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a 1.1-V battery voltage. The presented circuit and architectural de-
sign techniques reduce the total IC power to 297:/W, a level where
up to 70 days of lifetime is achieved at 10 h/day for a small zinc—air Microphone ~ Preamplifier/Compression Limier
battery. The measured input referred noise for the entire channel
is 2.8 Vrms and the average THD in the nominal operating region
is 0.02%. The jitter for the on-board ring oscillator is 147 ps rms.
The chip area is 12 mn? in a 0.6-um 3.3-V mixed-signal CMOS
process.
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Abstract—This paper presents a single-chip mixed-signal IC for AGC
a hearing aid system. The IC consumes 27@A of supply current at Control <_I
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sion, hearing aid circuits, limiting, low power, low voltage, ring os- Receiver
cillator.

Fig. 1. Signal path block diagram.

| INTRODUCTION size. A dedicated, hardwired digital signal processing circuit

IG. 1 SHOWS the signal path of the IC. All signal prowould consume minimal power and would be small, but would

cessing elements, with the exception of the microphonlagck flexibility. The final design selection was a hardwired dig-
receiver (earphone), and coupling and bypass capacitors igesignal processing circuit with programmable parameters that
contained within the single mixed-signal IC. A preamplifieadjust and configure the hearing aid signal-processing func-
that includes gain compression limiting amplifies the outptions. The approach provides the needed flexibility without the
of the microphone. The limiter function prevents loud soundgmnalties of a general-purpose DSP core.
from overloading the analog-to-digital converter (ADC), pre- The chip operates with a single-cell voltage supply, as low as
venting distortion. A sigma—delta ADC outputs a bitstream atlal V. The 0.6xm 3.3-V CMOS IC process used includes a deep
rate of 1.28 MHz. This bit stream passes through a decimatinfwell layer essential for junction isolation of digital and analog
filter and is down-sampled to a rate of 40 kHz. The digitadections. This layer also affords a vertical npn bipolar device in
signal processor operates on the 40-kHz rate data to perfdime input stage opamp to redutgéf noise, as well as in the
the hearing aid signal-processing algorithm. The output of thandgap reference. Also available are a low-threshold voltage
digital signal processor drives a sigma—delta digital-to-analagtion for the MOS devices and EEPROM cells for prescription
converter (DAC) modulator where the signal is converted toselection and analog trim functions. Both the input compression
2-b stream at a rate of 640 kHz. The output of the sigma—deliaiter (ICL) and the ADC use a locally boosted supply voltage
modulator goes through an H-bridge driver, which then drives drive the nMOS analog switch gates. This work achieves 28
the receiver, which converts the 2-b stream into an analaB lower distortion while using one fifth the current consump-
acoustical signal. The digital signal processor needed to then of previous low-power work [1], aided by process enhance-
optimized for low power and small size, yet had to providments and new design techniques.
a certain amount of flexibility. A general-purpose DSP core
would provide the flexibility at the expense of power and II. ICL

A diagram of the ICL is shown in Fig. 2. After conversion
from the single-ended microphone input by this stage, fully dif-
ferential circuitry is employed throughout the analog blocks. A
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Fig. 2. ICL.

compression and release from sustained sound levels occuthatdiff pair for the first stage, and Q1 and Q2 are their active
significantly slower rates. A 3-dB hysteresis window inhibitéoads. The choice of bipolar devices for the active loads reduces
changes in the gain setting for steady-state sound levels, prgf noise. Then Q3 and Q4 are the amplifying devices for the
serving linearity. Even though the incremental resistance feecond stage, with M3 and M4 their class-A active loads.
each 0.5-dB gain step is nonuniform, almost all of the resistanaed R. give pole-splitting compensatioi.,, and C.,,, gen-
required for each tap is realized with a varying number of urgérate a common-mode output voltage level that is compared to
resistors from an array of matched cells. the desired common-mode leviél,, by the diff pair of M9 and

The bidirectional shift registers in Fig. 2 drive the resistav10. Q6 and Q1-Q2 form a current mirror that completes the
array switches without intervening decoder. These regist@@mmon-mode feedback loop. Q5 is in the circuit only to keep
may change the state of only one switch per clock cycle, givitlge V;, of M9 matching thd/;, of M10 and minimize the offset
glitch-free gain steps. The Compare and Maximize functioms the M9 and M10 amplifiers. The base voltage of Q5 is fed
are computed with a chain of simple bitwise gates. Closed-lotp the gate of M14 because it was a convenient source of a
gain is reduced as “one” bits are shifted to the right in responis voltage that is several hundred millivolts above the nega-
to sound levels greater than full scale, and is increased as “zetigg supply rail. There is no real signal being transmitted from
bits are shifted to the left during release. The first 57 steps @b to M14. M14 is a very long and thin device that is designed
gain reduction are realized by taps on the feedback resistartogust give a very small current (a fraction of a microamp) to
and the final 26 steps, for high sound levels, adjust the inpMZ and M8. The actual drain current of M14 is not critical,
resistance. This arrangement saves considerable bias curaewtthe gate voltage of M14 is not critical. Just enough current
in the opamp output stage, since minimum load resistanitem M14 to sense when M5 is somewhere near the triode re-
is kept high, but still gives minimum noise with lower inputgion is needed. When the opamp input common-mode voltage
resistances at high gain settings. The differential input resistaitsthe gates of M1, M2, M7, and M8 is in its proper operating
for high gain settings are 10{Keach, and the total feedbackrange, slightly above mid-supply, then the drain current of M6
resistance available is 1™ Since the bandwidths are limitedwould be sufficient to pull the gates of M12 and M13 almost to
and the resistance values fairly high, the NMOS switches in thiee positive rail and M12 and M13 are off. However, when the
resistor arrays can be made large enough so that their chanmplit common-mode voltage is too high, and M5 is going into
resistance does not cause a gain ers@.1 dB. Small stub triode, thenthé/;, across M6 is also very small. Then, whatever
resistors outside the array are then used on each tap to msikeall drain current there is in M14 can pull the gate voltage of
up the difference between the nearest integer number of uxiit2 and M13 low, turning them on. M12 and M13 then dumps
resistors and the nonuniform resistance required. With thieme temporary bias current into the first stage, to substitute for
layout, accurate logarithmic gain steps and accurate total g#ie bias current into Q1 and Q2 that is no longer coming from
are achieved. For further layout details, see [2]. M5 since itis in triode. This keeps the common-mode feedback

Fig. 3 shows the ICL opamp schematic. The active part twfop active. Since there is overall resistive feedback around the
the opamp is a fairly standard two-stage design. M1 and M2 aypamp when the output common mode level is set by the feed-
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Fig. 3. ICL opamp schematic.

back loop, the input common mode is also quickly restored to il

proper range and M12 and M13 are again turned off, leaving g Vrer W
opamp in its normal operating state. Without this circuitry, it i
possible that the common-mode loop can settle in a stable op

ating point that drives both the output terminals to the positivi i
rail caused by either an initial startup condition or a transier
condition. M7, M8, and M6 are scaled down from M1, M2, and

M3, to save power. M5 is 20 gate fingers, and M6 is a factor @ |
10 smaller. M1 and M2 have to be huge to reduce the opan =
1/f noise to a very low level for the hearing aid, and they ar o1 1 Vo
48 fingers, each 52m wide by 8um long. M7 and M8 are two N

fingers of 4um by 2 um. Therefore, M7 and M8 are not exact S R [

scaled down replicas of M1 and M2, but for the operation of thi: % ]| |
circuit exact ratios are not necessary. ¢
q)2D

Il. SIGMA—DELTA ADC MODULATOR
. . Fig. 4. FirstZA ADC integrator.
The third-order>X A ADC modulator consists of a cascade

of two single-bit stages, a second-order stage followed by a

first-order stage [3]. The input sampling network for the first inSUPPly in this system. Fig. 5 shows the measured performance
tegrator is shown in Fig. 4. The use of a single pair of differenti@f the ADC modulator operating at 1.28 MHz. It achieves a dy-
sampling capacitor§'s reduces the total input capacitance for #amic range of 87 dB unweighted from 100 Hz to 10 kHz and
given KT/C noise budget and allows reduction of opamp pow&2-dB signal to distortion, drawing a A supply current. Fol-

An additiona' Short CIOCk phas@)’ discharges these CapacitoréOWing the ADC modulator, the decimation f|lter ConSiStS Of a
before each sample and erases the charge condition from ¢agcade of five polyphase finite impulse response (FIR) filters,
previous full-scale reference sample. This reduces the dynafeh decimating by two with a transfer functiéiz) of

signal input charge required, eliminating an active buffer in pref- 4

erence to a simple passive RC anti-alias filter as shown. Fur- H(z) = (1 +z ) ‘ @)
thermore, the switches that sample the reference voltage with
polarity that conveys the feedback digital it are arranged
to hold both parasitic capacitancés discharged to ground
except around time interval,. This suppresses a mechanism Hpr(z) =14 (1 - 272) % 3/16. 2)

for data-dependent charge drain from the reference voltage and

eliminates an active buffer for the reference. A simple RC filter The combined decimation plus droop correction filter draws
from the battery supply, as shown, performs well as a refererae 81:.A supply current.

zi)roop from this filter is partially corrected by an FIR filter
with a transfer functiorgr (2) of
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Input - —| T ¥ ouput  common DSP algorithms, where a single multiplier is used to
Wamd [ perform many multiplications during each sample period.
Filter bank The band splitting filter has been optimized for minimal
ja circuitry, size, and power. Instead of using a more traditional
o ace low-pass and high-pass band splitting structure, a band-pass

Control

and notch-filter structure [4] was chosen. By selecting the
appropriate sampling rate, the band-pass/notch structure pro-
vides psychoacoustically similar results to low-pass/high-pass
structures. The advantage of the band-pass/notch structure is
IV. DIGITAL SIGNAL PROCESSINGSECTION again a reduction in the power dissipation and physical size of

Fig. 6 shows a basic block diagram of the signal processip@e f|_|t<_ar. o )
algorithm. The input signal is split into two frequency bands. Originally, the digital filter was designed for a sample rate
Each subband is processed and then summed to provide a3fi#0 kHz. During the design of the IC, it was determined that,
bandwidth output. While the algorithm seems simple, the pri-the bitstream from the:A ADC is downsampled to only 40
grammable parameters 3, andy provide quite a bit of flexi- KHz, and eaclZ —! delay in the filter was replaced withz—2
bility. Parameter selects the transition characteristics betweefelay (i.e., a double delay), the power savings of the smaller
the low- and high-frequency bands. Paramgtemhances the _deC|mat|on f||t<_er and the elimination of_an _mterpolatlon filter
low-frequency response by adding a fraction of the low-frd0 favor of a simple sample-and-hold circuit more than offset
guency signals through the high-frequency AGC channel. Bh€ added power of the additional delay elements. Therefore,
rametery primarily controls the amount of high-frequency gainthe 40-kHz sample rate was used. Fig. 7 shows the final digital
The high-frequency channel has AGC. The AGC function ggnal filter structure. The overall transfer functiéhy(z) is
controlled by the signal from the high-band output of the filtegiven by
bank and generates parametarontrolling the AGC multiplier. p.(») = [(1 +0.5087) (0.5 +0.527%)

The filter is implemented as an FIR filter. This eliminates the
finite word-length problems of infinite impulse response (IIR) —(0.5a7) (0.5 — 0.52‘4)"} . (3
filters such as overflow and limit cycles. With the FIR filter, the

required word length at each part of the filter is deterministic Parameters, j, andy are programmable. Parameteris
a . 9 P : - determined by the AGC control circuit based on the level of
Unlike IIR filters where the word length is often made wide

S : he signal at the output of the multiplexer. Figs. 8—10 show the
to minimize limit cycles, for example, the approach with FI
) o o effect of each of the programmable parameters on the frequency
filters allows the word lengths to be optimized, resulting in lesg :

. ._~Tesponse of the filter.

hardware, lower power, and smaller size. To further optimize
the design, the FIR filter uses coefficients that arevalues, V S D DAC
and, in fact, all filter coefficients are 0.5. Multiplying by 0.5 is - SIGMA-LDELTA
implemented by hardwired shifting of the signal bits and hence The sigma—delta DAC has a 20-b signed input at a sample
uses no power, or gates and is minimal size. The valugs ofate of 40 kHz, ideally giving it a dynamic range of 120 dB. The
and~ are also selected fronT"values and hence the& and dynamic range as designed was approximately 103 dB and the
~-multipliers are nothing more than a multiplexerimplementinGNDR was approximately 80 db. The three-level fourth-order
a selectable shifting function. With these optimizations, onigma—delta DAC minimizes power consumed in the output
one full multiplier is needed and is used only once per samgtkebridge driver, since most samples will be zero for the typical
period. This is in contrast to a general-purpose DSP core aaadio levels well below full scale. Increasing the quantization

Fig. 6. Two-band AGC algorithm.



1674 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 37, NO. 12, DECEMBER 2002

35 + 35
30 +— 30
25 - 25 L
& 204 - @204 D -
£ = : [
& 15— ; g 15 ‘ ;
10— 10 -
i ’ AL
51~ 54 1 /'/4 T
1
0 . d 0 ﬁé// :
100 1000 10000 100 1000
Frequency (Hz) Frequency (Hz)

Fig. 8. Effect of varying: on a typical frequency response. Fig. 10. Effect of varyingy on a typical frequency response.

9 105
30 i Channel Input Referred Noise C
8 | O DAC Input Referred Noise r
\ ~——— DAC Dynamic Range - 100
25 T
— z r
i'% 20 z - 95 =
c 2 r g
< L
815 3 e 5
(<] C 3
= £ o
10 ° r o
£ 85 £
2 r <
5 £ C &
5 80
0 g r
100 1000 10000 B 75
Frequency (Hz) i C
0 : | ——F 70
Fig. 9. Effect of varying3 on a typical frequency response. 0 500 1000

Clock Jitter (ps RMS)

levels in the output of sigma—delta modulators improvedg. 11. Simulated DAC performance versus clock jitter.

the noise performance and stability of the loop. Typically,

a two-level output is used since it is ideally linear and the tes the i N f reduci lock iitter in th ilat

accuracy of the quantization steps limits the sigma—de% €s the importance of requcing clock Jitter In the osciiiator.
|

performance. Since the speaker was to be driven differentia ’I':ReanXgritg;%(ijt:j rgoglli)l(?lt(q:t’té??ﬂ?(;/s\:gﬂIgzljszeigorp(:\?gge
we were able to sum the two ideally linear outputs in the Ioag.‘ . : y J P
increasing the modulator order.

This technique creates a three-levell( 0+1) or 1.5-b highly y ding | q i itv b
linear output. In addition, since the required output power js Return-to-zero (RTZ) coding is used to preserve linearity by

usually very low, the output waveform is typically driven tderOVing the uniformity of the shape c.)f the output p“'.s‘?s'
zero with occasional single pulses of eithet or +1. For a which prevents high-frequency quantization noise from mixing

small signal, this consumes far less power than a traditioﬁjaﬂwn into the base_pand. The_ RTZ pulse e(_jges are resynghro-
two-level sigma—delta that must constantly switch betweén nized to the lowest jitter ClOCk. In t.he SySte”.‘ Just before fee.d.”?g
and-+1 such that the output average is nearly zero the output buffers, as shown in Fig. 12. This reduces sensitivity

For the chosen process and the given load, the switch-méaejitter in the DAC circuitry and saves system power by re-

output-stage power efficiency peaks at about 600 kHz. Given { glring the supply current be spent only to suppress jitter in the
ck oscillator core.

clocks available, it was convenient to generate a 640-kHz clo The th : i h in Fig. 13 id
The response of the speaker being used rolls off quickly over 1€ three-stage ring oscillator shown in Fig. 13 provides a
-jitter clock. The bias current for all stages is trimmed at test

8 kHz and acts as the reconstruction filter for the sigma—de'fﬂ” .
DAC that gives us an effective over sampling ratio of 32. to set the clock frequency to 2.56 MHz. The delay in each stage

Clock jitter modulates the pulse width of the DAC outpu' implemented by symmetrical p and n transconductances and

stream, which causes high-frequency sigma—delta quantizat gad resista}nces dri\{ing the gate capacitance of th_e next stage.
noise to mix down into the baseband. Fig. 11 shows the simymmetry is essential to match clock waveform rise and fall

ulated effects of clock jitter on dynamic range and input rélmes and reducg up—cona/grzlonkry]ff nt_)lis%@[IS]—[_Q]._]lc_n ach:ii—
ferred noise using nominal channel parametevghich illus- tion, extra capacitance added at the tail nodessignificantly
reduces jitter from kickback and from current source noise. The

IThe nominal channel parameters are: ICL gain fixed at 34dB= 10, blas_current is digitally trllmmed to_ set the oscillation frequency
3 =1/16,7 = 1,andn = 1, giving a nominal channel gain of 31.5 dB at 5@Nd is designed to vary linearly with temperature to reduce fre-
kHz. guency variation over temperature.
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VI. MEASUREDRESULTS input stage. The output is loaded with a test circuit equivalent

A measured output voltage spectrum is plotted in Fig. 14. The the complex impedance of a receiver. Harmonic distortion at
input is a 1-kHz sinusoid at a 4-mV peak amplitude. The ICL69 dB is well below the 0.1% specification for low-level in-
has a gain of 50, making the 0-dB level 200 mV. This level corrg@uts. Fig. 15 is the measured fast Fourier transform (FFT) re-
sponds to loud conversational speech at about 79 dB SPL angfsnse with an 80-mV peak amplitude at 1 kHz and input am-
6 dB below the level where gain compression is initiated by th@itude well into the compression region of the ICL circuit. With
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TABLE | VIl. CONCLUSION
PERFORMANCE SUMMARY ) ) ) ) ) ) o
A single-chip mixed-signal chip for a hearing aid instrument
gattery voltage range ; ol 1.1-1.5v has been successfully implemented in a 0m6-3.3-V CMOS
attf?\f iﬁgg}ycons“mp fon (o signal) process. The typical input referred noise of the complete channel
Analog 173uA is 2.8,Vrms. The typical total harmonic distortion of the com-
Digital 48uA plete signal channel is less than 0.02%. The IC consumes a total
';;E;"ggimator ;iﬁ’; current of 270uA at 1.1 V and 299:A at 1.3 V. The complete
Total 270uA chip, including bond pads, measures 12 fnm
1.3V supply 299uA
1.5V supply 323uA A

-3dB bandwidth 100Hz-10kHz CKNOWLEDGMENT

Input referred noise (100Hz-10kHz) 2.8uVRMS . . .

Total harmonic distortion _ The authors would like to express their gratitude to R. Ga_\r-
v =7mVpk 0.02% rison, M. Kennedy, T. Groller, P. Welsh, B. Rothbauer, M. Di-
Vy=80mVpk ) ) 0.5% Cosmo, D. Hart, R. R. Dickerson, and K. Ling for their contri-

mz:rgs;‘?;Zifi:;]if'm“m gain step error 450m‘\)/'%gedai butions on this project. In addition, they would like to thank L.

Clock jitter 147ps RMS Izzi and G. Frantz for their support. The authors would also like

Sub-bandgap reference stabitity 1% to thank the reviewers for their comments and suggestions.

Temperature range 20-40"%

Die size in 0.6um, 3.3V CMOS 12mm
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Fig. 18. Die micrograph.
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