VLSI DATA CONVERSION CIRCUITS : PROBLEM SET 2

Problem 1

A signal $x(t)$ is known to be of the form $A_{1} \sin \left(2 \pi f_{\text {in }} t+\phi_{1}\right)+$ $A_{2} \sin \left(2 \pi 2 f_{\text {in }} t+\phi_{2}\right)+A_{3} \sin \left(2 \pi 3 f_{\text {in }} t+\phi_{3}\right) . x(t)$ is sampled at a rate $f_{s}>6 f_{\text {in }}$. 1024 samples are taken and multiplied with a Blackman-Harris Window. The magnitude of the FFT of the resulting 1024 point sequence is given in the attached file y.mat. In other words, denoting the window by $w[n]$ and the sampled input sequence by $x[n], y[n]$ is obtained using the following MATLAB command $y=a b s\left(f f t\left(x .{ }^{*}{ }^{\prime}\right)\right.$). How will you determine A_{1}, A_{2} and A_{3} from y ?

Problem 2

Figure 1: Circuits for Problem 2.
In class, we derived a parasitic insensitive switched capacitor amplifier developing the basic idea shown in Fig. 1(a). Here, C_{1} is charged to $V_{i n}$ in ϕ_{1}, and we attempt to transfer this charge ($C_{1} V_{i n}$) onto C_{2} in ϕ_{2}. This problem investigates another line of thought, which aims to accomplish the same objective. The basic idea is shown in Fig. 1(b). The argument is as follows - if C_{1} and C_{2} were initially uncharged, when they are simply connected in series with $V_{i n}$ as illustrated in the figure, the charge on the top plate of C_{2} will be equal in magnitude to that on the bottom plate of C_{1}. The trick is, therefore, to figure out how C_{2} should be chosen so that the charge in C_{1} can be made to be $C_{1} V_{i n}$. Once you know this, proceed along the same lines as we did in class to derive another parasitic insensitive amplifier and accumulator.

Problem 3

Figure 2: Circuit for Problem 3.

- Determine the gain of the switch-capacitor amplifier shown in Fig. 2. What should C_{2} be (in terms of C_{1}) to achieve a gain of 2 ? Assuming an opamp transfer function of $G B / s$, plot $G B$ required to achieve 0.1% output settling in a time $T_{s} / 2$.
- The opamp has a finite gain A. $C_{1}=C_{2}$. Determine the amplifier gain now.
- Draw and simulate a fully differential version of the circuit of Fig. 2. For simulation, use the macromodel for the fully differential opamp, as shown below. Assume that the opamp is sampling at a rate of 25 MHz . Use real switches, and a real non-overlapping clock generator. Determine Cdom in the macromodel so that the output of the amplifier settles to better than 0.1% of the final value in half a clock cycle. Use $V_{c m}=0.9 \mathrm{~V}$, $V \max =1.6 \mathrm{~V}$ and $V \min =0.2 \mathrm{~V}$. The input to be amplified is a 1 MHz fully differential sine-wave with an amplitude of 1 V (p-p differential), with a common-mode voltage of 0.9 V . Plot the input and output waveforms, as well as the waveforms at the inputs of the opamp.

Figure 3: Opamp macromodel for Problem 3.

