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A Perturbative Solution to Plane Wave Scattering
From a Rough Dielectric Cylinder

Rahul Trivedi and Uday K. Khankhoje

Abstract—We present an analytical, second-order perturbative
solution to the problem of electromagnetic plane-wave scattering
from a dielectric cylinder with a randomly rough surface. In con-
trast to previous integral equation-based approaches, we perturb
the electromagnetic boundary conditions at the cylinder interface.
Doing so affords us tractable expressions for the fields internal
and external to the cylinder. We validate our results by compar-
ing them with rigorous, but computationally intensive solutions
obtained from the method of moments, and numerically estimate
a region of validity for our results. We report this region as h0 <
λ/20 and l > 4h0, where h0 and l are the root-mean-square
surface roughness and surface correlation length, respectively, for
scattering at a wavelength λ.

Index Terms—Electromagnetic scattering by rough surfaces,
integral equations, perturbation methods.

I. INTRODUCTION

V EGETATION is an important contributor to radar scatter-
ing. This scattering comprises contributions from leaves,

branches, and tree trunks. In the case of branches and trunks,
it is common to model them as conducting or dielectric cylin-
ders that have either rough or smooth surfaces. The choice of
model depends upon the radar wavelength, the relative size of
the trunk, and the statistical properties (mean roughness, etc.)
of the trunk’s surface.

At low microwave frequencies, tree trunks are modeled as
smooth, dielectric cylinders of finite length [1], [2]. At higher
frequencies, when the surface roughness becomes comparable
to the wavelength, it is important to model the roughness of
the cylinder surface. Some studies have modeled the rough-
ness as a periodic corrugation in a dielectric layer [3], [4].
This assumption is harder to justify at the higher frequencies
encountered in millimeter wave scattering, and models for the
scattered fields have been developed using geometric-optics
approximations [5].

The small perturbation method (SPM) was originally devel-
oped in the context of modeling scattering by slightly rough
surfaces [6]–[8]. The SPM as applied to rough surfaces falls
in the general category of geometrical properties perturbation
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[9], [10] wherein the material properties of the perturbed scat-
terer are the same as that of the unperturbed scatterer, with the
perturbation appearing only in the boundaries of the scatterer.
This is in contrast to the problems involving dielectric prop-
erties perturbation [11], wherein the dielectric properties of
the scatterer are treated perturbatively. The SPM has also been
applied to model rough perfect electrically conducting (PEC)
cylinders; to first-order by Cabayan and Murphy [12], and to
second-order by Eftimiu [13] and [14] and to cylinders with an
impedance boundary condition by Tong [15]. The SPM method
breaks down as the surface roughness increases, and in such
cases, a full-wave solution is desirable [16].

In this paper, we develop a second-order SPM scheme for
calculating the fields scattered from a randomly rough dielec-
tric cylinder of infinite height. While several authors have
used the SPM to first- and second-order for the analysis of
azimuthally rough cylinders modeled as PEC cylinders or as
impedance surfaces, there has been no previous report of an
SPM analysis of a rough dielectric cylinder with azimuthal and
z-dependent roughness. Moreover, the existing SPM for rough
PEC cylinders is based on the integral equation formulation of
the scattering problem, whereas our approach is to perturb the
boundary conditions at the cylinder surface which, in general,
yield more tractable solutions in the case of a dielectric cylin-
der with azimuthal and z-dependent roughness as compared
to the integral equation method. We note that in the reduced
case of a PEC cylinder, our method simplifies to the previ-
ously reported results [12]–[14]. Additionally, since our method
yields not only the scattered fields but also the fields inside
the rough dielectric cylinder, it can easily be extended to finite
rough cylinders by using an approach similar to that used by
Hulst and Van De Hulst [17] and Seker and Schneider [18] in
their treatment of finite smooth cylinders.

Section II presents the formulation of the scattering problem
as a boundary value problem. The boundary conditions at the
interface of the dielectric and vacuum are perturbed to obtain
zeroth-, first-, and second-order boundary conditions which, in
turn, are used to evaluate the scattered electromagnetic fields
up till the second-order. In Section III, we numerically vali-
date the perturbative solution by comparing it with an accurate
integral equation (or method of moments—MoM) method for
the special cases of small azimuthal or axial roughness. A
region of validity for the second-order perturbative solution
is also numerically estimated in Section IV by comparing it
with the integral equation method. Finally, we conclude this
paper with general observations regarding the computational
efficiency and applicability of our SPM analysis as compared
to existing exact numerical methods.
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Fig. 1. Schematic of the rough cylindrical scatterer with a stochastic roughness
h(φ, z) and illuminated by a plane wave propagating with wavevector ki in the
xz-plane at an angle of α with the x-axis. E1 is the component of the electric
field in the xz-plane, while E2 is the component along the y-axis.

II. PERTURBATIVE METHOD

The scatterer of interest is an infinitely long rough cylinder
with mean radius a. The roughness is described by a zero mean
stochastic process, h(φ, z). As shown in Fig. 1, a+ h(φ, z)
is the radial distance of a point on the rough cylinder sur-
face. Throughout this paper, r, φ, and z denote the radial,
azimuthal, and height coordinates, respectively. An instance of
the stochastic process h(φ, z) can be expressed as

h(φ, z) =

∞∑
n=−∞

∞∫
−∞

h̃n(k) exp(j(kz + nφ))dk (1a)

h̃n(k) =
1

4π2

∞∫
z=−∞

2π∫
φ=0

h(φ, z) exp(−j(nφ+ kz)) dφ dz.

(1b)

Additionally, note that since h(φ, z) is real ∀φ ∈ (0, 2π],
z ∈ R

h̃−n(k) = h̃∗
n(k) and h̃n(−k) = h̃∗

n(k). (2)

The permittivity and permeability of the cylinder are
assumed to be uniform, and given by εd and μd and it
is assumed that the cylinder is placed in vacuum. k0 =√
ε0μ0ω2 and η0 =

√
μ0/ε0 denote the wave number and wave

impedance in vacuum, and kd =
√

εdμdω2 and ηd =
√

μd/εd
denote the same in the dielectric.

In the analysis that follows, we determine the scattered elec-
tric and magnetic fields to the second-order in h(φ, z) for
an arbitrary but deterministic roughness function. Once the
response of the cylinder is known in terms of h(φ, z), the sta-
tistical averages of the scattered fields and derived quantities

(such as the scattering cross section) can be expressed in terms
of the statistical averages of the stochastic process h(φ, z).

A. Formulation of Boundary Conditions on a Perturbed
Surface

In this section, we present a modified set of boundary con-
ditions that can be used to perturbatively evaluate the scattered
fields for a given incident field. Let the fields outside and inside
the cylinder be denoted by EI , HI and EII , HII , respectively.
A sufficient set of boundary conditions to solve the scattering
problem evaluated at the cylinder surface, r = a+ h(φ, z), is

ΔE× n|r=a+h = 0 (3a)

ΔH× n|r=a+h = 0 (3b)

where ΔE = EI −EII and ΔH = HI −HII and n is the
outward normal to the cylinder surface at the point (a+
h(φ, z), φ, z)

n = r̂ −
(

1

a+ h

)
∂h

∂φ
φ̂− ∂h

∂z
ẑ. (4)

Equation (3a) can be rewritten in terms of the components of
E and H as follows:

ΔEz

∣∣∣∣
r=a+h

= −∂h

∂z
ΔEr

∣∣∣∣
r=a+h

(5a)

(a+ h)ΔEφ

∣∣∣∣
r=a+h

= −∂h

∂φ
ΔEr

∣∣∣∣
r=a+h

(5b)

ΔHz

∣∣∣∣
r=a+h

= −∂h

∂z
ΔHr

∣∣∣∣
r=a+h

(5c)

(a+ h)ΔHφ

∣∣∣∣
r=a+h

= −∂h

∂φ
ΔHr

∣∣∣∣
r=a+h

. (5d)

For h � a, the Taylor series expansion along with (5a) yields

ΔEz

∣∣∣∣
r=a

+ h
∂ΔEz

∂r

∣∣∣∣
r=a

+
h2

2

∂2ΔEz

∂r2

∣∣∣∣
r=a

= −∂h

∂z
ΔEr

∣∣∣∣
r=a

−h
∂h

∂z

∂ΔEr

∂r

∣∣∣∣
r=a

(6a)

ΔEφ

∣∣∣∣
r=a

+
h

a
ΔEφ

∣∣∣∣
r=a

+ h
∂ΔEφ

∂r

∣∣∣∣
r=a

+
h2

2

∂2ΔEφ

∂r2

∣∣∣∣
r=a

+
h2

a

∂ΔEφ

∂r

∣∣∣∣
r=a

= −1

a

∂h

∂φ
ΔEr

∣∣∣∣
r=a

− h

a

∂h

∂φ

∂ΔEr

∂r

∣∣∣∣
r=a

(6b)

ΔHz

∣∣∣∣
r=a

+ h
∂ΔHz

∂r

∣∣∣∣
r=a

+
h2

2

∂2ΔHz

∂r2

∣∣∣∣
r=a

= − ∂h

∂z
ΔHr

∣∣∣∣
r=a

−h
∂h

∂z

∂ΔHr

∂r

∣∣∣∣
r=a

(6c)

ΔHφ

∣∣∣∣
r=a

+
h

a
ΔHφ

∣∣∣∣
r=a

+ h
∂ΔHφ

∂r

∣∣∣∣
r=a

+
h2

2

∂2ΔHφ

∂r2

∣∣∣∣
r=a

+
h2

a

∂ΔHφ

∂r

∣∣∣∣
r=a

= − 1

a

∂h

∂φ
ΔHr

∣∣∣∣
r=a

− h

a

∂h

∂φ

∂ΔHr

∂r

∣∣∣∣
r=a

.

(6d)
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The functions ΔE and ΔH can be expanded as a perturba-
tion series as follows:

ΔE = ΔE(0) +ΔE(1) + · · · (7a)

ΔH = ΔH(0) +ΔH(1) + · · · (7b)

where ΔE(m) or ΔH(m) is of the order of hm. Using (6a) along
with (7a), the boundary conditions may be formulated in terms
of the perturbations in ΔE and ΔH.

1) Zeroth-Order Boundary Conditions:

ΔE(0)
z

∣∣∣
r=a

= 0 = ΔE
(0)
φ

∣∣∣
r=a

(8a)

ΔH(0)
z

∣∣∣
r=a

= 0 = ΔH
(0)
φ

∣∣∣
r=a

. (8b)

2) First-Order Boundary Conditions:

ΔE(1)
z

∣∣∣∣∣
r=a

= −h
∂ΔE

(0)
z

∂r

∣∣∣∣∣
r=a

− ∂h

∂z
ΔE(0)

r

∣∣∣∣
r=a

(9a)

ΔE
(1)
φ

∣∣∣∣∣
r=a

= −h
∂ΔE

(0)
φ

∂r

∣∣∣∣∣
r=a

− 1

a

∂h

∂φ
ΔE(0)

r

∣∣∣∣
r=a

(9b)

ΔH(1)
z

∣∣∣∣∣
r=a

= −h
∂ΔH

(0)
z

∂r

∣∣∣∣∣
r=a

− ∂h

∂z
ΔH(0)

r

∣∣∣∣
r=a

(9c)

ΔH
(1)
φ

∣∣∣∣∣
r=a

= −h
∂ΔH

(0)
φ

∂r

∣∣∣∣∣
r=a

− 1

a

∂h

∂φ
ΔH(0)

r

∣∣∣∣
r=a

. (9d)

3) Second-Order Boundary Conditions:

ΔE(2)
z

∣∣∣∣∣
r=a

= −h
∂ΔE

(1)
z

∂r

∣∣∣∣∣
r=a

− h2

2

∂2ΔE
(0)
z

∂r2

∣∣∣∣∣
r=a

− ∂h

∂z
ΔE(1)

r

∣∣∣∣
r=a

− h
∂h

∂z

∂ΔE
(0)
r

∂r

∣∣∣∣∣
r=a

(10a)

ΔE
(2)
φ

∣∣∣∣∣
r=a

= −h
∂ΔE

(1)
φ

∂r

∣∣∣∣∣
r=a

− h2

2

∂2ΔE
(0)
φ

∂r2

∣∣∣∣∣
r=a

− 1

a

∂h

∂φ
ΔE(1)

r

∣∣∣∣
r=a

+
h

a2
∂h

∂φ
ΔE(0)

r

∣∣∣∣
r=a

− h

a

∂h

∂φ

∂ΔE
(0)
r

∂r

∣∣∣∣∣
r=a

(10b)

ΔH(2)
z

∣∣∣∣∣
r=a

= −h
∂ΔH

(1)
z

∂r

∣∣∣∣∣
r=a

− h2

2

∂2ΔH
(0)
z

∂r2

∣∣∣∣∣
r=a

− ∂h

∂z
ΔH(1)

r

∣∣∣∣
r=a

− h
∂h

∂z

∂ΔH
(0)
r

∂r

∣∣∣∣∣
r=a

(10c)

ΔH
(2)
φ

∣∣∣∣∣
r=a

= −h
∂ΔH

(1)
φ

∂r

∣∣∣∣∣
r=a

− h2

2

∂2ΔH
(0)
φ

∂r2

∣∣∣∣∣
r=a

− 1

a

∂h

∂φ
ΔH(1)

r

∣∣∣∣
r=a

+
h

a2
∂h

∂φ
ΔH(0)

r

∣∣∣∣
r=a

− h

a

∂h

∂φ

∂ΔH
(0)
r

∂r

∣∣∣∣∣
r=a

. (10d)

Equations (8)–(10) are the sets of boundary conditions that
will be used in solving the scattering problem. Also note that
these conditions are valid irrespective of the dielectric proper-
ties of the cylinder. For instance, the case of a PEC cylinder is
handled by using these boundary conditions with the internal
fields set to zero; we use this property in Section III-B. Higher
order perturbed boundary conditions can be similarly derived if
desired, but we restrict our analysis to up till second-order in
h(φ, z).

B. Scattering of a Plane Wave by the Rough Cylinder

Consider an electromagnetic plane wave incident at an angle
α with the z-axis, and the incident wavevector ki, being in the
xz-plane, as shown in Fig. 1. The incident fields Einc and Hinc

may be expressed as

Einc = (E1(ẑ sinα− x̂ cosα) + E2ŷ) exp(jki · r) (11a)

Hinc =
(−E1ŷ + E2(−x̂ cosα+ ẑ sinα))

η0
exp(jki · r)

(11b)

where E1 and E2 are as per Fig. 1. A time dependance
of exp(−jωt) is assumed in all the fields and suppressed
throughout the paper.

It is known that in homogenous dielectric media, the z com-
ponents of the electric and magnetic fields satisfy the scalar
Helmholtz equation (km =

√
μmεmω2 is the wave number of

the medium)

∇2v + k2mv = 0 for v ≡ Ez orHz. (11)

The eigen solutions of (12) in the cylindrical coordinates are
given by

vz = Zn(βmr) exp(jnφ) exp(jkz) (12)

where βm =
√

k2m − k2 ∀ k ∈ R andn ∈ Z and Zn(x) are
solutions of the Bessel differential equations of order n. A
general solution of (12) can therefore be expressed as a linear
combination of the eigen-solutions given by (13)

vz =

∞∑
n=−∞

∞∫
−∞

[
an(k)H

(1)
n (βmr) + bn(k)Jn(βmr)

]

exp(jkz) exp(jnφ) dk (13)

where H
(1)
n and Jn are the nth order Hankel function (of the

first kind) and the Bessel function, respectively. A complete
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representation of the general solution, as shown in (14), would
require an integration over eigen-solutions with a z depen-
dance of the form exp(jkz) (since k is a continuous index)
in addition to the summation over the eigen-solution with a
φ dependance of the form exp(jnφ). an(k) and bn(k) are the
weights of the corresponding eigen-solution in the net field. In
general, we will have four unknown weight functions [an(k)
and bn(k) for v ≡ Ez and Hz] in a complete representation
of the fields corresponding to the four independent solutions
of Maxwell’s equations [19]; these will be evaluated by apply-
ing the boundary conditions at the medium interfaces and the
radiation condition at infinity. Moreover, once Ez and Hz are
known, the other components of E and H , namely Er, Eφ,
Hr, and Hφ can be readily determined in terms of Ez and Hz

(refer to Appendix A for the actual expressions) and therefore,
it is sufficient to formulate and solve the scattering problem in
terms of Ez and Hz alone and use them to evaluate all the other
components.

The z components of the incident fields from (11), Einc
z and

Hinc
z , can be expressed as a linear combination of the form in

(14) using the Jacobi–Anger expansion

Einc
z = E1 sinα

∞∑
n=−∞

jnJn(k0r sinα) exp(jnφ)

exp(jk0z cosα) (15a)

Hinc
z =

E2

η0
sinα

∞∑
n=−∞

jnJn(k0r sinα) exp(jnφ)

exp(jk0z cosα). (15b)

The fields in the medium surrounding the cylinder can
be expressed as a superposition of the known incident field
described above and an unknown scattered field. The scattered
fields Esca

z and Hsca
z can be expressed as

Esca
z =

∞∑
n=−∞

∞∫
−∞

sn(k)H
(1)
n (β0r) exp(j(kz + nφ)) dk

(16a)

Hsca
z =

∞∑
n=−∞

∞∫
−∞

gn(k)H
(1)
n (β0r) exp(j(kz + nφ)) dk

(16b)

where β0 =
√

k20 − k2 and gn(k) and sn(k) are the (unknown)
weights of the corresponding eigen-solution in the scattered
field.

The fields in the interior of the cylinder Ecyl
z and Hcyl

z can
be expressed as

Ecyl
z =

∞∑
n=−∞

∞∫
−∞

an(k)Jn(βdr) exp(j(kz + nφ)) dk (17a)

Hcyl
z =

∞∑
n=−∞

∞∫
−∞

bn(k)Jn(βdr) exp(j(kz + nφ)) dk (17b)

where βd =
√

k2d − k2 and bn(k) and an(k) are the weights of
the corresponding eigen-solution in the interior field.

To evaluate sn(k), gn(k), an(k), and bn(k), we will make
use of the perturbed boundary conditions given by (8)–(10).
Consequently, it is necessary to expand these coefficients into a
perturbation series

fn(k) =

∞∑
m=0

f (m)
n (k) ∀n ∈ Z, k ∈ R and f ∈ {s, g, a, b}

(17)

where, by assumption, f (m)
n (k) ∼ O(hm). We emphasize that

the coefficient of each eigenfunction in the field expansion is
expressed as a perturbation series. f (0)

n (k) can be evaluated via
the application of (8) and then can be used to evaluate ΔE(0)

and ΔH(0). These, in turn, can be used together with (9) to eval-
uate f (1)

n (k) and by extension ΔE(1) and ΔH(1). Subsequently,
f
(2)
n (k) can be obtained by the application of (10).

In the following sections, we present results for the zeroth-,
first-, and second-order field coefficients, as given by f

(m)
n .

Interested readers may refer to Appendix A for further details
and derivations. To keep the equations that follow compact, we
define a matrix Θn(k)

Θn(k) = [Λ1,n(k)Λ2,n(k)]
−1 (18)

where

Λ1,n(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

H
(1)
n (β0a) 0

0 H
(1)
n (β0a)

−nk

β2
0a

H
(1)
n (β0a)

−jη0k0
β0

H
(1)′
n (β0a)

jk0
β0η0

H
(1)′
n (β0a)

−nk

β2
0a

H
(1)
n (β0a)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20a)

Λ2,n(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Jn(βda) 0

0 −Jn(βda)

nk

β2
da

Jn(βda)
jηdkd
βd

J
′
n(βda)

−jkd
βdηd

J ′
n(βda)

nk

β2
da

Jn(βda)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (20b)

1) Zeroth-Order Field Coefficients: The boundary condi-
tions given by (8) result in the following familiar result of
specular scattering from a smooth cylinder [20]

f (0)
n (k) =

2∑
i=1

F
(0)
i,n Ei δ(k − k0 cosα)

for f ∈ {s, g, a, b}, F ∈ {S,G,A,B} (21)

where⎡
⎢⎢⎢⎢⎢⎢⎣

S
(0)
1,n

G
(0)
1,n

A
(0)
1,n

B
(0)
1,n

⎤
⎥⎥⎥⎥⎥⎥⎦
= Θn(k0 cosα)

⎡
⎢⎢⎢⎣
−jnJn(k0a sinα) sinα

0
jnn
k0a

Jn(k0a sinα) cotα

−jn+1

η0
J ′
n(k0a sinα)

⎤
⎥⎥⎥⎦ (22)



TRIVEDI AND KHANKHOJE: PERTURBATIVE SOLUTION TO PLANE WAVE SCATTERING FROM ROUGH DIELECTRIC CYLINDER 4073

⎡
⎢⎢⎢⎢⎢⎣

S
(0)
2,n

G
(0)
2,n

A
(0)
2,n

B
(0)
2,n

⎤
⎥⎥⎥⎥⎥⎦ = Θn(k0 cosα)

⎡
⎢⎢⎢⎢⎢⎣

0

−jn

η0
Jn(k0a sinα) sinα

jn+1J ′
n(k0a sinα)

njn cotα
η0k0a

Jn(k0a sinα)

⎤
⎥⎥⎥⎥⎥⎦ . (23)

2) First-Order Field Coefficients: Similarly, (9) can be used
to formulate equations in the first-order perturbations in the
coefficients. Let Q(0)

i,n,X(r) be defined by

ΔX(0)
q (r) =

∞∑
n=−∞

2∑
i=1

EiQ
(0)
i,n,X(r) exp(j(nφ+ k0z cosα))

forX ∈ {E,H}, q ∈ {r, φ, z}, Q ∈ {R,Φ, Z}.
(24)

The first-order perturbation coefficients can be expressed as

f (1)
n (k) =

∞∑
m=−∞

2∑
i=1

F
(1)
i,n,m(k)Eih̃m(k − k0 cosα)

for f ∈ {s, g, a, b}, F ∈ {S,G,A,B} (25)

where F
(1)
i,n,m(k) satisfy (for i = 1, 2)

⎡
⎢⎢⎢⎢⎢⎢⎣

S
(1)
i,n,m(k)

G
(1)
i,n,m(k)

A
(1)
i,n,m(k)

B
(1)
i,n,m(k)

⎤
⎥⎥⎥⎥⎥⎥⎦
= Θn(k)[R

(1)
i,n,m(k) +T

(1)
i,n,m(k)] (26)

with

R
(1)
i,n,m(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−j(k − k0 cosα)R
(0)
i,n−m,E(a)

−j(k − k0 cosα)R
(0)
i,n−m,H(a)

− jm
a R

(0)
i,n−m,E(a)

− jm
a R

(0)
i,n−m,H(a)

⎤
⎥⎥⎥⎥⎥⎥⎦

(27a)

T
(1)
i,n,m(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−Z
(0)′

i,n−m,E(a)

−Z
(0)′

i,n−m,H(a)

−Φ
(0)′

i,n−m,E(a)

−Φ
(0)′

i,n−m,H(a)

⎤
⎥⎥⎥⎥⎥⎥⎦
. (27b)

3) Second-Order Field Coefficients: For second-order
coefficients, we impose (10a). Clearly, the functions ΔE(1)

and ΔH(1) are of the form

ΔX(1)
q (r) =

∞∑
n=−∞

∞∑
m=−∞

2∑
i=1

∞∫
−∞

EiQ
(1)
i,n,m,X(r, k)

h̃m(k − k0 cosα) exp(j(nφ+ kz)) dk

forX ∈ {E,H}, q ∈ {r, φ, z}, Q ∈ {R,Φ, Z}. (28)

The second-order perturbation coefficients can be
expressed as

f (2)
n (k) =

∞∑
m=−∞

∞∑
p=−∞

2∑
i=1

∞∫
−∞

F
(2)
i,n,m,p(k, k

′)Ei

h̃m(k′ − k0 cosα)h̃p(k − k′) dk′

for f ∈ {s, g, a, b}, F ∈ {S,G,A,B} (29)

where⎡
⎢⎢⎢⎢⎢⎣

S
(2)
i,n,m,p(k, k

′)

G
(2)
i,n,m,p(k, k

′)

A
(2)
i,n,m,p(k, k

′)

B
(2)
i,n,m,p(k, k

′)

⎤
⎥⎥⎥⎥⎥⎦= Θn(k)

[
R

(2)
i,n,m,p(k, k

′) +T
(2)
i,n,m,p(k, k

′)
]

(30)

with

R
(2)
i,n,m,p(k, k

′)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

j(k′ − k)(R
(1)
i,n−p,m,E(a, k

′) +R
(0)′
i,n−p−m,E(a))

j(k′ − k)(R
(1)
i,n−p,m,E(a, k

′) +R
(0)′
i,n−p−m,E(a))

jp
a2 (R

(0)
i,n−p−m,E(a)− aR

(0)′
i,n−p−m,E(a)− aR

(1)
i,n−p,m,E(a))

jp
a2 (R

(0)
i,n−p−m,H(a)− aR

(0)′
i,n−p−m,H(a)− aR

(1)
i,n−p,m,H(a))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(31a)

T
(2)
i,n,m,p(k, k

′) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Z
(1)′
i,n−p,m,E(a, k

′)− Z
(0)′′
i,n−p−m,E(a)

2

−Z
(1)′
i,n−p,m,E(a, k

′)− Z
(0)′′
i,n−p−m,E(a)

2

−Φ
(1)′
i,n−p,m,E(a, k

′)− 1

2
Φ

(0)′′
i,n−m−p,E(a)

−Φ
(1)′
i,n−p,m,H(a, k′)− 1

2
Φ

(0)′′
i,n−m−p,H(a)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(31b)

III. VALIDATION

To validate the perturbative solution derived in the previous
section and to establish criteria for its validity, we compare it
with a rigorous MoM solution of the same problem [21]. For
simplicity, we separately treat the cases where the cylinder has
only an azimuthal roughness (i.e., h is independent of z) or an
axial roughness (i.e., h is independent of φ).

A. Cylinder With Azimuthal Roughness

Consider a special case where the cylinder is only azimu-
thally rough

h̃n(k) = hnδ(k) ∀n ∈ Z. (32)

Additionally, assume that the incident field propagates in the
x-direction with the electric field being polarized along the z-
axis (α = π/2, E2 = 0). It can immediately be seen that in this
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particular case, the scattered fields are independent of z and
Hsca

z = Hcyl
z = 0, i.e.,

fn(k) =

{
Fnδ(k) for f ∈ {s, a}, F ∈ {S,A}
0 for f ∈ {g, b}. (33)

Using (16a), the scattered field Esca
z can be expressed as

Esca
z (r, φ) =

∞∑
n=−∞

SnH
(1)
n (k0r) exp(jnφ)

=
∞∑

n=−∞

∞∑
m=0

S(m)
n H(1)

n (k0r) exp(jnφ)

(34)

where (21), (25), and (29) give us the zeroth-, first-, and second-
order contributions, respectively, as

S(0)
n = E1S

(0)
1,n (35a)

S(1)
n = E1

∞∑
m=−∞

S
(1)
1,n,m(0)hm (35b)

S(2)
n = E1

∞∑
m=−∞

∞∑
p=−∞

S
(2)
1,n,m,p(0, 0)hmhp (35c)

and S
(0)
1,n, S

(1)
1,n,m, and S

(2)
1,n,m,p can be calculated from (22),

(26), and (30), respectively. The averaged scattering cross
section is given by

σ(φ) = lim
r→∞ 2πr

|E(s)
z (r, φ)|2
|E1|2

=
4

k0

∞∑
n=−∞

∞∑
m=−∞

jm−n (SnS∗
m)

|E1|2 exp(j(n−m)φ)

(36)

SnS∗
m can be evaluated to the second-order using (35)

(SnS∗
m)

|E1|2 = S
(0)
1,nS

(0)∗
1,m +

∞∑
p=−∞

S
(1)
1,n,p(0)S

(1)∗
1,m,p(0)ρp

+ S
(0)
1,n

∞∑
p=−∞

S
(2)∗
1,m,p,−p(0, 0)ρp

+ S
(0)∗
1,m

∞∑
p=−∞

S
(2)
1,n,p,−p(0, 0)ρp

(37)

where ρp = 1
2π

π∫
−π

R(φ) exp(−jpφ) dφ. For numerical valida-

tion, (36) and (37) are used to compute σ(φ) for a Gaussian
correlated surface: R(φ) = h2

0 exp(−φ2/φ2
0), h0 being the

root-mean-square (rms) surface roughness and l = aφ0 being
the correlation length, which is then compared with a Monte
Carlo simulation wherein σ(φ) for each instance of h(φ) was
computed using the MoM (see [22] for the case of an expo-
nentially correlated azimuthal roughness). Each instance of the
rough surface h(φ) was generated by following a procedure
similar to the one outlined in [23] to obtain a Gaussian cor-
relation between different points on the rough surface. It is

Fig. 2. Comparative plots of the ensemble average of the scattering cross
section σ(φ) as a function of φ for different h0 calculated using the perturba-
tive method, MoM, and the smooth cylinder approximation for the azimuthally
rough cylinder. (a) k0h0 = 0.127. (b) k0h0 = 0.314. In all the calcula-
tions, k0a = 12.566, k0l = 6.58, permittivity εd = 2ε0, and permeability
μd = μ0.

essential to take sufficiently large number of instances for the
Monte Carlo simulation to converge, and it was observed that
convergence was achieved with approximately 100 instances.

Finally, referring to Figs. 2(a) and 4(a), it can be seen that
the perturbative method agrees with the MoM results for small
values of rms roughness (k0h0 ∼ 0.127) and large correlation
lengths (k0l ∼ 6.759).

B. Cylinder With Axial Roughness

Consider now a case in which the cylinder roughness is only
z dependant, and the cylinder is perfectly conducting. A PEC
scatterer can either be analyzed by setting εd → j∞ in the per-
turbative solution or by setting the internal fields to zero in
the boundary conditions presented in Section II. Further, for an
incident (and therefore scattered) field that depends only on r
and z, it is straightforward to show from the Maxwell’s equa-
tions that all the six field components can be expressed in terms
of Eφ and Hφ. Here, we analyze only the TM polarization
(Hφ = Er = Ez = 0), with a general azimuthally symmetric
incident field given by

Einc
φ =

∞∫
−∞

Ainc(k)H
(2)
1 (β0(k)r) exp(jkz) dk (38)

where Ainc(k) is the “envelope” of the cylindrical waves
constituting the incident field. The perturbative solution
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Fig. 3. Comparative plots of the ensemble average of the azimuthal electric
field |Eφ(r, z)| as a function of z for different h0 calculated using the per-
turbative method, MoM, and the smooth cylinder approximation for a PEC
cylinder with z-dependant roughness. In all the calculations, k0a = 12.566,
k0l = 12.566, k0w0 = 31.42, and k0r = 15.71.

presented in Section II can be specialized to the following
expressions:

Esca
φ =

∞∫
−∞

∞∑
n=0

A(n)(k)H
(1)
1 (β0(k)r) dk (39)

where

A(0)(k) = χ(k)Ainc(k) (40a)

A(1)(k) =

∞∫
−∞

ζ(k, k′)Ainc(k − k′)h̃0(k
′) dk′ (40b)

A(2)(k) =

∞∫
−∞

∞∫
−∞

Γ(k, k′, k′′)Ainc(k − k′ − k′′)

h̃0(k
′)h̃0(k

′′) dk′dk′′. (40c)

The coefficients χ(k), ζ(k, k′), and Γ(k, k′, k′′) are given by

χ(k) = −H
(1)
1 (β0(k)a)

H
(2)
1 (β0(k)a)

(41a)

ζ(k, k′) = −β0(k − k′)H(1)
1 (β0(k − k′)a)

H
(2)
1 (β0(k)a)

×
[
H

(1)′

1 (β0(k − k′)a)

H
(1)
1 (β0(k − k′)a

− H
(1)′

2 (β0(k − k′)a)

H
(1)
2 (β0(k − k′)a

]

(41b)

Γ(k, k′, k′′) = −ζ(k − k′′, k′)β0(k − k′′)H(2)′

1 (β0(k − k′′)a)

− β2
0(k − k′ − k′′)

2

[
H

(1)′′

1 (β0(k − k′ − k′′)a)

+ χ(k − k′ − k′′)H(2)′′

1 (β0(k − k′ − k′′)a)
]
.

(41c)

If the autocorrelation function of the rough surface R(z) =
h(z + Z)h(Z) is known, it is a simple matter to express the
statistical properties of the scattered fields in terms of R(z), for
instance

Eφ(r, z) =

∞∫
−∞

(A(0)(k) +A(2)(k))H
(2)
1 (β0(k)r) exp(jkz) dk

(42)
where, from (40c)

A(2)(k) = Ainc(k)

∞∫
−∞

ρ(k′)Γ(k, k′,−k′) dk′ (43)

with ρ(k) = 1
2π

∞∫
−∞

R(z) exp(−jkz) dz. For the purpose of

comparison of the perturbative solution with MoM results, we
choose to compute Eφ(r, z) using the MoM for a Gaussian
correlated surface: R(z) = h2

0 exp(−z2/l2), where h0 is the
rms roughness and l is the correlation length, and compare
it with (42). Moreover, since the MoM simulation is possible
only if the cylinder is finite, we assume a Gaussian incident
beam, Ainc(k) = exp(−w2

0k
2/4): w0 being the waist size of

the Gaussian beam, which is taken to be smaller than the length
of the cylinder so as to reduce the edge diffraction effects [21],
[23]. A Monte Carlo simulation was performed to compute the
ensemble average of Eφ(r, z), wherein each instance was ana-
lyzed using MoM, and 75 instances were required to achieve
convergence in Eφ(r, z). Observe from Figs. 4 and 5, similar
to the case with azimuthal roughness, the MoM and the pertur-
bative solutions agree for small rms roughness (k0h0 ∼ 0.062)
and large correlation lengths (k0l ∼ 12.56).

IV. RESULTS AND DISCUSSIONS

In the following sections, we investigate the validity of the
perturbative solution derived in Section II-B. To demonstrate
the validity of the solution, we compare our results with those
obtained via the MoM. For the sake of convenience, we ana-
lyze the reduced cases of an azimuthally rough or axially rough
cylinder introduced in Section III.

A. Validity of the Perturbative Solution

The validity of the perturbative solution presented in
Section II depends on the correlation length l and the rms sur-
face roughness h0 of the scatterer in question. Figs. 2 and 3
show the comparison of the perturbative solution with the MoM
simulation for different rms roughness values h0. By an exhaus-
tive comparison between the MoM and the perturbative method,
it was found that the agreement between the perturbative and
MoM simulation is acceptable within the range k0h0 < 0.314
for both azimuthal and z-dependant roughness, beyond which
the perturbative solution deviates significantly from the MOM
results.

The correlation length l governs the magnitude of the
derivatives, ∂h/∂z, or ∂h/∂φ. It is convenient to define the
slope s corresponding to the rough surface via s = h0/l.
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Fig. 4. Comparative plots of the ensemble average of the scattering cross
section σ(φ) as a function of φ for different correlation lengths l and slopes
s calculated using the perturbative method, MoM, and the smooth cylinder
approximation. (a) k0l = 6.579 and s = 0.038. (b) k0l = 0.877 and s =
0.286. In all the calculations, k0a = 12.566, k0h0 = 0.251, εd = 2ε0, and
μd = μ0.

Fig. 5. Comparative plots of the ensemble average of the azimuthal electric
field |Eφ(r, z)| as a function of z for different l calculated using the per-
turbative method, MoM, and the smooth cylinder approximation for a PEC
cylinder with z-dependant roughness. In all the calculations, k0a = 12.566,
k0h0 = 0.314, k0w0 = 31.42, and k0r = 15.71.

The perturbative solution is expected to break down for large s
or small l since an implicit assumption in the perturbative solu-
tion is that h(φ, z) and its derivatives are small. By comparing
the perturbative solution with the MoM for different l (exam-
ples of which are shown in Figs. 4 and 5), it was found that the
perturbative solution agrees with the MOM results for s < 0.25
for both azimuthal and z-dependant roughness.

B. Analysis of Rough Cylinders of Finite Height

As was stated earlier, the perturbative analysis presented in
Section II yields not only the scattered fields, but also the fields

inside the dielectric cylinder (17). Following the method pre-
sented by Hulst and Van De Hulst [17] and Seker and Schneider
[18], the fields inside the finite cylinder are approximated by
the fields inside the infinite cylinder. The scattered field can
then be expressed in terms of the fields inside the cylinder. For
instance, in a nonmagnetic medium, the scattered field Esca can
be computed from

Esca(r) =
k20(εd − ε0)

4πε0

∫
V

Ecyl(r′)
ejk0|r−r′|

|r− r′| d3r′ (44)

where Ecyl are the fields inside the cylinder and V is the volume
of the finite cylinder. Note that the limits of the integral in (44)
will depend on the rough surface and the integral can itself be
evaluated perturbatively to any desired order in the roughness
function.

C. General Considerations

The results obtained above, namely that a second-order per-
turbative solution for scattering from a rough cylinder is valid
in the range of roughness h0 and slope s given by k0h0 < 0.314
and s < 0.25, are reminiscent of and similar to the results
obtained for scattering from a randomly rough surface [6], [24].
Although the above-mentioned bounds are valid for the reduced
cases (of an axially or azimuthally rough cylinder), we qualita-
tively expect these bounds to be a good approximation to the
bounds for a full three-dimensional (3-D) case [with roughness
of the form h(φ, z)], provided that the surface roughness of the
3-D scatterer is described by a similar autocorrelation function.
A quantitative validation for the full 3-D case is part of future
work.

Additionally, observe that the zeroth-order scattered field
(21) is entirely along kz = k0 cosα, i.e., it is scattered entirely
in the specular direction. The first-order scattered field, on
the other hand, has no specular component [since, from (25)

s
(1)
n (k) = 0]. However, the second-order scattered field (29)

has a finite specular component. This can easily be seen by

computing s
(2)
n (k) which results in

s
(2)
n (k) =

⎡
⎣ ∞∑
m=−∞

2∑
i=1

∞∫
−∞

S
(2)
i,n,m,−m(k0 cosα, k

′)Ei

× ρ̃m(k′ − k0 cosα)dk
′

⎤
⎦ δ(k − k0 cosα) (45)

where ρ̃n(k) = 1
4π2

∫ 2π

0

∫∞
−∞ R(φ, z) exp(−j(nφ+ kz))dφdz

with R(φ, z) = h(Φ, Z)h(Φ + φ,Z + z) being the autocorre-
lation function of the roughness h(φ, z). The second-order
results that have been derived in Section II can therefore be
used to account for the impact of roughness of the cylinder in
specularly scattered fields.

We emphasize that the scattered fields and the resulting scat-
tering cross sections that have been previously derived are very
simple to evaluate numerically. As was shown in Section III,
an expression for the ensemble average of the scattering cross
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section can be derived in terms of the correlation function of the
stochastic roughness. Evaluation of the average scattering cross
section, and in general the electromagnetic fields, amounts to
a simple numerical evaluation of this expression. Within the
region of validity of the perturbative solution, this is compu-
tationally simpler and faster than the other numerical methods
such as the MoM, where we would have to solve a large sys-
tem of linear equations to calculate the scattered field for just a
single instance of the rough cylinder. For instance, in the MoM
analysis presented in Figs. 2 and 4, we needed to solve a 600×
600 dense matrix system for each instance of the rough cylin-
der, and this process was repeated ∼100 times for obtaining a
converged ensemble average of the scattering cross section.

The implications of these results to remote-sensing stud-
ies, particularly to scattering from trees or branches in the
centimeter–millimeter wavelength range, are immediate. This is
because the deviation from smooth-cylinder scattering becomes
appreciable as the rms roughness of the surface increases and
becomes comparable to the wavelength. This can also be seen
in Fig. 2(a) and (b). Of course, this translates into additional
data that need to be collected on a field work campaign,
namely the measurement of trunk surface roughness, correla-
tion length, and permittivity. However, since the computational
overhead of incorporating roughness is minimal, the antici-
pated enhancement in science’ returned from this exercise is
worthwhile.

APPENDIX A
PERTURBATIVE SOLUTION

The scattering problem in Section II-B was formulated in
terms of Ez and Hz . Knowing Ez and Hz , the remaining
four field components can be calculated using the following
equations:

Ẽr =
jηmkm
β2
mr

∂H̃z

∂φ
+

jk

β2
m

∂Ẽz

∂r
(46a)

Ẽφ = −jηmkm
β2
m

∂H̃z

∂r
+

jk

β2
mr

∂Ẽz

∂φ
(46b)

H̃r =
jk

β2
m

∂H̃z

∂r
− jkm

ηmβ2
mr

∂Ẽz

∂φ
(46c)

H̃φ =
jk

β2
mr

∂H̃z

∂φ
+

jkm
β2
mηm

∂Ẽz

∂r
(46d)

where Ẽp = 1
2π

∫∞
−∞ Ep exp(−jkz) dz and H̃p = 1

2π

∫∞
−∞

Hp exp(−jkz) dz for p = r, φ, and z. Using the expansions
given by (15)–(17) along with the perturbation series expansion
of the coefficients (18) immediately results in (21)–(23) for the
zeroth-order perturbation coefficients. The zeroth-order pertur-
bation coefficients along with (46) can be used to calculate the
zeroth-order perturbations in ΔE and ΔH. For instance, ΔE

(0)
z

can be calculated as

ΔE(0)
z =

∞∑
n=−∞

∞∫
−∞

[{
s(0)n (k)H(1)

n (β0r)− a(0)n (k)Jn(βdr)
}

exp(jkz) dk − jnE1 sinαJn(k0r sinα) exp(jk0r sinα)
]

× exp(jnφ) =

∞∑
n=−∞

∞∫
−∞

[
2∑

i=1

{
S
(0)
i,nEiH

(1)
n (β0r)

−A
(0)
i,nEiJn(βdr)

}
δ(k − k0 cosα) exp(jkz) dk

−jnE1 sinαJn(k0r sinα) exp(jk0r sinα)

]
exp(jnφ).

(47)

Since
∞∫

−∞
f(k)δ(k − κ) dk = f(κ), (47) can be simplified to

ΔE(0)
z =

∞∑
n=−∞

2∑
i=1

EiZ
(0)
i,n,E(r) exp(j(nφ+ k0z cosα))

(48)
where (αd is defined by cosαd = k0/kd cosα0)

Z
(0)
1,n,E(r) = S

(0)
1,nH

(1)
n (k0r sinα)−A

(0)
1,nJn(kdr sinαd)

+ jn sinαJn(k0r sinα) (49a)

Z
(0)
2,n,E(r) = S

(0)
2,nH

(1)
n (k0r sinα)−A

(0)
2,nJn(kdr sinαd).

(49b)

Similar expressions can be derived for the zeroth-order
perturbation in the other coefficients. Thus,

ΔX(0)
q (r) =

∞∑
n=−∞

2∑
i=1

EiQ
(0)
i,n,X(r) exp(j(nφ+ k0z cosα))

for X ∈ {E,H}, q ∈ {r, φ, z}, Q ∈ {R,Φ, Z}
(50)

where

Z
(0)
1,n,H(r) = G

(0)
1,nH

(1)
n (k0r sinα)−B

(0)
1,nJn(kdr sinαd)

(51a)

Z
(0)
2,n,H(r) = G

(0)
2,nH

(1)
n (k0r sinα)−B

(0)
2,nJn(kdr sinαd)

+
1

η0
jn sinαJn(k0r sinα) (51b)

Φ
(0)
1,n,E(r) = − jη0

sinα
G

(0)
1,nH

(1)′
n (k0r sinα)

− n cosα

k0r sin
2 α

S
(0)
1,nH

(1)
n (k0r sinα)

+
jη0

sinαd
B

(0)
1,nJ

′
n(kdr sinαd)

+
n cosαd

kdr sin
2 αd

A
(0)
1,nJn(kdr sinαd)

− njn cotα

k0r
Jn(k0r sinα) (51c)

Φ
(0)
2,n,E(r) = − jη0

sinα
G

(0)
2,nH

(1)′
n (k0r sinα)

− n cosα

k0r sin
2 α

S
(0)
2,nH

(1)
n (k0r sinα)

+
jη0

sinαd
B

(0)
2,nJ

′
n(kdr sinαd)

+
n cosαd

kdr sin
2 αd

A
(0)
2,nJn(kdr sinαd)

− jn+1J ′
n(k0r sinα) (51d)
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Φ
(0)
1,n,H(r) = − n cosα

k0r sin
2 α

G
(0)
1,nH

(1)
n (k0r sinα)

+
jS

(0)
1,n

η0 sinα
H(1)′

n (k0r sinα)

+
n cosαd

kdr sin
2 αd

B
(0)
1,nJn(kdr sinαd)

+
j

ηd sinαd
A

(0)
1,nJ

′
n(kdr sinαd)

+
jn+1

η0
J ′
n(k0r sinα) (51e)

Φ
(0)
2,n,H(r) = − n cosα

k0r sin
2 α

G
(0)
2,nH

(1)
n (k0r sinα)

+
jS

(0)
2,n

η0 sinα
H(1)′

n (k0r sinα)

+
n cosαd

kdr sin
2 αd

B
(0)
2,nJn(kdr sinαd)

+
j

ηd sinαd
A

(0)
2,nJ

′
n(kdr sinαd)

− njn cotα

η0k0r
Jn(k0r sinα) (51f)

R
(0)
1,n,E(r) = − nη0

k0r sin
2 α

G
(0)
1,nH

(1)
n (k0r sinα)

+ j cotαS
(0)
1,nH

(1)′
n (k0r sinα)

+
ηdnB

(0)
1,n

kdr sin
2 αd

Jn(kdr sinαd)

− j cotαdA
(0)
1,nJ

′
n(kdr sinαd)

+ jn+1 cosαJ ′
n(k0r sinα) (51g)

R
(0)
2,n,E(r) = − nη0

k0r sin
2 α

G
(0)
2,nH

(1)
n (k0r sinα)

+ j cotαS
(0)
2,nH

(1)′
n (k0r sinα)

+
ηdnB

(0)
2,n

kdr sin
2 αd

Jn(kdr sinαd)

− j cotαdA
(0)
2,nJ

′
n(kdr sinαd)

− njn

k0r sinα
Jn(k0r sinα) (51h)

R
(0)
1,n,H(r) = j cotαG

(0)
1,nH

(1)′
n (k0r sinα)

+
nS

(0)
1,n

η0k0r sin
2 α

H(1)
n (k0r sinα)

− j cotαdB
(0)
1,nJn(kdr sinαd)

− nA
(0)
1,n

ηdkdr sin
2 αd

Jn(kdr sinαd)

+
njn

η0k0r sinα
Jn(k0r sinα) (51i)

R
(0)
2,n,H(r) = j cotαG

(0)
2,nH

(1)′
n (k0r sinα)

+
nS

(0)
2,n

η0k0r sin
2 α

H(1)
n (k0r sinα)

− j cotαdB
(0)
2,nJn(kdr sinαd)

− nA
(0)
2,n

ηdkdr sin
2 αd

Jn(kdr sinαd)

+
jn+1 cotα

η0
J ′
n(k0r sinα). (51j)

To evaluate the first-order perturbation coefficients, we
employ the boundary conditions given by (9). These boundary
conditions can be translated into a set of linear equations in the
first-order perturbation coefficients. For instance, consider (9a)

ΔE(1)
z

∣∣∣∣
r=a

= −h
∂ΔE

(0)
z

∂r

∣∣∣∣∣
r=a

− ∂h

∂z
ΔE(0)

r

∣∣∣∣
r=a

. (52)

But

ΔE(1)
z

∣∣∣
r=a

=

∞∑
n=−∞

∞∫
−∞

[
s(1)n (k)H(1)

n (β0a)− a(1)n (k)Jn(βda)
]

exp(jkz) dk exp(jnφ)
(53)

and from (52)

ΔE(1)
z

∣∣∣
r=a

= −
⎡
⎣ ∞∑
n=−∞

∞∫
−∞

h̃n(k) exp(j(nφ+ kz)) dk

⎤
⎦

×
[ ∞∑
m=−∞

2∑
i=1

EiZ
(0)′

i,m,E(a) exp(j(mφ+ k0z cosα))

]

−
⎡
⎣ ∞∑
n=−∞

∞∫
−∞

jkh̃n(k) exp(j(nφ+ kz)) dk

⎤
⎦

×
[ ∞∑
m=−∞

2∑
i=1

EiR
(0)
i,m,E(a) exp(j(mφ+ k0z cosα))

]
.

(54)

Comparing the coefficients of exp(j(kz + nφ)) between
(53) and (54)

s(1)n (k)H(1)
n (β0a)− a(1)n (k)Jn(βda)

=

∞∑
m=−∞

2∑
i=1

[
Ei

(
−Z

(0)′

i,n−m,E(a)j(k − k0 cosα)

× R
(0)′

i,n−m,E(a)
)]

h̃m(k − k0 cosα). (55)

A similar manipulation of the other first-order boundary
conditions results in (25) and (26) for the first-order coeffi-
cients. These can, in turn, be used for evaluating the first-
order perturbation in ΔE and ΔH which are needed for
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the calculation of the second-order coefficients. Consider, for
instance, ΔE

(1)
z

ΔE(1)
z =

∞∑
n=−∞

∞∫
−∞

(
s(1)n (k)H(1)

n (β0r)− a(1)n (k)Jn(βdr)
)

exp(jkz) dk exp(jnφ)

=

∞∑
n=−∞

∞∑
m=−∞

2∑
i=1

∞∫
−∞

(
S
(1)
i,n,m(k)H(1)

n (β0r)

−A
(1)
i,n,m(k)Jn(βdr)

)
Eihm(k − k0 cosα)

exp(j(kz + nφ))dk (56)

or equivalently

ΔE(1)
z (r) =

∞∑
n=−∞

∞∑
m=−∞

2∑
i=1

∞∫
−∞

EiZ
(1)
i,n,m,E(r, k)

h̃m(k − k0 cosα) exp(j(nφ+ kz)) dk (57)

where

Z
(1)
i,n,m,E(r, k) = S

(1)
i,n,m(k)H(1)

n (β0r)−A
(1)
i,n,m(k)Jn(βdr).

(58)

Similar expressions can be derived for the first-order pertur-
bation in the other components of ΔE and ΔH

ΔX(1)
q (r) =

∞∑
n=−∞

∞∑
m=−∞

∞∫
−∞

2∑
i=1

EiQ
(1)
i,n,m,X(r, k)

h̃m(k − k0 cosα) exp(j(nφ+ kz)) dk (59)

where

Z
(1)
i,n,m,H(r, k) = G

(1)
i,n,m(k)H(1)

n (β0r)−B
(1)
i,n,m(k)Jn(βdr)

(60a)

Φ
(1)
i,n,m,E(r, k)

= −jη0k0
β0

G
(1)
i,n,mH(1)′

n (β0r)− nk

β2
0r

S
(1)
i,n,mH(1)

n (β0r)

+
jηdkd
βd

B
(1)
i,n,mJ ′

n(βdr) +
nk

β2
dr

A
(1)
i,n,mJn(βdr) (60b)

Φ
(1)
i,n,m,H(r, k)

= − nk

β2
0r

G
(1)
i,n,mH(1)

n (β0r) +
jk0
η0β0

S
(1)
i,n,mH(1)′

n (β0r)

+
nk

β2
dr

B
(1)
i,n,mJn(βdr)− jkd

ηdβd
A

(1)
i,n,mJ ′

n(βdr) (60c)

R
(1)
i,n,m,E(r, k)

= −nη0k0
β2
0r

G
(1)
i,n,mH(1)

n (β0r) +
jk

β0
S
(1)
i,n,mH(1)′

n (β0r)

+
nηdkd
β2
dr

B
(1)
i,n,mJn(βdr)− jk

βd
A

(1)
i,n,mJ ′

n(βdr) (60d)

R
(1)
i,n,m,H(r, k)

=
jk

β0
G

(1)
i,n,mH(1)′

n (β0r) +
nk0
η0β2

0r
S
(1)
i,n,mH(1)

n (β0r)

− jk

βd
B

(1)
i,n,mJ ′

n(βdr)− nkd
ηdβ2

dr
A

(1)
i,n,mJn(βdr). (60e)

Evaluation of the second-order perturbation coefficients
requires the imposition of the boundary conditions given by
(10). Consider, for instance, (10a)

ΔE(2)
z

∣∣∣
r=a

= −h
∂ΔE

(1)
z

∂r

∣∣∣∣∣r=a − h2

2

∂2ΔE
(0)
z

∂r2

∣∣∣∣∣
r=a

− ∂h

∂z
ΔE(1)

r

∣∣∣∣∣r=a − h
∂h

∂z

∂ΔE
(0)
r

∂r

∣∣∣∣∣
r=a

. (61)

Since

ΔE(2)
z

∣∣∣∣∣∣r=a =

∞∑
n=−∞

∞∫
−∞

(s(2)n (k)H(1)
n (β0a)− a(2)n (βda))

exp(jnφ) exp(jkz) dk. (62)

Also, using (61)

ΔE(2)
z |r=a = −

⎡
⎣ ∞∑
m=−∞

∞∫
−∞

h̃m(k) exp(j(mφ+ kz)) dk

⎤
⎦

×
⎡
⎣ ∞∑
n=−∞

∞∑
m=−∞

2∑
i=1

∞∫
−∞

EiZ
(1)′

i,n,m,E(a, k)

h̃m(k − k0 cosα) exp(j(nφ+ kz)) dk

]

− 1

2

⎡
⎣ ∞∑
m=−∞

∞∫
−∞

h̃m(k) exp(jmφ) exp(jkz) dk

⎤
⎦
2

×
[ ∞∑
n=−∞

2∑
i=1

EiZ
(0)′′

i,n,E(a) exp(jnφ) exp(jk0r cosα)

]

−
⎡
⎣ ∞∑
m=−∞

∞∫
−∞

jkh̃m(k) exp(jmφ) exp(jkz) dk

⎤
⎦

×
⎡
⎣ ∞∑
n=−∞

∞∑
m=−∞

2∑
i=1

∞∫
−∞

EiR
(1)
i,n,m,E(a, k)

h̃m(k − k0 cosα) exp(jkz) dk exp(jnφ)

⎤
⎦

−
⎡
⎣ ∞∑
m=−∞

∞∫
−∞

jkh̃m(k) exp(j(mφ+ kz))dk

⎤
⎦
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×
⎡
⎣ ∞∑
n=−∞

∞∫
−∞

h̃n(k) exp(j(kz + nφ))dk

⎤
⎦

×
[ ∞∑
n=−∞

2∑
i=1

EiR
(0)′

i,n,E(a) exp(jnφ) exp(jk0r cosα)

]
.

(63)

Comparing coefficients of exp(jkz) exp(jnφ) between (62)
and (63)

s(2)n (k)H(1)
n (β0a)− a(2)n (βda) =

∞∑
m=−∞

∞∑
p=−∞

2∑
i=1

∞∫
−∞

Ei

⎛
⎝−Z

(1)′

i,n−p,m,E(a, k
′)− Z

(0)′′

i,n−p−m,E(a)

2

−j(k − k′)(R(1)
i,n−p,m,E(a, k

′) +R
(0)′

i,n−p−m,E(a))

⎞
⎠

h̃m (k′ − k0 cosα)hp (k − k′) dk′. (64)

A similar manipulation of the other second-order boundary
conditions results in (29) and (30). Higher order perturba-
tion coefficients can also be evaluated by following a similar
procedure.
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