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Abstract—This paper presents a single-chip mixed-signal IC for
a hearing aid system. The IC consumes 270A of supply current at
a 1.1-V battery voltage. The presented circuit and architectural de-
sign techniques reduce the total IC power to 297 W, a level where
up to 70 days of lifetime is achieved at 10 h/day for a small zinc–air
battery. The measured input referred noise for the entire channel
is 2.8 Vrms and the average THD in the nominal operating region
is 0.02%. The jitter for the on-board ring oscillator is 147 ps rms.
The chip area is 12 mm2 in a 0.6- m 3.3-V mixed-signal CMOS
process.

Index Terms—Analog-to-digital conversion, digital filters, dig-
ital signal processing, digital-to-analog conversion, gain compres-
sion, hearing aid circuits, limiting, low power, low voltage, ring os-
cillator.

I. INTRODUCTION

F IG. 1 SHOWS the signal path of the IC. All signal pro-
cessing elements, with the exception of the microphone,

receiver (earphone), and coupling and bypass capacitors are
contained within the single mixed-signal IC. A preamplifier
that includes gain compression limiting amplifies the output
of the microphone. The limiter function prevents loud sounds
from overloading the analog-to-digital converter (ADC), pre-
venting distortion. A sigma–delta ADC outputs a bitstream at a
rate of 1.28 MHz. This bit stream passes through a decimation
filter and is down-sampled to a rate of 40 kHz. The digital
signal processor operates on the 40-kHz rate data to perform
the hearing aid signal-processing algorithm. The output of the
digital signal processor drives a sigma–delta digital-to-analog
converter (DAC) modulator where the signal is converted to a
2-b stream at a rate of 640 kHz. The output of the sigma–delta
modulator goes through an H-bridge driver, which then drives
the receiver, which converts the 2-b stream into an analog,
acoustical signal. The digital signal processor needed to be
optimized for low power and small size, yet had to provide
a certain amount of flexibility. A general-purpose DSP core
would provide the flexibility at the expense of power and
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Fig. 1. Signal path block diagram.

size. A dedicated, hardwired digital signal processing circuit
would consume minimal power and would be small, but would
lack flexibility. The final design selection was a hardwired dig-
ital signal processing circuit with programmable parameters that
adjust and configure the hearing aid signal-processing func-
tions. The approach provides the needed flexibility without the
penalties of a general-purpose DSP core.

The chip operates with a single-cell voltage supply, as low as
1.1 V. The 0.6- m 3.3-V CMOS IC process used includes a deep
n-well layer essential for junction isolation of digital and analog
sections. This layer also affords a vertical npn bipolar device in
the input stage opamp to reduce noise, as well as in the
bandgap reference. Also available are a low-threshold voltage
option for the MOS devices and EEPROM cells for prescription
selection and analog trim functions. Both the input compression
limiter (ICL) and the ADC use a locally boosted supply voltage
to drive the nMOS analog switch gates. This work achieves 28
dB lower distortion while using one fifth the current consump-
tion of previous low-power work [1], aided by process enhance-
ments and new design techniques.

II. ICL

A diagram of the ICL is shown in Fig. 2. After conversion
from the single-ended microphone input by this stage, fully dif-
ferential circuitry is employed throughout the analog blocks. A
closed-loop architecture satisfies 0.03% input-stage harmonic
distortion requirement and keeps static power consumption con-
stant over all gain settings. Resistor taps and nMOS switches are
provided for 83 gain steps of 0.5 dB, from1 to 40 dB. Input
signals experience gain compression and release governed by
four time constants. Relatively fast gain reduction and recovery
occurs for brief and exceptionally high sound levels, whereas
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Fig. 2. ICL.

compression and release from sustained sound levels occur at
significantly slower rates. A 3-dB hysteresis window inhibits
changes in the gain setting for steady-state sound levels, pre-
serving linearity. Even though the incremental resistance for
each 0.5-dB gain step is nonuniform, almost all of the resistance
required for each tap is realized with a varying number of unit
resistors from an array of matched cells.

The bidirectional shift registers in Fig. 2 drive the resistor
array switches without intervening decoder. These registers
may change the state of only one switch per clock cycle, giving
glitch-free gain steps. The Compare and Maximize functions
are computed with a chain of simple bitwise gates. Closed-loop
gain is reduced as “one” bits are shifted to the right in response
to sound levels greater than full scale, and is increased as “zero”
bits are shifted to the left during release. The first 57 steps of
gain reduction are realized by taps on the feedback resistance,
and the final 26 steps, for high sound levels, adjust the input
resistance. This arrangement saves considerable bias current
in the opamp output stage, since minimum load resistance
is kept high, but still gives minimum noise with lower input
resistances at high gain settings. The differential input resistors
for high gain settings are 10 Keach, and the total feedback
resistance available is 1 M. Since the bandwidths are limited
and the resistance values fairly high, the NMOS switches in the
resistor arrays can be made large enough so that their channel
resistance does not cause a gain error0.1 dB. Small stub
resistors outside the array are then used on each tap to make
up the difference between the nearest integer number of unit
resistors and the nonuniform resistance required. With this
layout, accurate logarithmic gain steps and accurate total gain
are achieved. For further layout details, see [2].

Fig. 3 shows the ICL opamp schematic. The active part of
the opamp is a fairly standard two-stage design. M1 and M2 are

the diff pair for the first stage, and Q1 and Q2 are their active
loads. The choice of bipolar devices for the active loads reduces

noise. Then Q3 and Q4 are the amplifying devices for the
second stage, with M3 and M4 their class-A active loads.
and give pole-splitting compensation. and gen-
erate a common-mode output voltage level that is compared to
the desired common-mode level by the diff pair of M9 and
M10. Q6 and Q1–Q2 form a current mirror that completes the
common-mode feedback loop. Q5 is in the circuit only to keep
the of M9 matching the of M10 and minimize the offset
in the M9 and M10 amplifiers. The base voltage of Q5 is fed
to the gate of M14 because it was a convenient source of a
bias voltage that is several hundred millivolts above the nega-
tive supply rail. There is no real signal being transmitted from
Q5 to M14. M14 is a very long and thin device that is designed
to just give a very small current (a fraction of a microamp) to
M7 and M8. The actual drain current of M14 is not critical,
and the gate voltage of M14 is not critical. Just enough current
from M14 to sense when M5 is somewhere near the triode re-
gion is needed. When the opamp input common-mode voltage
at the gates of M1, M2, M7, and M8 is in its proper operating
range, slightly above mid-supply, then the drain current of M6
would be sufficient to pull the gates of M12 and M13 almost to
the positive rail and M12 and M13 are off. However, when the
input common-mode voltage is too high, and M5 is going into
triode, then the across M6 is also very small. Then, whatever
small drain current there is in M14 can pull the gate voltage of
M12 and M13 low, turning them on. M12 and M13 then dumps
some temporary bias current into the first stage, to substitute for
the bias current into Q1 and Q2 that is no longer coming from
M5 since it is in triode. This keeps the common-mode feedback
loop active. Since there is overall resistive feedback around the
opamp when the output common mode level is set by the feed-
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Fig. 3. ICL opamp schematic.

back loop, the input common mode is also quickly restored to its
proper range and M12 and M13 are again turned off, leaving the
opamp in its normal operating state. Without this circuitry, it is
possible that the common-mode loop can settle in a stable oper-
ating point that drives both the output terminals to the positive
rail caused by either an initial startup condition or a transient
condition. M7, M8, and M6 are scaled down from M1, M2, and
M3, to save power. M5 is 20 gate fingers, and M6 is a factor of
10 smaller. M1 and M2 have to be huge to reduce the opamp

noise to a very low level for the hearing aid, and they are
48 fingers, each 52m wide by 8 m long. M7 and M8 are two
fingers of 4 m by 2 m. Therefore, M7 and M8 are not exact
scaled down replicas of M1 and M2, but for the operation of this
circuit exact ratios are not necessary.

III. SIGMA–DELTA ADC MODULATOR

The third-order ADC modulator consists of a cascade
of two single-bit stages, a second-order stage followed by a
first-order stage [3]. The input sampling network for the first in-
tegrator is shown in Fig. 4. The use of a single pair of differential
sampling capacitors reduces the total input capacitance for a
given kT/C noise budget and allows reduction of opamp power.
An additional short clock phase discharges these capacitors
before each sample and erases the charge condition from the
previous full-scale reference sample. This reduces the dynamic
signal input charge required, eliminating an active buffer in pref-
erence to a simple passive RC anti-alias filter as shown. Fur-
thermore, the switches that sample the reference voltage with a
polarity that conveys the feedback digital bit are arranged
to hold both parasitic capacitances discharged to ground
except around time interval . This suppresses a mechanism
for data-dependent charge drain from the reference voltage and
eliminates an active buffer for the reference. A simple RC filter
from the battery supply, as shown, performs well as a reference

Fig. 4. First�� ADC integrator.

supply in this system. Fig. 5 shows the measured performance
of the ADC modulator operating at 1.28 MHz. It achieves a dy-
namic range of 87 dB unweighted from 100 Hz to 10 kHz and
92-dB signal to distortion, drawing a 66-A supply current. Fol-
lowing the ADC modulator, the decimation filter consists of a
cascade of five polyphase finite impulse response (FIR) filters,
each decimating by two with a transfer function of

(1)

Droop from this filter is partially corrected by an FIR filter
with a transfer function of

(2)

The combined decimation plus droop correction filter draws
an 8- A supply current.
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Fig. 5. Measured ADC spectrum.

Fig. 6. Two-band AGC algorithm.

IV. DIGITAL SIGNAL PROCESSINGSECTION

Fig. 6 shows a basic block diagram of the signal processing
algorithm. The input signal is split into two frequency bands.
Each subband is processed and then summed to provide a full
bandwidth output. While the algorithm seems simple, the pro-
grammable parameters, , and provide quite a bit of flexi-
bility. Parameter selects the transition characteristics between
the low- and high-frequency bands. Parameterenhances the
low-frequency response by adding a fraction of the low-fre-
quency signals through the high-frequency AGC channel. Pa-
rameter primarily controls the amount of high-frequency gain.
The high-frequency channel has AGC. The AGC function is
controlled by the signal from the high-band output of the filter
bank and generates parametercontrolling the AGC multiplier.

The filter is implemented as an FIR filter. This eliminates the
finite word-length problems of infinite impulse response (IIR)
filters such as overflow and limit cycles. With the FIR filter, the
required word length at each part of the filter is deterministic.
Unlike IIR filters where the word length is often made wider
to minimize limit cycles, for example, the approach with FIR
filters allows the word lengths to be optimized, resulting in less
hardware, lower power, and smaller size. To further optimize
the design, the FIR filter uses coefficients that are 2values,
and, in fact, all filter coefficients are 0.5. Multiplying by 0.5 is
implemented by hardwired shifting of the signal bits and hence
uses no power, or gates and is minimal size. The values of
and are also selected from 2values and hence the- and

-multipliers are nothing more than a multiplexer implementing
a selectable shifting function. With these optimizations, only
one full multiplier is needed and is used only once per sample
period. This is in contrast to a general-purpose DSP core and

Fig. 7. Digital signal processor.

common DSP algorithms, where a single multiplier is used to
perform many multiplications during each sample period.

The band splitting filter has been optimized for minimal
circuitry, size, and power. Instead of using a more traditional
low-pass and high-pass band splitting structure, a band-pass
and notch-filter structure [4] was chosen. By selecting the
appropriate sampling rate, the band-pass/notch structure pro-
vides psychoacoustically similar results to low-pass/high-pass
structures. The advantage of the band-pass/notch structure is
again a reduction in the power dissipation and physical size of
the filter.

Originally, the digital filter was designed for a sample rate
of 20 kHz. During the design of the IC, it was determined that,
if the bitstream from the ADC is downsampled to only 40
kHz, and each delay in the filter was replaced with a
delay (i.e., a double delay), the power savings of the smaller
decimation filter and the elimination of an interpolation filter
in favor of a simple sample-and-hold circuit more than offset
the added power of the additional delay elements. Therefore,
the 40-kHz sample rate was used. Fig. 7 shows the final digital
signal filter structure. The overall transfer function is
given by

(3)

Parameters , , and are programmable. Parameteris
determined by the AGC control circuit based on the level of
the signal at the output of the multiplexer. Figs. 8–10 show the
effect of each of the programmable parameters on the frequency
response of the filter.

V. SIGMA–DELTA DAC

The sigma–delta DAC has a 20-b signed input at a sample
rate of 40 kHz, ideally giving it a dynamic range of 120 dB. The
dynamic range as designed was approximately 103 dB and the
SNDR was approximately 80 db. The three-level fourth-order
sigma–delta DAC minimizes power consumed in the output
H-bridge driver, since most samples will be zero for the typical
audio levels well below full scale. Increasing the quantization
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Fig. 8. Effect of varyingn on a typical frequency response.

Fig. 9. Effect of varying� on a typical frequency response.

levels in the output of sigma–delta modulators improves
the noise performance and stability of the loop. Typically,
a two-level output is used since it is ideally linear and the
accuracy of the quantization steps limits the sigma–delta
performance. Since the speaker was to be driven differentially,
we were able to sum the two ideally linear outputs in the load.
This technique creates a three-level (1, 0 1) or 1.5-b highly
linear output. In addition, since the required output power is
usually very low, the output waveform is typically driven to
zero with occasional single pulses of either1 or 1. For a
small signal, this consumes far less power than a traditional
two-level sigma–delta that must constantly switch between1
and 1 such that the output average is nearly zero.

For the chosen process and the given load, the switch-mode
output-stage power efficiency peaks at about 600 kHz. Given the
clocks available, it was convenient to generate a 640-kHz clock.
The response of the speaker being used rolls off quickly over
8 kHz and acts as the reconstruction filter for the sigma–delta
DAC that gives us an effective over sampling ratio of 32.

Clock jitter modulates the pulse width of the DAC output
stream, which causes high-frequency sigma–delta quantization
noise to mix down into the baseband. Fig. 11 shows the sim-
ulated effects of clock jitter on dynamic range and input re-
ferred noise using nominal channel parameters,1 which illus-

1The nominal channel parameters are: ICL gain fixed at 34 dB,� = 10,
� = 1=16,  = 1, andn = 1, giving a nominal channel gain of 31.5 dB at 5
kHz.

Fig. 10. Effect of varying on a typical frequency response.

Fig. 11. Simulated DAC performance versus clock jitter.

trates the importance of reducing clock jitter in the oscillator.
With a fourth-order modulator, the overall noise performance
of the DAC is limited by clock jitter and would not be improved
by increasing the modulator order.

Return-to-zero (RTZ) coding is used to preserve linearity by
improving the uniformity of the shape of the output pulses,
which prevents high-frequency quantization noise from mixing
down into the baseband. The RTZ pulse edges are resynchro-
nized to the lowest jitter clock in the system just before feeding
the output buffers, as shown in Fig. 12. This reduces sensitivity
to jitter in the DAC circuitry and saves system power by re-
quiring the supply current be spent only to suppress jitter in the
clock oscillator core.

The three-stage ring oscillator shown in Fig. 13 provides a
low-jitter clock. The bias current for all stages is trimmed at test
to set the clock frequency to 2.56 MHz. The delay in each stage
is implemented by symmetrical p and n transconductances and
load resistances driving the gate capacitance of the next stage.
Symmetry is essential to match clock waveform rise and fall
times and reduce up-conversion of noise [5]–[9]. In addi-
tion, extra capacitance added at the tail nodessignificantly
reduces jitter from kickback and from current source noise. The
bias current is digitally trimmed to set the oscillation frequency
and is designed to vary linearly with temperature to reduce fre-
quency variation over temperature.
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Fig. 12. �� DAC and H-bridge timing.

Fig. 13. Clock oscillator schematic.

Fig. 14. Measured FFT responsev = 4 mV peak.

VI. M EASUREDRESULTS

A measured output voltage spectrum is plotted in Fig. 14. The
input is a 1-kHz sinusoid at a 4-mV peak amplitude. The ICL
has a gain of 50, making the 0-dB level 200 mV. This level corre-
sponds to loud conversational speech at about 79 dB SPL and is
6 dB below the level where gain compression is initiated by the

Fig. 15. Measured FFT responsev = 80 mV peak.

Fig. 16. Measured attack and release response for a short compression
transient.

Fig. 17. Measured attack and release response for a long compression
transient.

input stage. The output is loaded with a test circuit equivalent
to the complex impedance of a receiver. Harmonic distortion at

69 dB is well below the 0.1% specification for low-level in-
puts. Fig. 15 is the measured fast Fourier transform (FFT) re-
sponse with an 80-mV peak amplitude at 1 kHz and input am-
plitude well into the compression region of the ICL circuit. With
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TABLE I
PERFORMANCESUMMARY

Fig. 18. Die micrograph.

an ICL gain of 50, this makes the 0-dB level equal to 800 mV
in Fig. 15. The measured THD at64 dB is well below the
specification limit for the compression region. Figs. 16 and 17
show the release characteristics of the ICL. The output signal is
shown when the input signal is suddenly decreased by 20 dB.
The output initially drops 20 dB. After a short delay, the fast
release shift register controls the compression and begins to in-
crease the gain. Finally, the slow release shift register takes over
and continues to increase the gain at a slower rate. The figures
show that, for a longer time initially spent in compression, the
fast release time is shorter and the slow release period starts at a
lower gain and will take longer to get back to full gain. Table I
summarizes the chip performance. Fig. 18 shows a microphoto-
graph of the die.

VII. CONCLUSION

A single-chip mixed-signal chip for a hearing aid instrument
has been successfully implemented in a 0.6-m 3.3-V CMOS
process. The typical input referred noise of the complete channel
is 2.8 Vrms. The typical total harmonic distortion of the com-
plete signal channel is less than 0.02%. The IC consumes a total
current of 270 A at 1.1 V and 299 A at 1.3 V. The complete
chip, including bond pads, measures 12 mm.
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