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Recently, the design of biomedical devices [1] has focused on how
to accommodate individual user differences for performance opti-
mization and better comfort. That is, human factors should be
taken into account early in the design process. Usually, a digital
hearing aid (DHA) chip incorporates the human factors after the
chip fabrication by the gain fitting and verification process shown
in Fig. 8.2.1. However, the post fitting operation has many intrin-
sic problems. Since the amount of compensated gain varies wide-
ly from 0dB to 25dB [2], the conventional gain compensation
scheme, especially the completely in the canal (CIC) type, takes a
long time and often cannot provide sufficient gain because of its
narrow dynamic range. In addition, the probe-tube microphone
verification method generates errors due to the position of the
probe-tube. The functional gain method also has poor test-retest
reliability and limited frequency resolution [3]. 

To overcome these problems, a pre-fitting verification algorithm
(PREVA) along with its implemention and use in a highly pro-
grammable DHA chip is presented. The PREVA obtains the gain
fitting in two steps, coarse- and fine-gain fittings, enabling objec-
tive, accurate and fast gain fitting, and verification. The ear canal
modeling filter circuit (EMC) enables coarse fitting based on the
physical shape of the external ear without ambiguous feedback
from the patient. After the coarse fitting by EMC, the fine fitting
verification can be executed with little additional patient interac-
tion.  

The EMC models the individual ear to obtain the natural reso-
nance values as shown in Fig. 8.2.1. Based on an X-ray image of
the patient, the exact 3D shape of his/her external ear can be
formed. Then, a distributed L or C filter is derived to model the
acoustic filter characteristics of the external ear [4]. The LC fil-
ter, or EMC, can be included into the DHA chip design process to
enable so called human-chip co-design. That is, the detailed char-
acteristics of the individual external ear can be included into the
design of the DHA. Even the volume change of the ear canal after
the DHA is inserted into the external ear can be considered by
modifying the EMC appropriately. The external 11b control sig-
nals, labeled SEMC, are used to modify the structure of the filter
according to the shape of the individual ear. The parameters from
the EMC enable the DSP in the DHA to achieve the user-opti-
mized gain fitting in accordance with the hearing loss audiogram
of the patient. The parameters for the fine-gain fitting can be
input to the DHA through a serial interface. The proposed DHA
chip is illustrated in Fig. 8.2.1. In this test chip, the EMC is com-
posed of 14 fixed taps and 16 variable taps, for a total of 30 taps.
Of course, the total number of taps and the number of variable
taps can be increased further. The 11b SEMC signals modify the
number of taps and LC values according to the individual ear
shape. Among the 11b SEMC signals, a 1b signal is used to dis-
tinguish between the L and the C. Each L (C) is composed of four
L (C) values to enable trimming with a 2b signal, and a 4b signal
is allocated to select one tap among the 16 variable taps. 

The proposed chip consists of 3 major blocks: the EMC unit, the
parameter acquisition unit (PAU) and the DHA unit. The DHA
block includes a dual-threshold preamplifier, an adaptive-SNR
∆Σ ADC [5], a dedicated DSP [6], a heterogeneous ∆Σ DAC [6],
and a receiver driver. The PAU is composed of a peak detector
(PD), a successive approximation ADC (SAADC), and a parame-
ter generator (PG). 

The PD of Fig. 8.2.2 provides the peak gain value as a function of
frequency in steps of 1kHz from 1kHz to 8kHz. The digitized res-
onance value of the individual ear is processed by the PG, which
receives both the coarse compensation gain (CCG) parameters
and the fine compensation gain (FCG) parameters. 

The architecture of the proposed PAU with PREVA is shown in
Fig. 8.2.2. The pre-fitting of the PREVA is realized by choosing
the resonance value, which is the largest influence to the gain fit-
ting. The EMC output at 4kHz is always selected because it high-
ly affects the amount of gain compensation. The largest value
(G1) among the outputs of the 5b SAADC (G1) and the output
value at 4kHz (G1) determines the amount of the CCG. The FCG
has a default initial value that can be changed by the external
parameter inputs (G1 and PS) set at the post gain verification
step. The peak value of the gain (G1) and the gain at 4kHz (G1)
are used as a FCG parameters. The CCG parameters and FCG
parameters are combined to provide the total DHA gain (G1) of
the DSP gain. 

The block diagram of the 5b SAADC is shown in Fig. 8.2.3. The
standby power consumption is reduced compared with the con-
ventional SAR [7], by adopting the gated clock signals GCS.
Moreover, switching off the capacitor array logic decreases the
power dissipation further when the comparison phase is over. 

Figure 8.2.4 shows the measured results of the proposed PAU.
After the peak values of the resonance signals are detected and
inputted to the PAU (a), the gain values are measured (b) and
digitized (c). Two gain values, the largest one and one at the
4kHz, are selected to acquire the verification gain (d). The over-
all operation of the proposed DHA is explained in Fig. 8.2.5. A
hearing loss audiogram of a patient, presented in Fig. 8.2.5(a),
shows losses at 1kHz and 4kHz. In order to compensate for such
hearing losses, EMC is modified to provide a coarse gain compen-
sation of Fig. 8.2.5(b). The dotted line is the desired gain compen-
sation and the solid line is the measured gain compensation by
the coarse compensation only. Figure 8.2.5(c) shows the final
results with the fine gain verification. In this case, the preampli-
fier gain is selected as 1 to verify the performance of the PAU.
Compared with the conventional DHA, the proposed system
enables accurate and fast on-chip fitting verification by incorpo-
rating the human factors. The DHA chip with PAU is shown in
Fig. 8.2.6 and occupies a core area of 3.12×1.2mm2 in a standard
0.18µm CMOS technology. The power consumption is 120µA
using a single 0.9V supply. Figure 8.2.7 summarizes the features
of the fabricated chip. 
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Figure 8.2.1: Conventional and the proposed DHA. Figure 8.2.2: Block diagram of the DHA chip and PAU.

Figure 8.2.3: Architecture of the proposed SAADC.

Figure 8.2.5: Measured results of the hearing compensation operation. Figure 8.2.6: Chip micrograph of the DHA system.

Figure 8.2.4: Measured results of the proposed PAU.
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Figure 8.2.7: Performance summary.




