
1

Subsurface Radar Imaging by Optimizing Sensor
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Abstract—This paper deals with subsurface radar imaging for
a two-dimensional scalar setting consisting of a two-layered back-
ground medium imaged via a multi-frequency, multi-monostatic
configuration. The objective is to reduce data for a subsurface
imaging problem without performance degradation by determin-
ing the optimal sensor locations in both spatial and frequency
domains. In this regard, we present a sampling method that effec-
tively extends the Maximal Projection on Minimum Eigenspace
(MPME) algorithm to tackle the semi-discrete inverse problem
associated with subsurface imaging. Compared to the state-of-
the-art technique, we significantly reduce the required samples
for imaging. Numerical and experimental results, the latter
concerning a buried water pipe, are reported to demonstrate the
effectiveness of the proposed sampling strategy. In particular,
for the considered cases, the proposed sampling method shows a
data reduction of more than 50% compared to other literature
sampling methods.

Index Terms—Subsurface Imaging, Ground Penetrating
Radars, Inverse Imaging, Sensor Selection.

I. INTRODUCTION

Subsurface radar imaging (SRI) is a mature research field
relevant to countless applications (for example, [1]–[7]). From
a mathematical point of view, imaging entails inverting a lin-
earized approximation of the scattering operator [8], [9], with
the achievable performance depending on the configuration
parameters [10] (measurement aperture [11], frequency band
[12] and background medium [13]), the noise level and the
employed inversion algorithm [14].

The procedure and the amount of data collection are crucial.
Indeed, too much data does not necessarily improve perfor-
mance and can waste resources. In contrast, inadequate data
can lead to aliasing artifacts that can be mistaken as actual
targets. Thus, it is of great interest to devise a sampling scheme
that demands as low data as possible to achieve the twin goals
of (i) reducing data acquisition time and storage resources
and (ii) speeding up imaging algorithms while controlling the
achievable performance.

This paper considers a two-dimensional (2D) scalar ge-
ometry and a two-layered background medium with a multi-
frequency, multi-monostatic configuration. This is a common
way to describe a slice of the subsurface imaging problem.

Determining the measurement positions and the frequencies
(number and arrangement) is a way to discretize the range
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of the scattering operator. Hence, a natural approach for
data sampling is to estimate the filtering introduced by the
scattering operator and then employ the Nyquist criterion
to sample the data. The band of the scattered data can be
estimated by resorting to the plane-wave expansion of the
relevant Green function kernel. For a monostatic configuration
(once evanescent waves are neglected), the field can be uni-
formly sampled at �umin/4, with �umin being the wavelength
corresponding to the highest employed frequency in the free-
space. This approach leads to a huge oversampling. A better
estimation is usually obtained by invoking stationary phase
arguments [15]–[17]. However, this approach still leads to
an unnecessarily high number of data, especially for near-
field configuration, large measurement aperture, and spatial
region to be imaged. Recent results concerning the so-called
warping [18]–[20] method consider the varying nature of the
field spatial band (i.e., the support of the scattered field Fourier
transformation with respect to the measurement location) and
have shown that the number of data can be dramatically
reduced by non-uniform sampling. However, frequencies are
still uniformly sampled, and spatial positions are determined
in correspondence with only the highest frequency and used
for all the employed frequencies.

The previous discussion highlights that there is still room
for data reduction. This requires a sampling criterion that
selects the frequencies and optimizes spatial positions for each
retained frequency. Unfortunately, analytical arguments at the
base of the warping method have yet to be developed for this
case.

Data sampling can be cast as a sensor selection problem
[21] to cope with this lack. However, sensor selection is an
NP-hard problem. To avoid exponential complexity, convex
optimization [22], and several greedy algorithms have been
proposed in the literature [23]–[25]. These procedures sequen-
tially enlarge the set of data according to some figure of merit
(related to the noise and the singular values of the incremental
model), which has to satisfy certain constraints accounting for
the propagation of noise from data to reconstructions. Among
them, Maximal Projection on Minimum Eigenspace (MPME)
[26] offers some advantages and hence has been selected
herein. However, MPME is conceived for matrix problems
(i.e., both data and unknowns have finite dimensions) with
the number of unknowns fixed in advance. Data selection is
achieved by running an iterative procedure, which needs a
singular value decomposition (SVD) computation at each step.
Therefore, it is not well suited to deal with the problem at
hand. Indeed, even though imaging entails solving a matrix
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problem since the unknowns belong to continuous function
space, the discretized matrix model is generally very large
in size (unless a priori information about the unknown scene
is available) and the MPME is computationally heavy and
resource demanding. This, for example, happens when pixel-
based functions are employed to represent the unknown.
Moreover, classical MPME stops when the number of selected
data exceeds the number of unknowns. Consequently, when the
number of unknowns is large, the required data is even larger,
which is inconvenient for imaging problems.

To avoid this drawback, we appropriately modify the MPME
algorithm:

1) The unknowns are projected on the “essential” singular
functions of the scattering operator (i.e., the ones that
mainly contribute), approximated by a finely discretized
matrix model. Hence, this drastically reduces the prob-
lem’s size and partially regularizes the related inverse
problem.

2) We propose a new stopping rule based on a lower bound
of the trace of the pseudoinverse of the incremental
model, which allows us to stop the iteration before the
number of data exceeds the unknowns.

These modifications avoid the SVD computation at each
iteration.

The rest of the paper is organized as follows. Section II
describes the problem and the related necessary notations.
Section III provides the context for this paper. To this end,
the sampling strategy and the classical MPME are briefly
recalled. In Section IV, the proposed method is introduced.
The reconstruction algorithms are briefly sketched in Section
V, whereas numerical and experimental results are presented
in Sections V and VI, respectively. In particular, experiments
refer to actual on-site data concerning a buried pipe. Finally,
the discussion and conclusions end the paper.

II. PROBLEM DESCRIPTION

Consider the two-dimensional (2D) scalar subsurface scat-
tering scenario shown in Fig. 1. Invariance is assumed along
the y direction, whereas the interface at z = 0 splits the entire
x � z plane into two half-spaces. The upper half (z > 0) is
free-space with dielectric permittivity ✏u = ✏0 and the lower
half (z  0) consists of a non-magnetic medium with dielectric
permittivity ✏l = ✏r✏0 (✏r > 0).

Targets are assumed to reside within the rectangular scatter-
ing domain SD = [xmin, xmax]⇥ [zmin, zmax], embedded in
the lower half-space, whereas scattered field data are collected
according to a multi-monostatic configuration over a line
segment, i.e., the observation domain (OD), along the x axis
varying from �xs to xs at a height zo > 0. The source emits a
y-polarized incident field with unit amplitude for frequencies
within the wavenumber band k0 2 ⌦ = [kmin, kmax], with
k0 being the wavenumber in free-space. The scattered field at
a given data point (xo, k0) 2 ⌃ = OD ⇥ ⌦ is expressed by
a first kind Fredholm integral equation, that, under the Born
approximation [27] reads as:

E
s(xo, k0) = jk

2
l
!µ0

Z

SD

G
2(xo,~r, k0)�(~r)d~r, (1)

SD�l

�u

x

z

OD

z = 0

Fig. 1: Schematic of the mono-static subsurface scattering con-
figuration. A scatterer with unknown position and permittivity
is shown in red within the scattering domain (SD), while the
green dots denote the measurement locations in the observation
domain (OD).

where E
s(·) is the scattered field, kl is the wavenumber in the

lower half-space, ! the angular frequency, µ0 the magnetic
permeability of freespace, �(~r) = ✏

t

r
(~r)� 1 is the target con-

trast function, with ✏
t

r
(~r) being the relative (with respect to the

lower half-space) target dielectric permittivity, and G(·) is the
half-space Green function approximated from the well-known
Weyl expansion [28]. Note that the Green function appears
squared because of the monostatic configuration considered.

Equation (1) can be conveniently represented in operator
notation as

A : � 2 L
2(SD) �! Es 2 CNp⇥Nf (⌃), (2)

where A is the semi-discrete linear integral operator in (1)
that links square integrable functions supported over SD to
complex matrices. In particular, CNp⇥Nf (⌃) means the set
of complex matrices obtained by sampling the scattered field
over a Np ⇥Nf grid belonging to ⌃, with Np and Nf being
the number of spatial positions and frequencies, respectively.

A. Over-sampled discrete operator

In order to proceed further, we need the complete discrete
counterpart of A. To this end, a uniform Np ⇥Nf grid of ⌃
is considered to sample the data, whereas SD is discretized
into N ⇥N bins. Accordingly, the following matrix model is
obtained as:

2
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ANf
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777775

| {z }
A
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i
=

2

666664

e1(x1:M , k01)

e2(x1:M , k02)
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eNf (x1:M , k0Nf )

3

777775

| {z }
e

+⌫, (3)

where Ai 2 CNp⇥N
2

is the scattering matrix constructed
for the free-space wavenumber k0i at the i-th frequency and
ei(x1:Np , k0i) 2 CNp⇥1 is the corresponding scattered field
measurements at Np locations on OD and ⌫ 2 CM⇥1 is
complex additive white Gaussian noise (AWGN).
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In particular, the mn
th entry of the scattering matrix Ai is

given by

A
mn

i
= jk

2
li
!iµ0G

2(xom,~rn, k0i)�x�z, (4)

where xom denotes the observation points located at quota
zo > 0, ~rn = (xn, zn) are the grid points within SD and
�x, �z the uniform discretization steps. The single-frequency
scattering matrices and the scattered field measurements are
stacked to construct the matrix operator A 2 CM⇥N

2

and
its corresponding data vector e 2 CM⇥1, with M = NpNf ,
and x 2 CN

2⇥1 corresponds to the discretized version of the
contrast �.

At this juncture, ⌃ and SD are very finely sampled, which
is done for two reasons. First, dense sampling of SD is
achieved so that A can be considered a good approximation
of the scattering operator in (2). Secondly, a fine initial spatio-
frequency grid mimics the continuous set ⌃ among which
optimum data positions have to be selected using sensor
selection procedure. In what will follow, the model in (3) is
addressed as the over-sampled matrix scattering operator.

III. BRIEF DESCRIPTION OF MPME ALGORITHM

Optimizing the spatial and frequency sampling can be
conveniently attacked from a more general perspective offered
by the sensors selection literature [21], [29]. In principle, all
possible measurement arrangements must be checked against
a suitable metric that considers noise propagation in the re-
constructions. This is practically unfeasible. To overcome this
drawback, several greedy methods and heuristics approaches
have been developed [22]–[24]. Among the greedy methods
for sensors’ selection, the MPME offers the best trade-off
between complexity and performance [26]. Hence, it has been
selected and adapted for the subsurface imaging problem.

Consider a linear inverse problem described by the ma-
trix operator B 2 CM⇥N

2

, N
2 is fixed a priori whereas

M � N
2. MPME returns a row “pruned” matrix operator

Bopt = CB 2 CMopt⇥N
2

, C 2 RMopt⇥M being the matrix
extracting the rows of B corresponding to the selected data,
such that the minimum non-zero singular value is greater
than a chosen threshold �. The number of data is reduced
since N

2  Mopt  M . Also, the noise propagation during
inversion is controlled by � that can be chosen according to
worst case error variance to be tolerable in the reconstructions.

The selection of the rows is achieved one at time. Assume
that k�1 rows have been already selected and denote Ck�1 2
Rk�1⇥M and Bk�1 = Ck�1B as the relative selection matrix
and pruned model, respectively. The sensor selection using
MPME [26] procedure has two parts (cycles) for selecting the
the k-th row, among the remaining M � k � 1 rows:

1) first cycle: when k < N
2, the k-th row is determined as

the one which has the largest projection onto the kernel
space of Bk�1;

2) second cycle: when k � N
2, the k-th row is determined

as the one which has the largest projection on the
subspace corresponding to the minimum singular value
�N2(Bk�1).

The procedure arrests when �
2
N
(Bk) � �, with the k-th

current iteration representing Mopt > N
2.

IV. PROPOSED APPROACH

In this section we provide the details on modification of the
MPME procedure to the subsurface imaging scenario.

The standard MPME procedure assumes the number of mea-
surements greater than the number of unknowns (M > N

2).
However, unless special cases, for which it is a priory known
that the unknown belongs to a finite dimensional subspace,
the number of unknowns in subsurface imaging is generally
large. As a consequence, the selection procedure requires a
high computational cost and, what is more, the condition
Mopt > N

2 can be hardly fulfilled. To cope with these
drawbacks, in the sequel we address the problem of reducing
the dimension of the scattering matrix and to set a new
stopping rule for the MPME procedure.

A. Dimensionality reduction of the unknown space

Assume that no a priory information about the unknown
is available. In order to select a proper finite dimensional
representation for the unknown, three factors must be taken
into account: (i) the mathematical features of the relevant
scattering operator which in turn reflect the geometrical pa-
rameters of the problem (i.e., SD and ⌃ sizes and relative
arrangement and background medium properties), (ii) the type
of basis functions used for transforming A into A, and (iii)
the degree of accuracy (approximation error) with which A is
approximated to A. Pixel-wise functions are usually employed
because quadrature implementation to achieve discretization
is very easy. However, it is known that a subset of the
first singular functions of A is “extremal” [30], i.e., given
the number of basis functions, the approximation error for
the range of A is minimum among all finite dimensional
approximations of the same finite size.

Previous arguments suggests to employ the singular vectors
of the over-sampled operator A to reduce the dimensionality
of the unknown. To this end, the SVD of A, is first computed.
Then, the model to be used for sensors’ selection is obtained
as:

Â� = AW�, (5)

where Â 2 CM⇥⇣ , W = [w1,w2, · · · ,w⇣ ] 2 CN
2⇥⇣ , with

{wi}⇣i=1 being the first ⇣ right singular column vectors of A
and � are the expansion coefficients of x, that is � = WHx.
Note that the very fine grid used to sample SD is only needed
to let the singular vectors in W be a good approximation of
those of A. Here, the key point is the selection of the number
of singular functions to be retained, that is ⇣. In some cases,
the singular values exhibit a step-like behaviour and hence ⇣

can be naturally chosen in correspondence of the “knee” [31],
[32]. Unfortunately, this does not hold true for the problem at
hand. Hence, in order to select ⇣, the following simple strategy
is considered:

⇣ = min

 
m :

P
m

i=1 |�i(A)|2
P

N2

i=1 |�i(A)|2
� ↵

!
, (6)

where 0 < ↵ < 1 sets the error committed by replacing A
with Â. In practice, it sufficient to set ↵ below but close to 1 to
have ⇣ much lower than N

2. This is because A approximates
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a compact continuous operator and hence most of its singular
value cluster to zero. Indeed, provided to keep ↵ close to
1, the value of ↵ does not effect the sensors’ selection very
much. This is because Eq. (6) retains even the projections of
the unknown that cannot be actually determined when noise
enters the picture. This statement essentially describes the ill-
posedness of the inverse problem related to radar imaging.
Other rules, different from Eq. (6), can be employed to retain
a smaller number of projections. In this way the inverse prob-
lem is implicitly regularized and the problem dimensionality
furthermore reduced although the level of noise is, in general,
required. Since the latter is not necessarily available, we prefer
to employ Eq. (6).

B. Stopping rule for the selection procedure

A significant reduction of the problem’s dimension is ob-
tained by Eq. (6). However, the retained singular values, i.e.,
{�i(A)}⇣

i=1, practically capture most of the singular spectrum
of A and hence have a very large amplitude dynamic. As
a consequence, ⇣ is still relatively large and Â is highly
ill-conditioned. This entails that entering the second cycle
(see Section III) of the MPME is not convenient. Indeed,
a large number of measurement (Mopt >> ⇣) would be
required to enter the second MPME cycle and to raise the
minimum singular value so as to have stable inversions. This
is clearly unfeasible in most cases, particularly for the one at
hand. Hence, for sensors’ selection, we consider only the first
cycle of the MPME procedure. This also has the remarkable
advantage of significantly reducing the computational burden
since multiple SVD computations are no longer required to
get the maximal projection on minimum eigenspace. On the
other side, the usual MPME stopping rule cannot be employed
since it takes place during the second cycle.

Hence, a stopping rule must be set to stop the first cycle
at some point. To this end, unless there are some system
constraints that fix the number of data points a priory, it is
natural to take into account the effect of noise.

Say Âk 2 Ck⇥⇣ the scattering matrix collecting the first
selected k < ⇣ rows of Â and ⌘

2
0 the variance of the AWGN

that corrupts the data. After a least square solution procedure
is employed, the norm of the noise that propagates on the
reconstructions is given by

⌘
2
0

kX

n=1

1

�2
n
(Âk)

= ⌘
2
0 MFk, (7)

with

MFk =
kX

n=1

1

�2
n
(Âk)

. (8)

acting as a noise magnification factor (MF). Note that Eq. (7)
often represents the mean square error (MSE). Here, however,
this is not the case since, besides the effect of noise, further
error in the reconstruction appears because Âk is a sub-
matrix of the filtered model Â and does not have full column
rank. A natural way to set the stopping rule is to arrest the
selection procedure as soon as the noise contribution exceeds
a tolerable level. This, once again requires to know the level

of noise that corrupts data. As remarked above, herein we are
assuming unknown the noise features (i.e., ⌘20). Nonetheless, it
is possible to estimate the noise variance, but that adds an extra
burden on the overall imaging procedure. Besides, information
about the unknown targets is also required since a given level
of noise in the reconstructions can be tolerated for certain
targets and cannot be for other types of targets. Since no
information about noise and type of target is exploited in our
arguments, we choose to set the stopping rule by considering
the magnification factor only.

Computing Eq. (8) in principle requires to evaluate the SVD
of Âk for each iteration of the selection procedure. This is
computationally heavy, especially as the procedure progresses
and k increases. We note that:

MFk = tr[(ÂH

k
Âk)

�1], (9)

where tr[·] is the trace operator. Therefore, what we need is
a quick scheme to compute the inverse matrices in Eq. (9)
as the selection proceeds. Since ÂH

k
Âk is a rank-one per-

turbation of ÂH

k�1Âk�1 for each k, one could think to use
the Sherman-Morrison-Woodbury (SMW) formulas [33] to
compute (ÂH

k
Âk)�1 starting from (ÂH

k�1Âk�1)�1. So that
only the (ÂH

1 Â1)�1 is to be computed and the needed
inverse matrices can be iteratively updated by using the SMW
formulas. Unfortunately, this appealing strategy cannot be
followed here because ÂH

k
Âk are singular. Therefore, we are

content to find a lower bound for MFk. In particular, it can
be easily shown that:

MFk � k
P

k

n=1 �
2
n
(Âk)

=
k

tr[ÂH

k
Âk]

= M̃F k. (10)

Hence, the stopping rule is set by considering M̃F k.
It is remarked that, selecting the number of data kopt as
M̃F kopt � �, cannot be considered as good option since this
is somehow equivalent to know the tolerable level of noise in
the reconstructions, as discussed above.

Instead, we observe that as k increases the singular val-
ues tend to cluster towards zero. This is because Âk tends
to approximate Â and the latter arises from the compact
operator A. Therefore, while k increases, at some point the
denominator in Eq. (10) changes very slowly and M̃F k starts
growing linearly with k. Accordingly, we set the stopping
rule when M̃F k starts to exhibit such a behaviour. Say kopt

the corresponding iteration and denote as Aopt = Âkopt the
corresponding scattering matrix operator. Note that this is
equivalent to stopping the selection procedure as soon as a
further measurement leads to a negligible “further” singular
value and hence to an irrelevant contribution of unknown
projection on the corresponding singular vector.

Eventually, the measurement selection procedure consists of
the following step:

1) Build the over-sampled model A according to the pa-
rameters of the problem, compute its SVD and then
obtain the reduced model Â using the criterion in
Eq. (6).

2) Select a row of Â in every iteration as per the first
cycle of the MPME method. In details, let Âk�1 the
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matrix formed by the first (k � 1) selected rows of
Â. The selected rows are orthonormalized by Gram-
Schmidt procedure and arranged to form the columns of
the matrix Rk�1 2 C⇣⇥k�1, then the projector onto the
null space of Âk�1 is built as Pk�1 = I�Rk�1RH

k�1,
with I 2 C⇣⇥⇣ being the identity matrix.

3) The k-th row is then selected as
maxi2I/Sk�1

kPk�1aik22/kaik2, where ai is i
th

row of Â, I and Sk�1 denotes the indices of all the
rows and selected rows respectively.

4) Add the selected row and update Âk and Sk.
5) Compute M̃F k and check its behaviour.
6) If M̃F k grows linearly stop selection otherwise go back

to step 2.

V. INVERSION

Once the selection procedure is completed, we end up with
the reduced (in size) inverse scattering matrix problem:

Aopt � = e+ ⌫ = ẽ. (11)

There are various inversion methods, such as back-
propagation or migration method [28], [34] or inverse filtering
[14], that can be employed to find �. In this paper we explore
the reconstructions provided by two methods taken from both
classes.

The first one is a truncated singular value decomposition
(TSVD). The optimized matrix expressed in terms of its SVD
is given by Aopt =

PMopt

i=1 ui�ivH

i
, where {ui}

Mopt

i=1 , {vi}⇣i=1
are the left and right singular vectors respectively, and
{�i}

Mopt

i=1 the singular values arranged in descending order.
The solution x̂ is obtained as:

�
TSV D

=
LX

i=1

⇣uH

i
ẽ

�i

⌘
vi. (12)

Note that in general L  Mopt since the problem in general
still requires to be regularized.

The alternate approach to inverse filtering is using back-
propagation algorithm. Here, this is achieved by simply ap-
proximating the inverse by the adjoint operator so that:

�
BP

= AH

opt
ẽ =

MoptX

i=1

�iu
H

i
ẽvi. (13)

The adjoint inversion method simply obtains the recon-
struction of the subsurface region by backpropagating the
scattered field according to the background Green function.
The backpropagation algorithm is very robust against noise.
This can be understood by considering the SVD expansion of
AH

opt
and noting that Eq. (13) can written as Eq. (12), but with

the singular values appearing in the numerator rather than in
the denominator. Hence, stability against noise is implicitly
obtained. There is also no need for calculation of the singular
values as the solution is obtained just by the multiplication of
the adjoint operator. On the other side, �

BP
tends to be over-

regularized and hence the achievable resolution is generally
lower than that provided by TSVD, unless the singular values
exhibit a step-like behaviour [11].

Finally, once � is retrieved (by TSVD or adjoint inversion)
the contrast function is retrieved as:

xl = W�
l

(14)

with l = TSV D, BP .
In the next sections, the proposed method is applied for

object detection using the measurements from:
1) Synthetic data with the subsurface region consisting of

point like scatterers.
2) Experimental data with a water pipeline buried in the

subsurface region.

VI. NUMERICAL RESULTS

In this section, we consider a synthetic scattering scenario to
check the proposed method for subsurface imaging. By refer-
ring to the scattering scenario depicted in Fig. 1, we consider
the upper half-space as free-space, and the lower has a relative
permittivity of 9 with the separation interface at z = 0. The
spatial domain within which targets are assumed to reside is
set as SD = [�1, 1] m⇥ [�2.5,�0.5] m, whereas the sensors
are placed at the measurement line OD = [�1.5, 1.5] m

placed at 0.1 m from the interface in the upper half-space. The
frequency band of the ground penetrating radar is 300 � 800
MHz.

-1.5 -1 -0.5 0 0.5 1 1.5
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8
 (

H
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Fig. 2: Optimal spatial-frequency sensor locations (blue dots)
obtained from a fine grid consisting of 6120 possible sam-
pling points. The green dash and orange crosses denote the
frequencies chosen and discarded by the algorithm, respec-
tively. Red dots refer to the spatial positions returned by the
warping method and that need to be repeated for each Nfmin

frequencies.

To get the over-sampled matrix model, SD is discretized
into 64 ⇥ 64 pixels, and OD is uniformly sampled with a
fine sampling rate of �umin/15, with �umin = 0.375 m. The
frequency band is sampled uniformly with a 10 MHz gap. As
a result we have, N2 = 4096, Np = 120 and Nf = 51. The
size of the over-sampled scattering matrix A is 6120⇥ 4096.
The minimum number of frequencies required for subsurface
imaging is given by Nfmin = n(�k�z/⇡) = 21, where
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�k = kmax � kmin, �z = zmax � zmin and n is the
refractive index of the lower half-space background medium. It
is worth noting that the total number of considered frequencies,
Nf , is much larger than Nfmin. The frequency band is also
finely sampled resulting in the scattering matrix A with fine
discretization in both spatio-frequency domain. Therefore such
a fine grid in both spatio-frequency domain approximates the
continuous scattering operator which can be further used to run
the sensor selection algorithm. Finally, in all the simulations
we set ↵ = 0.999.
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Fig. 3: Comparison of the normalized singular spectrum of
the over-sampled operator, optimal matrix returned by the
proposed method (with 224 and 483 measurements) and the
analytical warping approach (with 483 measurements). The
singular spectrum of the optimal matrix approximates the over-
sampled operator better compared to the analytical warping
method for the same number of measurements.

A. Warping sampling vs proposed approach

We start the analysis by comparing the proposed approach
with the warping sampling method, which is the method in
the literature prescribing lesser data collection. In particular,
we compare our proposed method of obtaining optimal sensor
locations in both frequency and spatial domain simultaneously
with the analytical solution from [19]. For the described simu-
lation setting, the optimal spatio-frequency sampling locations
are shown in Fig. 2. The green dash and orange crosses
denotes the frequencies chosen and discarded, respectively, by
the algorithm. A total of 224 measurement locations in the
spatio-frequency domain are picked by the proposed method.
Instead, the number of spatial sampling locations obtained at
the highest frequency using the analytical warping method is
23, which are shown as ‘red’ dots at the top of Fig. 2. The same
locations need to be repeated for all Nfmin = 21 frequencies
sampled uniformly in the bandwidth. Therefore, the warping
method requires a total of 483 measurements. Hence, the pro-
posed method reduces more than 50% of the measurements by
optimizing the sensor locations in both spatio-frequency grids.
In view of this data reduction, it is necessary to appreciate
how the determined sensors’ arrangements affect the imaging
problem. Here, we start by analysing the normalized singular
value behaviour shown in Fig. 3 of the over-sampled matrix A,

optimal matrix Aopt and the matrix generated by the sensor
locations obtained from warping sampling method. It is seen
that the singular values corresponding to Aopt overlap very
well to the first part of the singular value behaviour of the over-
sampled matrix. By contrast, the singular values corresponding
to the warping method are close to the singular values of
A for a longer part. However, at some point the singular
values exhibit a more quickly decay, meaning that the sensor
placement arrangement provided by the warping method is
not optimal. To check if the proposed method works better
while increasing the number of sensors (which corresponds to
relaxing the constraint onto the magnification factor) we re-
run the same case by arresting the selection procedure when
the number of measurements equals the one required by the
warping method. It is seen from Fig. 3 that the optimal matrix
with 483 measurements has a better singular value behaviour
compared to warping method and approximate very well those
of A.

We conclude that the proposed procedure realizes a better
selection of the measurement points than the warping method,
and hence outperforms other sampling methods in the litera-
ture that warping has been shown superior to.

B. Reconstruction Examples

We turn to address some reconstruction examples. To this
end, we consider three point-like scatterers located in the lower
half-space at (�0.5,�1.5), (0,�2) and (0.5,�1.5), respec-
tively. To set the benchmark for backpropagation and TSVD
reconstructions obtained by employing the data set returned
by our method, we first reconstruct the three point scatterers
with the entire data-set, that is, inverting A. Additionally,
we investigate the imaging of an extended target, a metallic
cylindrical object with an 8-inch (⇡ 20cm) diameter placed at
(0,�1.4). This comprehensive analysis of different scattering
scenarios allows us to evaluate and compare the performance
and effectiveness of our proposed approach.

Figs. 4a and 4b show the reconstruction of point scatterers
(contrast) with noiseless measurements using backpropagation
and TSVD methods, respectively. Figs. 4c and 4d are recon-
structions for noisy measurements. The noise added to corrupt
the measurements is complex additive white gaussian (AWGN)
with 15 dB SNR. As anticipated, TSVD returns a sharper
reconstruction than backpropgation. However, while the latter
weakly depends on the noise, TSVD experiences a loss of
resolution as the noise grows up due to regularization.

The reconstruction of the point scatterers using both the
sampling schemes and noisy data is shown in Fig. 5. For
backpropagation, the reconstructions obtained by both sam-
pling schemes show a loss of resolution. This is expected as the
regularization is very strong and is implicitly obtained by win-
dowing of the singular values themselves. The reconstructions
provided by the TSVD procedure (see Fig. 5c and 5d), has
a tighter resolution. However, the proposed sampling method
is definitely more convenient than warping since the required
data is much lesser.

We simulate the extended target utilizing the gprMax soft-
ware [35]. To achieve the subsurface imaging, we gather
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(d) TSVD - 15dB noise

Fig. 4: Normalized contrast of point scatterers’ reconstruction
inverting the over-sampled operator.
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Fig. 5: Normalized contrast of point scatterers’ reconstruction
from (a),(b) 483 locations obtained from analytical warping
method; (c),(d) 224 locations provided by our method. Data
are noisy with SNR = 15dB.

scattered field measurements at the optimal sampling loca-
tions, as illustrated in Fig. 2. The radargram, presented in
Fig. 6, showcases both the raw and pre-processed (time-
gated) scattered field measurements. Finally, Fig. 7 shows the
reconstruction of the extended target.

(a) Raw measurements (b) Time-gated measurements

Fig. 6: The scattered field measured at optimal locations
(a) Raw measurements which includes the clutters from the
GPR system and ground interface reflections, (b) Time gated
measurements which removes the initial clutters. Colorbar
indicates the field strength in V/m.

(a) our approach (b) warping method

Fig. 7: Comparison of reconstruction of extended traget with a
total of 224 vs 483 scattered field measurements. The imaging
is achieved using TSVD method. The green disk indicated the
position of the actual target. The measurements are corrupted
15dB SNR noise.

VII. EXPERIMENTAL RESULTS

This Section discusses the subsurface imaging in a real
world setting employing the optimised sampling locations.

The experimental measurement setting is shown in Fig. 8.
It is known that a water pipeline exists under the pathway
leading to the fountain. In the pathway the red horizontal
lines indicate the measurement domain OD. In particular, the
measurements are taken over eleven different lines spread over
a length of 4m. The observation domain for each measurement
line is 2.54m. The GPR system used for the scattered field
measurements emits a Ricker pulse centered at 200 MHz and
the data is collected with a spatial step of 0.01m.

The scattered field measurements for one of the measure-
ment line (line 4) is shown in the radargram reported in Fig. 9.
Raw measurements needs to be pre-processed to remove
clutter from the GPR system and reflections from the ground
interface. The randomness and roughness of the interface
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Fig. 8: Picture of the measurement site. It is the passage to
the water fountain marked by an “F” in the picture.

will have a minor effect on the scattering if the transmitted
wavelength is relatively large. As the ground interface along
the pathway changes slowly over the scanning area without
any sudden dips and peaks, we see in Fig. 9a nearly constant
strips of reflected signal. The pre-processed measurements are
shown in Fig. 9b after clutter rejection. The literature has
various methods for ground clutter rejection such as mean
subtraction method [36]–[38], subspace projection method
[39], etc. In this paper, we use entropy based time gating
method [40], which avoids to partially filter the already weak
signals coming from buried targets, as it happens for mean
subtraction and subspace methods. More in detail, the entropy
time gating measures the similarity of the reflected signal at
each time trace over the length of measurement domain. The
reflected signal is classified as clutter for a very high similarity
measure. A time gating window is multiplied with each time
trace of the measured signal such that the ground interface and
antenna’s internal reflections are eliminated.

The radargram in Fig. 9b shows that the scattered signals
are mainly due to a shallow buried reinforcement grid and a
pipeline supplying water to the fountain (indicated as yellow
rectangle), which is almost in the centre of the pathway. The
post processed data is used as the ground truth which provides
information about the subsurface scatterer. The time traces
are Fourier transformed for imaging purposes and frequencies
within the band 100�725 MHz are retained with a frequency
step of 25 MHz. Moreover, scene reconstruction is pursued by
a slice approach: for each measurement line a 2D slice of the
scene is obtained. Then, the slices are interpolated and shown
as 3D isosurface plots. For each slice, SD = 2m ⇥ 1.5m
is considered and discretized into 48 ⇥ 48 pixels. The over-
sampled model hence results 6604 ⇥ 2304 in size, with
Np = 254, Nf = 26 and N

2 = 2304.
The optimal measurement grid returned by the proposed

method is shown in Fig. 10. In particular, the measurement
grid was obtained by assuming for the lower half-space a
relative dielectric permittivity of 3.5. The number of selected
measurement points are only 210, which are picked out of
6604 possible set. The reduction of data storage is even more
amazing if all the 11 slices are considered, 2300 scattered field
measurements instead of 72644.

We now pass to consider the reconstructions that can be
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(b) Time-gated measurements

Fig. 9: The scattered field measured at 254 locations dis-
tributed uniformly on line 4; (a) Raw measurements which
includes the clutters from the GPR system and ground inter-
face reflections, (b) Time gated measurements which removes
the initial clutters. The scattered field from the pipeline is with
in the dotted yellow box. Colorbar indicates the field strength
in V/m
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Fig. 10: Optimal spatio-frequency samples for the exper-
imental setup. The total number of selected measurement
locations are 210 out of 6604. Green mark indicates the se-
lected frequencies whereas the red one indicates the discarded
frequencies.

obtained by exploiting the selected measurements. In order
to set the benchmark, we first perform the reconstruction
by inverting the over-sampled model. The corresponding 3D
reconstructions are reported in Fig. 11 (left). In particular, note
that, as can be deduced from Fig. 9, there are two main buried
targets: the shallow grid and the more deeply buried pipe.
Therefore, for a clearer displaying the overall buried region
is split up into two parts, the region very close to interface
and the deeper subsurface part. While both bakcpropagation
and TSVD allows to clearly identify the targets, as expected,
the backpropagation has a lower resolution. This can be much
better seen by looking at the reconstruction of the grid.

The reconstructions obtained by exploiting the optimal
measurements shown in Fig. 10 are reported in Fig. 11 (right).
While general considerations hold true also here, what really
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matters is that the quality of reconstructions are comparable to
ones in Fig. 11 (left). This definitely show the proposed data
selection procedure works effectively.

Subsurface imaging over-sample vs optimal sample

(a) BP - full measurements (b) BP - optimal measurements

(c) BP - full measurements (d) BP - optimal measurements

(e) TSVD - full measurements (f) TSVD - optimal measurements

(g) TSVD - full measurements (h) TSVD - optimal measurements

Fig. 11: Comparison of reconstruction of subsurface scatterers
with a total of 72644 vs 2310 scattered field measurements.
Figures on the left column are reconstitution with full data
whereas on right shows reconstruction with optimal data. (a)-
(d) shows the reconstruction using BP method, and (e)-(h)
shows the reconstruction using TSVD method. The subsurface
region is split in two parts to visualize the reinforcement grid
and pipe separately.

VIII. DISCUSSION AND CONCLUSIONS

In this paper, we dealt with a subsurface imaging problem
under a 2D scalar geometry and a multi-monostatic/multi-
frequency configuration. This simplified problem description,
as is commonly done, has been exploited to get slice re-
constructions of the scattering scene which has been then
interpolated to provide a 3D view. Reconstructions have been
obtained by employing a backpropagation algorithm and a
TSVD inversion, respectively. The difference between the two
algorithms in terms of the achievable performance and the
effect of noise has been highlighted as well. The latter, how-
ever, can be considered as a by side result of this study, which
instead was mainly concerned with devising a data sampling
scheme, both in spatial and frequency domain. Indeed, the aim
was to progress towards a subsurface imaging which requires

as low as possible data so to save the collection time and the
needed storage resources.

The proposed sampling method is inspired by the MPME
algorithm (took from sensors’ selection literature) which has
been properly generalized to deal with the semi-discrete
inverse problem related to subsurface imaging. The latter
dramatically reduces the computational burden of the standard
MPME procedure. Note that no apriori information about
the target, but it resides within a given spatial domain SD
is assumed to achieve such a result. However, the proposed
approach can further benefit from the apriori information.
For example, suppose it is known that the contrast function
belongs to a less general function set. In that case, the proposed
algorithm can be applied to the composition between the
scattering operator and the orthogonal projector onto the set
the contrast is known to belong. This is expected to further
reduce the number of data required to represent any field
scattered by such a particular type of target.

Contrary to expectations, no symmetric data arrangement is
obtained for numerical and experimental examples. Like the
standard MPME, the proposed method is a greedy approach
that, in order to avoid the impractical computational cost due
to exhaustive searching, determines the sensing locations one
by one. Accordingly, we do not know the contribution of each
sensor location for the final sensor configuration; therefore,
such a strategy cannot guarantee the optimal solution. More-
over, at the k-th iteration, the selected row is the one that is
more orthogonal to the subspace spanned by rows retained in
the previous (k�1) iterations. Basically, the algorithm aims to
estimate an ensemble of rows that approximates an orthogonal
base to represent data. In order to guarantee that what really
matters is the reciprocal distance between the points, accord-
ingly, it can happen that the symmetric point is not the best
choice. The final data arrangement is affected by the sensor
location chosen at the first iteration and their total number due
to the stopping rule. In particular, related to the last factor,
with more and more measurements (or picking more rows),
it becomes hard to maintain or approximate the orthogonality
between each selected row. Accordingly, different points in
frequency and spatial domain can be projected in the same
way onto the subspace spanned by previously selected rows
resulting in the loss of symmetry. However, what matters here
is to minimize the number of data compared to the literature
approaches and, the proposed approach addresses such a task
very well. In fact, it was shown that the number of data
can be significantly reduced as compared to data sampling
criteria commonly employed, including the recently introduced
warping method, without degradation of the performance in
the reconstructions. Numerical and experimental data has been
employed to validate our approach.
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