20

3.2.2 Process Flow . 20

3.3 Web Server . 21

iii

3.3.1 Web Interface . 22

3.3.2 Flash Module . 22

4 SOFTWARE INSTALLATION 25

4.1 Equipment Server . 25

4.1.1 LabVIEW . 25

4.1.2 Measurement and Automation eXplorer - MAX 26

4.1.3 Settings and Configurations 26

4.1.4 Errors . 27

4.2 Measurement Server . 27

4.2.1 Compiling Source Files 28

4.2.2 Settings and Configurations 28

4.3 Web Server . 29

4.3.1 WAMPServer . 29

4.3.2 Text Wiki . 30

4.3.3 Smarty . 30

4.3.4 Flash Professional . 31

4.3.5 Web Interface . 34

4.4 Debugging . 41

5 OPERATION CYCLE 45

5.1 Circuit Schematic . 45

5.2 Components list and Maxlists 46

5.3 Web Interface . 47

5.4 Results . 50

5.5 Conclusion and Future Work . 50

A HARDWARE TESTING 52

A.1 Controlling Switching Matrix 52

A.2 Soft Front Panels . 53

A.3 Testing . 54

LIST OF TABLES

2.1 Components of NI PXI platform 4

2.2 I2C Address Scheme . 8

3.1 Some Predefined Types of Components 16

3.2 Internal Connections Between Auxiliary Nodes And Power Supply
Terminals . 16

3.3 Connections of Op-Amp on Component Board 1 17

A.1 Board Controller Messages . 53

v

LIST OF FIGURES

2.1 NI PXI Platform . 3

2.2 Relay Switching Matrix . 5

2.3 DPST Relay Connecting Two Nodes 6

2.4 component board . 7

2.5 component board connections 8

2.6 Internal Connections of Source Board 9

2.7 Internal Connections of Oscilloscope Board 10

2.8 Internal Connections of DMM Board 11

3.1 Equipment Server . 13

3.2 IVI System Architecture . 14

3.3 Component board showing opamp 18

3.4 Measurement server window . 19

3.5 Web Server Architecture . 21

3.6 Web Interface . 22

3.7 Flash Module . 23

3.8 Entire Process . 24

4.1 Measurement and Automation Explorer 27

4.2 Login screen of flash in standalone mode 33

4.3 Virtual Breadboard . 33

4.4 Components drop down menu 34

5.1 Schematic of inverting amplifier 45

5.2 Schematic of inverting amplifier with relays 46

5.3 Component board of matrix . 48

5.4 Interface for adding a prepared experiment 49

5.5 Administrator’s view of courses 49

vi

5.6 Virtual breadboard showing Inverting Amplifier circuit 50

5.7 Oscilloscope output . 51

A.1 Soft Front Panel of DC Power Supply 53

A.2 Soft Front Panel of DMM . 54

A.3 Front Panel of ’Circuit to matrix.vi’ 55

A.4 Soft Front Panel of Function Generator and Oscilloscope 55

vii

ABBREVIATIONS

API Application Programming Interface

DPST Double Pole, Single Throw

GPIB General Purpose Interface Bus

GND Ground

HTML Hyper Text Markup Language

IP Internet Protocol

IVI Interchangeable Virtual Instruments

LabVIEW Laboratory Virtual Instrumentation Engineering Workbench

LXI LAN eXtensions for Instrumentation

NI National Instruments

PXI PCI eXtensions for Instrumentation

PC Personal Computer

SSL Secure Socket Layer

SPST Single Pole, Single Throw

TCP Transmission Control Protocol

TLS Transport Layer Security

USB Universal Serial Bus

VISA Virtual Instrument Software Architecture

VISIR Virtual Instrument Systems In Reality

viii

CHAPTER 1

Introduction

In most of the undergraduate universities around the world, there are a number

of electronic laboratory workbenches where students , mostly in groups perform

experiments under the supervision of instructors. In most cases, students are not

allowed to enter the lab outside lab hours and the time cost of students learning the

basics and conducting experiments in supervised sessions is enormous. In order to

help the students understand the concepts while simultaneously taking significant

load off the instructors, the VISIR project was born in Blekinge Tekniska Hogskola

(BTH) which aims to create a grid laboratory where the nodes are online lab

workbenches, distributed among a number of universities or other organizations.

My goal would be to understand this project, implement it and write a manual

laying the groundwork for future work on this project.

1.1 Motivation

Though there are a number of remote laboratories in the world that are used in

different disciplines, many of them have interfaces that are difficult to understand.

VISIR project has the advantage that the interface used has a high resemblance

to any normal undergraduate student’s workbench. It can handle more than one

users at a time and once installed offers a very low cost per student added. This

laboratory can help students to prepare for supervised learnings in a big way. It

also offers the advantage of community effort and can be scaled up for performing

more demanding tasks.

1.2 Organization

Chapter 2 discusses the hardware components.

Chapter 3 discusses the software design.

Chapter 4 explains the installation process.

Chapter 5 explains the operation of the entire system.

Appendix A describes the control of hardware using LabVIEW software in stan-

dalone mode.

2

CHAPTER 2

HARDWARE DESCRIPTION

2.1 National Instruments PXI-Platform

Common undergraduate laboratory equipment like Oscilloscope, Function Gener-

ator, DMM and DC power supply are replaced with an equipment platform which

is suitable for remote control using serial communication like PXI (PCI eXten-

sion for Instrumentation), LXI (LAN eXtension for Instrumentation), or GPIB(

General Purpose Interface Bus). In the current case we are using a PXI platform.

The PXI platform consists of instrument module cards, a controller card and a

chassis in which all the cards are placed which are all manufactured by National

Instruments.

Figure 2.1: NI PXI Platform

Table 2.1: Components of NI PXI platform

NI PXI-Chassis NI PXI-Modules NI PXI-Controller
Function: It is the backbone of

the PXI system in
which all the instru-
ment cards(NI PXI-
modules) are plugged
into.

These module cards
substitute the instru-
ments and are digitally
controlled. They are
plugged into the PXI-
Chassis and can be
added or removed as per
the demand.

The PXI is controlled
by the PC using NI
PCIe host card. The
PCIe host card is
plugged into PCI
Express slot of PC
and connected to PXI
through MXI-Express
x1 cable.

Model
Used:

NI PXI-1033 DC Power Supply(NI
PXI-4110) Digital Mul-
timeter(NI PXI-4072)
Function-Generator(NI
PXI-5412)
Oscilloscope(NI PXI-
5114)

NI PCIe host card

Various components of this PXI platform and their functions are listed in the

table 2.1.

2.2 Relay Switching Matrix

A Relay Switching Matrix can simply be assumed to be a robot making connec-

tions and wiring circuits according to instructions received through serial bus. It

has been wired to components and instruments through relays which can be con-

trolled It has been manufactured in BTH. It consists of a stack of PCI/104 sized

boards and can be used for low frequency electronics circuit experiments. These

boards are modular and many such boards can be plugged into the matrix as per

convinience. This switching matrix should be handled with extreme care and the

pins on the board should not be touched directly as it might cause ESD (Electro

Static Discharge).

4

2.2.1 Types Of Boards

Broadly speaking there are two types of matrix boards: one for connecting instru-

ments and one for holding components or connecting external circuits. Figure 2.2

shows various boards that comprise the current relay switching matrix.

Figure 2.2: Various components of Relay Switching Matrix at a glance

The instrument boards are connected to the PXI Modules in the chassis through

coaxial cables or cords, source board to power supply, DMM board to multimeter

and oscilloscope board to oscilloscope in NI PXI-1033. The component boards

have sockets in which components can be installed. One component board can

carry 10 components with two leads or as many components with more than two

leads as can be installed in the on- board 20 pin IC socket. The component board

also contains a digital potentiometer AD7376 which can be used if needed.

2.2.2 Nodes

There are two stacking connectors on each board which connect the boards. One

of the connectors(the central one) called node connector propagates nodes to

every board. The notation Node refers to the fact that each conductor created by

5

the stacked node connectors can be a node in a desired circuit. Only nodes A to I

and node 0 can be used to serve as the nodes of the circuit to be built which limits

the maximum number of nodes of any circuit that can be built to 10. Node 0 is

connected to digital GND. Furthermore, this node bus contains seven auxiliary

nodes denoted X1 to X6 and COM. These nodes are connected internally to the

power supply through relay switches and they are not to be directly connected to

components.

2.2.3 Relays

These relays regulate the connection between the nodes and instruments or com-

ponents. In the matrix that is being used, two types of relays are used: DPST(

Double Pole Single Throw) and SPST(Single Pole Single Throw). Figure shows

a two-lead component connected to two nodes through a DPST relay.

R

A B

Connect A and
B : instruction

C
O

M
1

C
O

M
2

N
O

1

N
O

2

Figure 2.3: DPST Relay Connecting Two Nodes

2.2.4 Internal Connections

A close-up view of the component board and its internal connections are shown in

figure 2.4 and figure 2.5 respectively. As shown the leads of the components are

to be connected to the sockets on the outer side of the relays in the component

board.

6

Figure 2.4: Component Board

Figures 2.6, 2.7 and 2.8 depict the internal connections of the source board,

oscilloscope board and DMM board respectively. The ground terminals of func-

tion generator and oscilloscope are hardwired to node 0. The function gener-

ator signal can only be connected to node A. Oscilloscope channels and DMM

channels are dynamically connected to any node depending on the circuit design.

The power supply channels (0,COM,+6,+20,-20,AUX) are connected to the nodes

(0,COM,X1,X2,X3,X4) and X1-X6 internally. Channel 0 is hardwired to the digi-

tal ground node 0 while the others are connected through relays in source board.

The maximum number of component boards one can plug into the matrix is

15 and hence the maximum number of components one can use is 150. But in

the matrix that we have, there are four component boards, which would mean a

maximum of 40 components. Also, the maximum current allowed through the relay

is 2A and its minimum life expectency is 3×108 operations which is approximately

2 operations per second for 5 years.

7

R14

R13

R12

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

A

0

B

C

D

E

F

G

H

I

Figure 2.5: Component Board connections showing only the cicuit nodes A to I
and node 0

2.2.5 Control Of Matrix

The matrix is microprocessor controlled. A Matrix Controller (PIC18F4550)

hosted on the source board communicates with Board Controllers (PIC16F767)

on each board via an I2C bus. The I2C address scheme is listed in Table 2.2. In-

structions for switching the relays on and off are given to the microprocessor from

the personal computer through a USB cable. This switching matrix is treated as

a USB device by the computer after the appropriate driver is installed.

Appendix 1 describes how to test this Switching Matrix using LabVIEW soft-

ware.

Table 2.2: I2C Address Scheme

Board Type I2C Address (Board
Number)

Label On The Micro-
processor

Component Board 1 1 COMP 1
Component Board 2 2 COMP 2
Etc.
Oscilloscope Board 16 OSC 16
DMM Board 17 DMM 17
Etc.
Source Board 24 SRC 24

8

C

D

X3

G

X4

H

I

F

X5

X6

E

X2

X1

COM

B

0

A

FGENA

0

COM

Digital GND

+6 V

+20 V

-20 V

AUX

Nodes
Connector

DC Source
Connector

R1

R6

R2

R7

R8

R3

R9

R4

R10

R5

R11

R12

R13

R14
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

5

4

1

2

3

6

Figure 2.6: Internal Connections of Source Board

9

CH1 CH2

A

0

B

COM

C

X1

D

X2

E

F

G

X3

X4

X5

H

X6

I

R20

R19

R17

R18

R16

R1

R15

R2

R14

R3

R13

R4

R12

R5

R11

R6

R19

R7

R9

R8

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Nodes
Connector

Figure 2.7: Internal Connections of Oscilloscope Board

10

I V I V

1 2 1 2

A

0

B

COM

C

X1

D

X2

E

F

G

X3

X4

X5

H

X6

I

R21R20

R19

R17

R18

R16

R1

R15

R2

R14

R3

R13

R4

R12

R5

R11

R6

R19

R7

R9

R8

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Nodes
Connector

Figure 2.8: Internal Connections of DMM Board

11

CHAPTER 3

SOFTWARE DESCRIPTION

The hardware which was described in the previous chapter is controlled by a

software written in LabVIEW through a serial cable. There are a set of other

softwares which communicate with it and provide services to the user who sends

requests from his personal computer.

The software section of this project can be divided into three parts: equipment

server, measurement server and web server. These three servers sort of form three

layers over the hardware equipment. The user first interacts with the web server,

which authenticates him and then sends the experiment information in the form

of XML requests to the measurement server, which then does some processing and

then checks if the requested circuit can be built. If it is allowed, the information

is sent in a XML file to the equipment server which instructs the hardware to

perform the desired experiment and give back the results which are sent back to

the user via measurement server and web server.

All these softwares are distributed under GNU-GPL as part of the VISIR

project. It can be downloaded from the Openlabs developmental webpage of the

BTH university or from a subversion server also maintained by the same university

for a more recent and updated version.

3.1 Equipment Server

This server has been written in LabVIEW. It is the first layer around the equip-

ment handling low level instrument interfaces and hosting controlling all the hard-

ware comprising PXI platform and Relay Switching Matrix. All the instrument

drivers are installed in LabVIEW which are IVI (Interchangeable Virtual Instru-

ments) compliant.

Figure 3.1: Equipment server Window

3.1.1 IVI Standards

Most of the undergraduate electronic laboratories in the world have common equip-

ment with common functionalities like oscolloscope, function generator, multime-

ter, DC power supply and breadboard (some of which are IVI instrument classes)

regardless of their make and model. The VISIR project currently uses the PXI

platform, though other universities might want to use other platforms like LXI

or GPIB. To clear it all up, VISA, IVI and SCPI are all various organizations

which set standards for interface languages or APIs to communicate with test

instruments from computers. Currently IVI maintains all the standards which

essentially means IVI is setting the industry standards.

IVI drivers can be custom specific which are unuique to the instrument and

not standardized, class drivers which can comply with an instrument class spec-

ification, or class-compliant specific drivers which contain base class capabilities

as well as class-extension capabilities. Base class capabilities are common to most

instruments in a class (e.g., edge triggered acquisition on a scope) and class exten-

sion capabilities represent more specialized features of an instrument (e.g., width

trigger on a scope).

13

On the other hand PXI (PCI eXtensions for Instrumentation), LXI (LAN

eXtensions for Instrumentation) and VXI (VME eXtensions for Instrumentation)

are all modular electronic instrumentation platforms which are used to build test

equipment or automated systems like the VISIR project.

Figure 3.2 shows the IVI architecture describing how the user softwares com-

municate with Instrumentation hardware. VISA library is the predominantly used

I/O library which are used by drivers to communicate with the hardware. VISIR

project recommends using instruments that comply with IVI-C class compliant

specific drivers to realise interchageability so that all the workbenches in various

universities can be linked in the future to form a grid.

Figure 3.2: IVI System Architecture

3.1.2 Components List

The components installed on the Relay Switching Matrix have to be informed to

the equipment server and measurement server so that they can take requests and

instruct the matrix to wire them in. This is done using a .list file called Compo-

nents.list. .list along with .max (described in subsequent seection) are file formats

of configuration files for the switching matrix. Components.list contains all the

components’ types, values, board label numbers, relay numbers, node connections

and descriptions which are plugged in the switching matrix. In addition to the

14

components, it also contains information of some instruments like function gen-

erator and power supply while that of DMM and oscolloscope are not needed as

they are not altering the circuit per se.

The basic format for listing two-lead components and instruments is as follows:

(Component Type) (Board No.) (Relay No.) (Node1) (Node2) (Value)

Here the component type does not strictly mean component type, rather it

means the code given to the actual component type by us in the library.xml file

in flash client, which will be discussed later.

Here are a few examples:

• R 1 2 A D 10k : This means a resistor of resistance 10k ohm is connected
between the nodes A and D through the relay number 1 on board 1 in the
switching matrix.

• SHORTCUT 3 4 E F : This means a short or wire is connected between the
nodes E and F through the relay number 4 on board 3.

As we have seen that some relays on the switching matrix are single pole relays

for a two-lead component to be connected to the nodes we need to use two such

relays. Generally speaking if two or more relays are to be switched on to enable

a component to connect to the specified nodes then we seperate the two relay

connections by a ’:’ sign. For example,

R 1 6:1 7 A C 5k

would mean that the relays 6 and 7 on board 1 have to be activated to connect

the 5 ohm resistor between A and C.

Table shows some predefined types of components and instruments.

These defined types are used to map the real components on the switching

matrix to the virtual ones in the flash module. Again, it is to be noted that

these types are defined in the library.xml file in the flash module in web server

where new component types can be defined. In addition to these, PROBE and

DMM DMM are the other two types which represent the oscilloscope probe and

DMM probe respectively and are not mentioned in the components.list but appear

15

Table 3.1: Some Predefined Types of Components

Type Component
R Resistande
C Capacitor
L Inductance
OP Operation Amplifier
POT Potentiometer
Q NPN Transistor
VFGENA Function Generator
SHORTCUT a Short or wire
VDC+20 DC power 20 V termi-

nal

in the solved netlist of measurement server.

Regarding the instruments, function generator and power supply terminals are

connected to specific relays on the board 24. The ground of function generator

is hardwired to 0 node and the signal lead is connected to the node A internally

through the relay number 1. Hence we have to represent it in the components.list

as

VFGENA 24 1 A 0

The auxiliary nodes X1 to X6 and COM are not supported to be included

in components.list. Some of them are connected to the power supply terminals

internally through relays on board 24. Table describes the connections among

them.

Table 3.2: Internal Connections Between Auxiliary Nodes And Power Supply Ter-
minals

Power Supply Termi-
nal

Auxiliary Node Connecting Relay

+6V X1 3
+20V X2 4
-20V X3 5
GND 0 hardwired
COM 0 2
COM COM hardwired

16

There are two ways to connect power supply terminals to actual circuit nodes

(A to I) :

1. By shorting the appropriate power supply node (X1, X2 or X3) to any node
from A to I nodes. Node COM is already connected to node o through the
relay number 2. For instance, an entry in components.list corresponding to
such a short connecting X1 to B would look like:

VDC+6V_24_3 B

2. By connecting the appropriate power supply node (X1, X2 or X3) to any
node from A to I nodes through a relay (preferably a single pole relay) on
component board. For instance, an entry in the components.list correspond-
ing to such a connection between X1 and B through the relay number 7 on
board 1 would like:

VDC+6V_24_3:1_7 B

In case of components having more than two pins, we use a different format:

(Component Type) (List of Board Relay Nos) (List of Nodes in Increasing

Order of Pin No.) (Value)

For example, in the case of an Op-Amp, for the connections in figure 3.3

described by Table (here all the relays are on board number 1), the entry in

components.list would be

OP 1 14:1 11:1 10:1 7:1 6 NC1 B D F NC2 C E NC3 UA741

Here, NC stands for Not Connected.

Table 3.3: Connections of Op-Amp on Component Board 1

Op-Amp Pin No. Relay No. Node Connected To
1 NC NC
2 14 B
3 11 D
4 10 F
5 NC NC
6 7 C
7 6 E
8 NC NC

17

Figure 3.3: Component board showing opamp

3.1.3 Process Flow

While starting measurement server, equipment server sends components.list to it

which is compared with maxlists to check for errors. The equipment server then

receives a validated sequential experiment protocol (XML based format) from the

measurement server over TCP/IP through the port 5005 and executes it through

the connected instruments. After that, the results which contain measurement

values are sent back to the client through the same port.

3.2 Measurement Server

It is an executable software program written in C++ using Microsoft Visual C++

that forms a layer on the equipment server layer. Figure 3.4 shows the measure-

ment server window. It communicates with the web server using a unique XML

based client protocol through the port 2324. This protocol is based on requests

and responses. The client builds an experiment string, a request using web server

with cookie information in it and sends it to the server.

18

Figure 3.4: Measurement server window

The measurement server then handles this request and produces a response,

which contains a unique-id, which signifies the establishment of a session, that is

sent back to the user. This unique-id is used in all the subsequent requests by the

user. Each request is sent in a seperate TCP session which means a connection

is established, request sent and then it is closed. The size of this request cannot

exceed 64kb.

For example a function generator description in a client request is as follows:

<functiongenerator>

<fg_waveform value="sine" />

<fg_amplidute value="1000.0" />

<fg_frequency value="1000.0" />

<fg_offset value="0.0" />

<fg_startphase value="0.0" />

<fg_triggermode value="continous" />

<fg_triggersource value="immediate" />

<fg_burstcount value="0" />

<fg_dutycycle value="0.5" />

<fg_userdefinedwave length="20" encoding="BASE64">ABCD1234ABCD1234ABCD

</fg_userdefinedwave>

</functiongenerator>

19

3.2.1 Maxlists

While the components.list specifies all the components installed in the switching

matrix and all the instruments, maxlists specifies all the safe or allowed circuits

that can be built by a user. Thus it should be a subset of the components list.

These files having a file extension of .max are used by the measurement server to

confirm that the requested circuit is safe before passing on the request to equipment

server. It also lists all the components and instruments and how they are connected

to each other. Each entry has a format

(Component Type) (Serial No.) (Node1)(Node2)(Node3)(etc.) (value)

The serial number can be any value which is chosen to name the particular

component or instrument.

3.2.2 Process Flow

As soon as the client starts the session with the web server a cookie is generated

and stored in the database. It is used in all the subsequent requests made to the

measurement server. The measurement server compares the request-cookie with

the stored-cookie and authenticates him.

It analyzes the received circuit connections and solves it using a program called

circuit-solver written in C++ to get the netlists. This circuit-solver essentially

maps the virtual circuit made on breadboard in web server flash client to actual

netlists used to wire the circuit on the matrix. It then uses the maxlists to check

if the circuit is permitted to be wired and then sends the processed client request

specifying the connections to be made and instruments settings to the equipment

server through the port 5005 over TCP/IP, which runs the experiment.

After the experiment is run the results are sent back as response to the user

via measurement and web server.

If more than one user sends a request at a time then the measurement server

puts them in a queuing system and sequentially executes them with regard to

20

reservations and priority etc. 1/16 second is the maximum time allocated for each

request. To send the request to equipment server through the port 5005 over

TCP/IP after the above two steps and send the reveived response back to the

client via web server.

3.3 Web Server

A web server is a software which is most directly associated with a user. It

provides him with a graphical user interface, handles authentication and sends

the user request in a XML based format to the measurement server. Figure 3.5

shows the basic structure of web server.

Text Wiki

PHP

Smarty

 Web Interface

Apache Web Server

User

Flash Module

MySQL Database

To Measurement Server

Authentication

Figure 3.5: General idea of how the web server works

In this project, we use Apache server, MySQL database, PHP, Text Wiki and

Smarty. Apache server hosts the entire website, MySQL stores the user details

and cookies that are used for authentication purposes and Text Wiki and PHP

using Smarty, create the web interface.

21

3.3.1 Web Interface

Here, by web interface, we mean the pages that the user is actually able to see. In

simple terms,php scripts generate some variable values and put them in Smarty

templates and create webpages. If the URL has ’page=’ in it, then it is a wiki

formatted page and if it has ’sel=’ then it is a function in a php script, though

the reverse is not true in all the cases.

Figure 3.6 shows the login screen. After logging in the user can see various

options depending on his authentication type, which currently are guest, student,

teacher and admin. More on this is explained in the Operation Cycle chapter.

Figure 3.6: Login Page for Web Interface

3.3.2 Flash Module

The flash module is embedded in a php script which provides the user with the

virtual workbench. It is used to create a schematic of the circuit intuitively which

is then converted into a XML based request and sent to measurement server and

then to equipment server where it is really wired up. This flash module has been

written in Adobe Flash. Figure 3.7 shows the flash module .

Currently the following instruments have been installed in flash module:

• Breadboard

• Multimeter - Fluke 23

22

Figure 3.7: Flash Module Showing Virtual Breadboard

• Function Generator - HP33120A

• Oscilloscope - Agilent 54622A

• DC Power - Agilent E3631A

• National Instruments models of Oscilloscope, DC Power Supply, Multimeter
and Function Generator.

Additional instruments can be included by designing their flash modules. The

instruments provided are included in the instruments.xml file and breadboard

components in library.xml. New components can be added easily as described in

the operation cycle chapter.The modules are really intuitive and one can change

the values using just his mouse and dragging of components, buttons and knobs.

For testing purposes one can use loader.html or loader.swf and change the

config.xml settings as desired. But the preferred mode is always through the web

interface after logging as admin and starting the client in teacher mode.

After understanding the hardware and software, one can broadly represent the

entire project as shown in figure 3.8.

23

User Web
Interface

Apache
Server

Measurement
Server

Equipment
Server

NI Platform
+

Matrix

Components

list
Max lists

HTTPS

TCP/IP

XML

Database
MySQL

XML

TCP/IP

TCP/IP

F
igu

re
3.8:

B
lo
ck

d
iagram

for
th
e
rem

otely
con

trolled
electron

ics
lab

oratory
w
ork

-
b
en
ch

24

CHAPTER 4

SOFTWARE INSTALLATION

In this chapter we describe the installation process of the three server softwares

along with the packages they require.

The server softwares can be downloaded either as binaries from the Openlabs

development pages or as source files from their subversion server. To do this, we

have installed TortoiseSVN which is a subversion client. A subversion is a software

versioning and revision control software that maintains and logs various versions of

the source files which is generally used in software development. For downloading

the files, just right click on the destination folder and select ’svn checkout’ and

enter the url of the svn server. To update all the source files, you can use ’svn

update’ option in the same way.

4.1 Equipment Server

Firstly, before installing the NI PXI Chassis, we have to install their drivers. In

the case of the Switching Matrix, when we first plug in the USB cable, we are

asked for a .ini file which is provided along with it.

4.1.1 LabVIEW

Since the current equipment server has been written in LabVIEW 8.6 and the

subsequent versions will written in 2009 version, it is better to install LabVIEW

2009 or 2010 version. We have installed the 2009 version with all the needed

drivers as listed in the Chassis manual.

The server software, written as LabVIEW .vi files have been downloaded from

the openlabs development website. The following are a few important points about

LabVIEW:

• LabVIEW is a graphical programming language where there are a number
of predefined blocks with different functions. It is modular and execution is
determined by the structure of the graphical block diagram.

• When you open a vi file, you will see the front panel. If you press ’Control
+ T’ it will show the block diagram.

• You can double click on a connector pane (block) of a subVI in the block
diagram and enter its front panel.

• To see all the interconnections and the structure of the entire project con-
taining various subVIs, you can select ’VI Hierarchy’ in ’View’ option in
the menubar of front panel. If you want to see only the relationships of
that particular vi file, then select ’Browse Relationships’ in the same ’View’
option.

• You can get the entire list of functions and VIs and search through them by
right clicking in either front panel or block diagram.

• While debugging you can always see the error code and search for a text in
the description or labels etc. of all the VIs in the server using ’Find and
Replace’ (Ctrl+F).

4.1.2 Measurement and Automation eXplorer - MAX

We can verify that the drivers have been correctly installed by opening mea-

surement and Automation Explorer or MAX and checking under ’Devices and

Interfaces’ to see the chassis modules and under USB devices to see the Relay

Switching Matrix as shown in the Figure ??. We can also self test the equipment

there.

4.1.3 Settings and Configurations

Open ’EquipmentServer.ini’ and

• set Port=5005

• set Log File = C:/EquipmentServer.log

• check if the instrument addresses (e.g. PXI1Slot4) are same as mentioned
in the MAX.

• edit component types which are used in components.list and maxlists and
subsequently make the same edits in the component.types file in measure-

ment server and .

26

Figure 4.1: Measurement and Automation Explorer

• enter the data in the components.list as mentioned in the previous chapter.

4.1.4 Errors

When we initially executed the EquipmentServer.vi file, there was a minor error in

DMM control.vi where a default case had to be included in the inner case structure

which has been corrected in the subsequent versions. Excepting this there were

no other errors.

4.2 Measurement Server

We are using the downloaded binaries from the Openlabs Development pages as

these are working fine without giving errors. There is an executable file measure-

server win.exe which can be run. Since it is built with Microsoft compiler, Mi-

crosoft runtime libraries (Microsoft Visual C++ Redistributable Package) should

be installed before running it.

27

4.2.1 Compiling Source Files

We can also download the source files from the Openlabs website and compile

them using Microsoft Visual C++ 2010 Express which is available for free. Some

of the steps taken:

• Open the solution file and build the main project measureserver.

• For all the missing files errors add the file paths to the ’library path’ and
’include path’ boxes in the VC++ option.

• For all the LNK errors, add the file paths of the corresponding files in the
’linker’ section in the properties of the particular module.

Unfortunately the error ’corrupt libusb.lib’ could not be sorted out, though

compiling the source files is not needed now and the binaries are working fine.

4.2.2 Settings and Configurations

Follow these steps to configure the measurement server :

• Firstly, write the appropriate .max file and store it in “/conf/maxlists/”
folder and make sure that the maxlists are a subset of the components.list.

• Now include all the maxlists files created in the file maxlists.conf in “/conf/”
folder.

• All the configuration details of the measurement server are present in the
file ’measureserver.conf’ in “/conf/” folder.

• ’Port’ is set to 2324 which indicated the port through which it communicates
with the equipment server.

• Set ’LogLevel’ to 5 to enable detailed logging of all the processes.

• Set the ’BypassAuth’ to 1 which means that we are bypassing the authenti-
cation of the user’s cookie by checking it with the one stored in the database.
If this authentication is to be enabled, then set it to 0 and add the following
lines to the file ’measureserver.conf’ :

LoadModules eqcom, dbmysql

DB.Host localhost

DB.Port 3306

DB.User root

DB.Password <password>

DB.Database electronics

28

Then copy the file ’libmySQL.dll’ from the wamp server folder to the direc-
tory “/conf/” in the measurement server folder.

4.3 Web Server

The web server is implemented using the following packages (with version numbers

in brackets):

1. WAMPServer (2.0i)

2. Text Wiki (1.2.1)

3. Smarty (2.6.26)

4. Adobe Flash Professional - Flash Module (CS3)

5. Web Interface

The following sections detail the installation procedure for these packages

which should be followed in the same order as mentioned:

4.3.1 WAMPServer

’WAMP’ in WAMPServer stands for Windows, Apache, MySQL and PHP. Apache

is the most widely used HTTP server, MySQL is for creating and managing

databases and PHP is a scripting language that can manipulate information held

in a database and generate web pages dynamically each time content is requested

by a browser. The versions in use are 2.0 for WAMPServer, 2.2.11 for Apache,

5.1.36 for MySQL and 5.3.0 for PHP. It is preferred to use these versions be-

cause of certain compatibility issues. It has been installed in the “C:/wamp”

folder. The default values for the installed packages are: server port is 80;

server address is ’localhost’; server remote address is ’127.0.0.1’; database port

is 3306 and database user is ’root@localhost’. All the files that are kept in the

“C:/wamp/www/trunk/sites/electronics/public” folder are accessible to public.

29

4.3.2 Text Wiki

Text Wiki transforms Wiki and BBCode markup into XHTML, LaTeX or plain

text markup. We have to install Text Wiki using PEAR installer. To install

PEAR installer,

• Open Command Prompt

• Go to the directory “C:/wamp/bin/php/php5.3”, where the file ’pear.go.bat’
exists.

• Type the command “php -d phar.require hash=0 PEAR/go-pear.phar” and
press enter.

Answer the questions that follow and then pear installer will be installed.
Now to install Text Wiki package,

• Open Command Prompt

• Go to the directory “C:/wamp/bin/php/php5.3.0”

• Type the command “pear config-set http proxy

http://username:password@proxy.iitm.ac.in:80 ” and press enter to specify
the proxy settings. Alternatively you could just download the .tgz file from
the project page to the php5.3.0 folder and follow the remaining steps.

• Type the command: “pear install Text Wiki” or “pear install Text Wiki-
1.2.1.tgz” in case of downloaded file and press enter.

4.3.3 Smarty

Smarty is a template engine for PHP facilitating the seperation of application logic

from presentation.

• Download the package from the Smarty project website and extract it to
“C:/wamp/Smarty”.

• Open to edit the file “C:/wamp/bin/apache/Apache2.2.11/bin/php.ini”

• Under “Paths and Directories” type the line:

include path = “C:/wamp/bin/php/php5.3.0/PEAR;C:/wamp/Smarty/libs”

To check that Smarty has been installed properly:

30

• Create two folders: “C:/wamp/www/smarty/configs”

and “C:/wamp/www/smarty/templates”

• Create a template file ”index.tpl” in the folder “C:/wamp/www/smarty/templates”
with the contents:

<html>

<body>

Hello, {$name}!

</body>

</html>

• Open to edit the file “index.php”, which is located in the folder “C:/wamp/www”
and add the following lines in the end:

<?php

// load Smarty library

require (’Smarty.class.php’);

$smarty = new Smarty;

$smarty->template_dir = ’C:\wamp\www\smarty\templates’;

$smarty->config_dir = ’C:\wamp\www\smarty\configs’;

$smarty->cache_dir = ’C:\wamp\Smarty\cache’;

$smarty->compile_dir = ’C:\wamp\Smarty\templates_c’;

$smarty->assign (’name’,’World!’);

$smarty->display (’index.tpl’);

?>

• Now start the WampServer and go to its homepage at “http://127.0.0.1/”
or at “http://localhost/”

• If you see “Hello, World!!” at the end of the page below the WampServer
options it is installed correctly.

4.3.4 Flash Professional

The flash module which offers the virtual workbench environment is created using

Adobe Flash Professional CS3. It is written as a flash project (.flp), which is not

supported by the latest CS5 version and hence using CS3 is recommended. The

source files can be downloaded from the openlabs subversion server. Follow the

steps listed below to set up the flash module in web server :

31

• Before building the project, run the batch file “prepare output.bat” for cre-
ating the directory structure in a folder named ’output’. After building, all
the .swf files are stored in the respective folders in “output”.

• In the output folder where are flash files are built, create a folder ’images’
and move all the images of the instruments to this folder as the loader.swf
seeks the images in that location.

• Copy the entire output folder to the location

“C:/wamp/www/trunk/sites/electronics/public”.

• Open to edit the “C:/wamp/www/trunk/sites/electronics/public/flash/config.xml”
file. Replace its contents with the following;

<configuration>

<!-- <hostname>localhost</hostname> -->

<!-- <port>2324</hostname> -->

<hostname>10.7.9.101</hostname> # ip address of the host machine

<port>2324</port>

<http>0</http> #this lets requests to be made on http

<teacher>1</teacher> #this lets the user to add

components to the breadboard

<ignorecookie>0</ignorecookie>

<httpurl>http://10.7.9.101:8080/measureserver</httpurl> #in case

of http, url of measurement server

</configuration>

• If the flash module is run as a standalone program by opening either loader.html
or loader.swf without giving it a session cookie, it will display a login screen
for the system as shown in figure 4.2. This is when we want to run the flash
module on pages other than our website by embedding it in a LMS (Learning
Management System), with access to the php scripts in the “.../public/flash”
folder. The ignorecookie option should only be enabled while testing the flash
module. The teacher mode allows us to add components to the breadboard.
These components are predefined and present in a drop down box in the
flash module as shown in the figure 4.4.

• There are two ways in which a new component can be added to the afore-
mentioned menu: a new component of an existing type like a resistor of a
new value or an entirely new component with a new type.

In the former case, we just need to have an exact cropped picture of the
component and add it to “...flash/breadboard/images/” folder and add the
data to “...flash/breadboard/library.xml” as shown below (in the case of a
270 ohm resistor):

32

Figure 4.2: Login screen of flash in standalone mode

Figure 4.3: After logging in, the virtual breadboard of flash module looks like this

<component type="R" value="270" pins="2">

<rotations>

<rotation ox="-27" oy ="-6" image="r_270.png" rot="0">

<pins><pin x="-26" y="0" /><pin x="26" y="0" /></pins>

</rotation>

<rotation ox="-7" oy ="-27" image="r_270.png" rot="90">

<pins><pin x="0" y="-26" /><pin x="0" y="26" /></pins>

33

Figure 4.4: Components drop down menu in flash module

</rotation>

</rotations>

</component>

In the latter case, we need to :

1. Open to edit the file “EquipmentServer.ini” in the equipmentserver
folder and add the “desired type:number of pins” under the heading
“Component type”.

2. Open to edit the file “component.types” in “measurement server/conf/”
folder and add the desired type with the appropriate parameters.

3. Now follow the same steps as mentioned for the previous case.

4.3.5 Web Interface

This web interface software is written in PHP and is hosted by the Apache server

installed as mentioned above. It can be downloaded from the Openlabs subversion

server. The downloaded ’trunk’ folder should be placed in the ’C:/wamp/www’

folder. Now a list of configurations is to be done to get the web server running.

34

Database

Follow these steps to create the database which stores user information:

• Go to the phpmyadmin (http://localhost/phpmyadmin/)

• Go to ”Run SQL query//queries”

• Type the command ”create database electronics” and execute it by clicking
on ’Go’ to create a database called ’electronics’.

• Now populate it with contents by running ’create database.php’ by opening
the link ”http://localhost/trunk/sites/electronics/dbscripts/create database.php”

To create an admin account:

• Copy the file “C:/wamp/www/trunk/sites/electronics/dbscripts/create admin.php”
to the folder “C:/wamp/bin/php/php5.3.0”.

• Open the file “C:/wamp/bin/php/php5.3.0/create admin.php” and change
the code line 3 from

require_once ’’..config.php’’

To:

require_once ’’C:\wamp\www\trunk\sites\electronics\config.php’’

• Open the command prompt and go the the directory ”C:/wamp/bin/php/php5.3.0”

• Type ”php create admin.php testinglab.iitm@gmail.com password” and press
enter.

• If any error appears because of a missing file, search for the file and include
its path in ’require once’ line in its calling file.

Now to check if the administrator account is created correctly,

• Go to phpmyadmin (http://localhost/phpmyadmin/)

• Open the database ’electronics’ and look in the table ’anv’. The created
admin account should be present there.

35

SSL/TLS

The connection between the user’s computer and the web server is SSL encrypted.

Therefore, the SSL/TLS protocol should be installed to allow HTTPS (Hyper Text

Transfer Protocol Secure) by following the steps mentioned below:

Add an environment variable ’OPENSSL CONF’

• Go to Control Panel >System > Advanced > Environment Variables

• Add a new system variable: ’OPENSSL CONF’ ,

Value: ”C:/wamp/bin/apache/Apache2.2.11/conf/openssl.cnf”

• Log out and then log into windows.

• Go to command prompt and type ’set | more’ and press enter.

• Make sure that the variable “OPENSSL CONF=

C:/wamp/bin/apache/Apache2.2.11/conf/openssl.cnf”

exists among the listed variables

The following steps lead to the creation of security certificates for website.

Open command prompt and go to directory

“C:/wamp/bin/apache/Apache2.2.11/bin”

To generate key:

• Type the command “openssl req -new > webserver.csr” and press enter.

• Now you are prompted to enter a PEM pass phrase and verify it. Remem-
ber it because you will need it later. It will then ask you to enter infor-
mation that will be incorporated into your certificate request. When the
command finishes, it has created several files, including “privkey.pem”, in
“C:/wamp/bin/apache/Apache2.2.11/bin”.

To write RSA key:

• Type “openssl rsa -in privkey.pem -out webserver.key” and press enter.

• Enter the pass phrse obtained from the previous step. Now, the RSA key is
written and ’webserver.key’ is created in the folder.

To create signed certificate:

36

• Type “openssl x509 -in webserver.csr -out webserver.cert -req -signkey web-
server.key -days 365”

• We have just created a certificate that is valid for 365 days.

Now, we have to store the generated certificate files.

• Create the folder “C:/wamp/OpenSSL” with the following subfolders: ’certs’,
’crl’, ’newcerts’, ’private’.

• Copy the files ’webserver.cert’, ’webserver.csr’ and ’webserver.key’ from the
folder “C:/wamp/bin/apache/Apache2.2.11/bin”

to the folder “C:/wamp/OpenSSL/certs”

• Copy the files ’.rnd’ and ’privkey.pem’ from the folder

“C:/wamp/bin/apache/Apache2.2.11/bin” to the folder “C:/wamp/OpenSSL/private”.

Create error log files for SSL connections: ’ssl ErrorLog.txt’ and

’ssl TransferLog.txt’ in the folder ”C:/wamp/logs”.

Now we have to modify the configuration file of SSL. Go to the folder

“C:/wamp/bin/apache/Apache2.2.11/conf/extra” and make a backup of ’httpd-

ssl.conf’ and modify it as listed below (replace the first line entries with the second

line ones):

1. DocumentRoot “C:/Program files/Apache Software Foundation/Apache2.2/htdocs”

DocumentRoot “C:/wamp/www”

2. <Directory “C:/Program Files/Apache Software Foundation/Apache2.2/cgi-
bin”>

<Directory “C:/wamp/www/”>

3. SSLSessionCache “shmcb:C:/Program Files/Apache Software

Foundation/Apache2.2/logs/ssl scache(512000)”

SSLSessionCache “shmcb:C:/wamp/logs”

4. ServerAdmin me@localhost.

ServerAdmin Admin-email

5. ErrorLog “C:/Program Files/Apache Software Foundation/Apache2.2/logs/error.log”

ErrorLog “C:/wamp/logs/ssl ErrorLog.txt”

37

6. TransferLog “C:/Program Files/Apache Software Foundation/Apache2.2/logs/access.log”

TransferLog “C:/wamp/logs/ssl TransferLog.txt”

7. SSLCertificateFile “C:/Program Files/Apache Software

Foundation/Apache2.2/conf/server.crt”

SSLCertificateFile “C:/wamp/OpenSSL/certs/webserver.cert”

8. SSLCertificateKeyFile ”C:/Program Files/Apache Software

Foundation/Apache2.2/conf/server.key”

SSLCertificateKeyFile “C:/wamp/OpenSSL/certs/webserver.key”

9. #SSLCARevocationPath “C:/Program Files/Apache Software

Foundation/Apache2.2/conf/ssl.crl”

SSLCARevocationPath “C:/wamp/OpenSSL/crl”

10. CustomLog “C:/Program Files/Apache Software

Foundation/Apache2.2/logs/ssl request.log” \

“%t %h %SSL PROTOCOLx%SSL CIPHERx \”%r\“ %b”

CustomLog “C:/wamp/logs/ssl request.log” \

“%t %h %SSL PROTOCOLx %SSL CIPHERx \”%r\“ %b”

We have to modify the base directory in ’openssl.cnf’ configuration file:

• Open to edit the file “C:/wamp/bin/apache/Apache2.2.11/conf/openssl.cnf”

• Replace the line “dir=./demoCA” with “dir=C:/wamp/OpenSSL”

We now have to modify the http daemon configuration file ’httpd.conf’ as

explained:

• Open to edit the file “C:/wamp/bin/apache/Apache2.2.11/conf/httpd.conf”

• Uncomment the following three lines:

LoadModule rewrite module modules/mod rewrite.so

LoadModule ssl module modules/modules/mod ssl.so

Include conf/extra/httpd-ssl.conf

Finally, test if the configurations made are correct by

1. typing “httpd -t” in command prompt in the directory

“C:/wamp/bin/apache/Apache2.2.11/bin”. It should return OK.

38

2. restarting Apache server and typing “netstat -an | more”. The port 443
should be open.

If the output is contrary to any of the above, then some of the above steps

might have been missed.

Configuring Web Server

Copy the contents of the file ’Config.php.dist’ and create a new file ’Config.php’

with those contents in the folder “C:/wamp/www/trunk/sites/electronics/”. The

administrator account is “testinglab.iitm@gmail.com” and its password is “re-

motelabs”, while a user “electronics” with password “electronics” has been given

all privileges on “electronics” database. The following lines in ’Config.php’ have to

be changed to suit the settings of other packages. The first line should be replaced

with the second one in each of the following:

1. $openlabs dir=“/usr/home/zeta/dav/openlabsweb/trunk”;

$openlabs dir=“C:/wamp/www/trunk”;

2. ini set(“include path”, $incpath.“:”.$distpath);

ini set(”include path”, $incpath.”;”.$distpath);

3. $site db password = “X”;

$site db password = “password of user ”; //electronics in this case

4. $log dir = $src dir . “/logs”;

$log dir = $src dir . “/logs”;

The logs file should be created manually in the folder

“C:/wamp/www/trunk/sites/electronics”

5. $site admin = “staff@some.domain”;

$site admin = “testinglab.iitm@gmail.com”;

6. $site mailfrom = “staff@some.domain”;

$site mailfrom = “testinglab.iitm@gmail.com”;

7. $site root = “ ”;

$site root = ”/trunk/sites/electronics/public”;

8. $smarty compile dir = “/path/to/webcache/electronics”;

$smarty compile dir = “C:/wamp/Smarty/templates c”;

39

9. $smarty-¿assign(”site url”, ”http://dev.openlabs.bth.se”);

$smarty-¿assign(“site url”, “http://10.7.9.101/trunk/sites/electronics/public”);

10.7.9.101 is the ip-address of the machine on which the entire system is
installed.

10. $wiki upload dir = “/usr/home/zeta/dav/openlabsweb/trunk/sites/electronics/pub
lic/wiki upload”;

$wiki upload dir = “C:/wamp/www/trunk/sites/electronics/public/wiki upload”;

We need a smtp server to send automated mails regarding account activation

and password resetting among other needs. We are currently using the electrical

engineering department’s smtp server volt.ee.iitm.ac.in which can send mails only

to email addresses with ’ee.iitm.ac.in’ domain. To enable the web server to use

this smtp server, open php.ini file (from WAMPServer system tray icon and PHP

option) and modify the following lines under ’[mail function]’:

• SMTP = volt.ee.iitm.ac.in

• smtp port = 25

• sendmail from = testinglab.iitm@gmail.com

Now, we have to install multiviews to enable the web server to find scripts with

different file extensions. Open to edit the file “C:/wamp/bin/apache/Apache2.2.11/conf/httpd”

and modify the appropriate lines by replacing them with the following code:

If the electronics site is the root of this webserver

DocumentRoot "<source_directory>/trunk/sites/electronics/public"

If your site is not the root document,

#you can create an alias for the site like

#Alias /electro <source_directory>/sites/electronics/public

<Directory "<source_directory>/trunk/sites/electronics/public">

Basic php setup, may not be needed

AddType application/x-httpd-php .php

40

AddType application/x-httpd-php-source .phps

DirectoryIndex index.php index.html

Don’t allow indexing of the contents

MultiViews is needed to guess file suffixes for load/save

Options -Indexes +MultiViews

AllowOverride None

Order Allow,Deny

Allow from all

</Directory>

To disable access to .svn directories

<DirectoryMatch "/\.svn/">

Order allow,deny

Deny from all

</DirectoryMatch>

After modifying the ’httpd.conf’ file, restart the apache server.

4.4 Debugging

Here, I have mentioned some of the errors encountered during the installation of

the above softwares.

• The equipment server gives “The session handle is not valid” error when
the resource names of the PXI modules do not match the values given in
’EquipmentServer.ini’ file. The ’NiFgen Initialize’ creates a new IVI instru-
ment driver session by taking in the resource name as one of the inputs.
When there is a mismatch in them, this function shows error. It can be
rectified by modifying the contents of ’EquipmentServer.ini’ to match the
values shown in the MAX.

• Use prefixes for values of components (like k, M, etc.) in the components.list

and maxlists to prevent error messages reporting a mismatch between these
two. Such errors citing that maxlists are not subset of the components.list are
best handled by looking into the equipment server log file “eq.log” present
in “.../measurement server/logs/”. Set Log Level=5

41

in the EquipmentServer.ini. It records detailed account of the interaction
between equipment server and measurement server.

• A host of #2032 errors can occur if the flash module cannot connect to the
measurement server. Open the “config.xml” in flash folder and check if the
address of the measurement server is matching what has been specified in
the previous sections. It can also occur due to some missing files in the flash
module folder, which can be rectified by copying the required files from the
flash source files folder.

• If the web server returns the error “Access denied for user ’electronics’@’electronics’
(using password: YES)” when we try to open the url

“https://localhost/trunk/sites/electronics/public/”, then there is a prob-
lem with the password details of this account in the ’config.php’ file in
“.../trunk/sites/electronics/” folder. To set an account for the database
’electronics’, we enter the following command in SQL commandline in php-
myadmin:

GRANT ALL PRIVILEGES TO ’electronics’ ON ’electronics’ IDENTIFIED
BY ’electronics’;

This grants all privileges to the user ’electronics’ with password ’electronics’
on the database ’electronics’. This information has to be updated in the
’config.php’ file.

• If you get the error “Deprecated: Assigning the return value of new by
reference”, it means that the Text Wiki is an old wiki markup engine and
still relies on older version of PHP which used to allow this. To remove this
error, in all the files mentioned in the error dialog, remove the ’&’ after the
’=’ in the assigning equation.

• When you run the web server for the first time, you will get a lot of missing
files errors, which you can sort out by modifying the path of the included
files. You can use Dev-PHP IDE which is extremely helpful for debugging
such include-path errors as it allows us to open a large number of files in
tabs simultaneously and explore the code.

• If the web server is citing missing files error even when the files are present in
the folder, then we might not have installed multiviews module in the server.
It allows the web server to search for files whose file type is not known. For
example, given ’signin’ it can search for ’signin.php’ or ’signin.cpp’ etc.

• Never reactivate admin user account from the web interface as the password
cannot be sent to a gmail account and hence we can never know the changed
password. In such a case we have to delete the account from phpmyadmin
and again add it following the steps mentioned in the installation section.

• If after installing openssl, when we enter ’openssl’ in command prompt ,it
shows that it cannot find the ’openssl.cnf’ file, then most likely the envi-
ronment variable defining its location is not defined properly and has to be
redefined. This can be confirmed by entering

42

openssl -config C:\wamp\bin\apache\Apache2.2.11\conf\openssl.cnf

in the command line after going to the directory

“C:/wamp/bin/apache/Apache2.2.11/bin”. If it works fine then the envi-
ronment variable has not been declared properly.

• From the web interface, when we try to click on the link “Start experiment-
ing” we get and error stating experiment.php was not found on the web

server. It is because the the flash client is configured to start only in secure
connection (url should have ’https’ in it) while the link is taking us to a
’http://’ url. It can be solved by opening “occasion.tpl” in the web server

and changing the ’http’ urls in line 5 and 7 to ’https’ urls.

• The web interface that we see is actually constructed by smarty templates
which take variables from the back-end php scripts. So to change the look of
the website we have to change the templates. The general procedure would
be to browse through the php files and its functions and then go to the
template files which are called by these functions. The scripts supporting
wiki pages are meant to be used by all the projects under VISIR which is
why they are present in the ’common’ folder. ’menubar.tpl’ constructs the
the menu in the left side of the page, ’contentheader.tpl’ constructs the login
and language preferences links in the upper side. The contents of the page
can be hidden from from type of users like guests or students. The ’wiki
pages’ link has been made available to students for viewing content by by
including the line:

<div class="menu-item">{i18n

tag="admin.wiki_pages"}</div>

Now the function wiki pages has to be accessible to the authentication level
of students, so we modify line 10 ofwiki index.php:

function_register("wiki_pages","wiki_pages", AUTH_GUEST);

Similarly, any desirable modifications can be made to the appearance of the
web interface.

• Initially when we click on a prepared experiment in flash module it gave an
error :

[IOErrorEventtype="ioError" bubbles=false cancelable=false eventPhase=2

text="Error #2032"]

Failed to load instruments:

Error #2032

43

When we look at the url of any prepared experiment it has “../experi-
ment.php?sel=experiment immediate&id=1#”. Hence, we look for the func-
tion experiment immediate staring from ’experiment.php’ and finally arrive
at ’client2.tpl’ where the code that loads prepared experiment at line 89 was
commented. It was uncommented and te line at 96 has been commented to
make it work.

44

CHAPTER 5

OPERATION CYCLE

In this chapter we go through the entire cycle that occurs between having a circuit

schematic to running it from a remote computer using the setup that we have

installed.

5.1 Circuit Schematic

Draw the circuit schematic and assign labels to various nodes. We shall build a

simple inverting amplifier using a UA741 opamp and two equal resistances. The

schematic is shown in Figure 5.1.

−

+

1k

1k

741Vs

+
−

+
−

5V

5V

+Vdd

-Vdd

Figure 5.1: Schematic of inverting amplifier

The only constraint while labelling the nodes is that the function generator

is connected only to node A internally through a relay on source board. The

remaining nodes can be labelled in any order. Every node in the circuit has to be

labelled and accounted for. In the case of opamp, even the power supplies have to

be assigned nodes.

5.2 Components list and Maxlists

Now we try to fit in the relays in the schematic. Follow the steps below:

1. A resistor is always connected between two nodes through two relays, i.e., a
DPST or two SPSTs.

2. Always include a relay between any instrument terminal and a component
node.

3. If the DMM has to be used to measure current in a line between two nodes,
we have to include a SHORTCUT between those nodes. A SHORTCUT is
nothing but a short wire connecting the two nodes through a relay.

4. In the case of an opamp, connect each of the five terminals to a node through
a relay.

The schematic with relays included is shown in Figure 5.2. Rc indicate
component board relays and Rs indicate source board relays.

−

+

1k

1k

741Vs
+
−

5V

+Vdd

-Vdd

+
−

5V

A

B

C

E

F

D

0

0

0

Rs

Rs

Rs

RsRc Rc Rc

Rc

Rc

Rc

RcRc

Rc

Figure 5.2: Schematic of inverting amplifier with relays

5. The corresponding components.list is :

VFGENA_24_1 A 0

VDC+6V_24_3:1_13 A vmax: 4 imax:0.5

VDC+25V_24_4:1_4 E vmax:15 imax:0.5

VDC-25V_24_5:1_9 F vmax:-15 imax:0.5

VDCCOM_24_2 0

OP_1_14:1_11:1_10:1_7:1_6 NC1 B D F NC2 C E NC3 UA741

R_1_2 A B 1k

R_1_3 B C 1k

46

SHORTCUT_1_12 D 0

and the maxlist Fgen.max is:

VFGENA_24_1 A 0

VDC+6V_1 A vmax: 4 imax:0.5

VDC+25V_2 E vmax:15 imax:0.5

VDC-25V_3 F vmax:-15 imax:0.5

VDCCOM_4 0

OP_1 NC1 B D F NC2 C E NC3 UA741

R_1 A B 1k

R_2 B C 1k

SHORTCUT_1 D 0

6. After the maxlist file is created, add it in the maxlists.conf file:

maxlists/Fgen.max

Now, plug in the components and wires on the component boards of switching

matrix as described in the components.list file. The physical connections between

relays and components on the Relay Switching Matrix is shown in Figure 5.3 While

making the connections, the matrix should be handled with great care. Do not

touch the pins on the boards directly as it might cause ESD. The microprocessors

and the relay drivers must not be removed from their sockets. If a relay is to

be replaced on a component board, be careful when installing the new relay and

install it with pin 1 in the correct position otherwise the internal transient sup-

pression diode will be destroyed and most likely the relay driver as well.

5.3 Web Interface

Now that the hardware and its configuration files are ready, we have to prepare an

experiment and add it to a course so that students can perform the experiment.

The following steps describe how to prepare an experiment.

1. Log into the openlabs webpage at “https://10.7.9.101/trunk/sites/electronics/public/”
using admin account.

47

Figure 5.3: Component board of matrix for the above schematic

2. Go to “Admin Courses” > “Add Course” > add a course ’test’ and enter
the details.

3. Now, go to “Admin Courses” > test > “View as teacher”. In this page, you
can add users to the course and specify their type.

4. Now click on Add prepared experiment > “Start client in teacher mode”.
This is the recommended method for testing purposes instead of the stan-
dalone file ’loader.html’.

5. You can now add the required components and even make the necessary
connections and save the circuit as a .cir file.

6. The above .cir file is then used to create an experiment in the “Add prepared
experiment” page that we arrived at previously.

The student can now log in the website and see the prepared experiments

in his flash module. It is recommended not to let the students add components

themselves by setting the teacher mode in the flash ’config.xml’ file but rather

prepare an experiment and include the necessary components.

A word of caution here, while preparing a circuit and testing it for any shorts

or such error messages, it is adviced to disconnect the 12V DC power supply to

48

the switching matrix so that the relays cannot be activated preventing any future

damage.

The administrator can also edit the wiki pages to provide information on

courses to the students. Some of the screenshots of the web interface are shown

below:

Figure 5.4: Interface for adding a prepared experiment

Figure 5.5: Administrator’s view of courses

49

5.4 Results

The student after logging in, goes to the course he is enrolled in and then clicks on

“Start Experimenting” to see the flash module. After setting the power supply and

function generator signal, the input and output are connected to the two channels

of oscilloscope and they are symmetric about x axis as expected as shown in

figure 5.7.

Figure 5.6: Virtual breadboard showing Inverting Amplifier circuit

5.5 Conclusion and Future Work

We have been able to run simple circuits containing resistors and opamps remotely

and the results are as good as that of real experiments in the lab. However, there

are certain serious limitations to this:

• The number of nodes is strictly limited to 10. This prevents us from running
many circuits used in ’analog circuits lab’.

• We cannot make simple mistakes like swapping of connections of opamp
terminals as they are prevented by the measurement server. We need to
laboriously specify even the mistakes that can be attempted by the user in
the maxlists and component list.

50

Figure 5.7: Oscilloscope output

• There are a few loopholes in the virtual breadboard such as the shorting
of +6V and function generator signal terminals does not generate any error
and is allowed.

As part of the future work, we can increase the number of nodes by adding more

hardware (central node pins, microcontrollers and relays) and make appropriate

changes to the server softwares, which means we have to modify the entire system.

The loopholes mentioned can be removed by modifying and compiling the source

code of measurement server. We can also add a backend simulator to the openlabs

interface to enable more functionalities like more number of nodes and allowing

wrong connections among others.

51

APPENDIX A

HARDWARE TESTING

This chapter deals with testing the NI PXI modules and the Relay Switching Ma-

trix using LabVIEW software. After we install all the required NI device drivers,

we have front-end soft panels for each instrument present in the National Instru-

ments in ’All Programs’ which we can use to control them from the computer.

VISIR project also provided a standalone LabVIEW program called “Send circuit

to matrix.vi” which can be used to switch on/off the relays present on the boards.

We will first describe how to control the Switching Matrix.

A.1 Controlling Switching Matrix

The front panel of “Send circuit to matrix.vi” is shown in the Figure ??.

As we have seen from the Measurement and Automation Explorer that the

resource name of this usb matrix is “USB::0x1043::0x0000::NI-VISA-0::RAW”.

We either enter this value manually in the “VISA resource name” box, or right

click “VISA resource name” > “Select VISA Class” > “I/O Session” > “USB

Raw” after which the resource name appears in the drop down menu.

Messages in USB raw format are sent from the PC to the matrix controller

through the “Array of board numbers and bit masks” array.The matrix controller

then sends this message to the board concerned. A message is 4 bytes in size.

Table shows the format of this message.

The first byte is always used to specify the board number. For the remaining

bytes, when they are used to specify the relay numbers , the binary representation

of the number used indicates the switch states of the relays.

If the binary representation of the byte1 is b7 b6 b5 b4 b3 b2 b1 b0, b0 denotes

the state of relay number 1. If b0=1 the relay is switched on and if b0=0 the relay

Table A.1: Board Controller Messages

Board Type Byte0 Byte1 Byte2 Byte3
Source Board Number Relay 1-7 Relay 8-14 Not Used
Instrument Board Number Relay 1-7 Relay 8-14 Relay 15-21
Component Board Number Relay 1-7 Relay 8-14 Potentiometer

Ratio

is switched off and so on. b7 is always zero. In case of byte2, b0 denotes 8th relay,

b1 denotes 9th relay and so on and in the case of byte3 b0 denotes 15th relay etc.

If the byte is being used to indicate the potentiometer ratio, then b0 to b6 is

potentiometer ratio and b7 is always 1.

A.2 Soft Front Panels

Figures A.1 and A.2 show the soft front panels of DC Power Supply and DMM

respectively.

Figure A.1: Soft Front Panel of DC Power Supply

53

Figure A.2: Soft Front Panel of DMM

A.3 Testing

Here we will try to use the internal relays (on instrument boards) to connect the

function generator and oscilloscope. Function generator can connect to only node

A and Oscilloscope can connect to any node. So, we send the message as shown in

the Figure A.3. We activate relay 1 on source board and relay 19 on Oscilloscope

board. The waveform generated by the function generator is shown in oscilloscope

as shown in Figure A.4.

54

Figure A.3: Front Panel of ’Circuit to matrix.vi’

Figure A.4: Soft Front Panel of Function Generator and Oscilloscope

55

REFERENCES

[1] I. Gustavsson, J. Zackrisson, K. Nilsson, J. G. Zubia, L. Hakansson, I. Claes-
son, and T. Lagö, “A flexible electronics laboratory with local and remote
workbenches in a grid,” vol. 4, no. 2, pp. 12–16, 2008.

[2] I. Gustavsson, 2010, teacher manual 6.

[3] ——, 2010, student manual 11.

[4] ——, 2010, VISIR relay switching matrix version 4.1 – user’s manual.

[5] M. Tawfik, 2011, Visir Installation and Start-up Guide V.1.

[6] Openlabs home page, http://openlabs.bth.se/.

[7] VISIR project website, http://svn.openlabs.bth.se/trac/.

[8] IVI Foundation, http://www.ivifoundation.org/default.aspx.

[9] National Instruments, http://www.ni.com/.

[10] Wampserver : Apache, MySQL and PHP on Windows,
http://www.wampserver.com/en/.

[11] Smarty: PHP template engine, http://www.smarty.net/.

[12] Text Wiki project webpage, http://pear.php.net/package/Text Wiki/.

[13] Microsoft Visual C++ 2010 Express, http://www.microsoft.com/express/Downloads/.

56

