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Abstract—We review recent results in the area of fault diagno-
sis of phased antenna arrays. These results have distinguishing
features that set them apart from related work, namely the use
of a single, fixed measurement location, and the optimization
of the excitations of the antenna elements of the array. We
start with the relatively simple scenario of ignoring inter-element
mutual coupling, and show how the element excitations can be
optimized to reduce the mutual coherence of the sensing matrix.
This leads to successful fault diagnosis with a reduced number
of measurements. We then generalize this idea in two directions.
In the first, we explore applications in the frequency domain by
demonstrating online fault diagnosis in multi-carrier precoding
systems. Here, a portion of the spectrum is used for fault
diagnosis while the remaining continues to be used for wireless
communication. In the second, we upgrade our technique for the
case when inter-element mutual coupling is significant. By using
two popular models that incorporate mutual coupling effects,
we demonstrate efficient fault diagnosis also in this scenario.
We expect these techniques to greatly simplify the task of fault
diagnosis in modern wireless communication systems.

I. INTRODUCTION

Phased antenna arrays are at the heart of modern wireless
communication systems. They offer various functionalities
such as beam forming and servicing multiple users purely by
electronic control. Therefore, it is essential to come up with
simple and efficient techniques to assess the health of these
systems in a way that minimizes their downtime. In this work,
we highlight recent advances in this area.

Most phased arrays operate in the linear regime, in that the
relation between the measured electromagnetic field and the
excitation current (or voltage) is linear. Further, a common
(and reasonable) assumption is that the number of faults is
very small as compared to the total number of elements.
Combining these two ideas, i.e., that of a linear system with
a sparse number of faults, it is natural to consider ideas from
compressive sensing to address the problem of fault diagno-
sis [1]. However, compressive sensing requires the sensing
matrix to satisfy certain mathematical properties, such as the
restrictive isometry property (RIP), which is difficult to satisfy
in the case of sensing matrices derived from phased array
experiments. Indeed, early work tried to obtain “designer”
sensing matrices by carefully choosing the receiver positions
in space but keeping the array excitations as deterministic [2].

To make the measurement setup simpler, the next set of
innovations kept the receiver location to be fixed in space while
allowing the array excitations to be random [3]. However,
these works did not optimize the sensing matrices to lower
the number of required measurements. Instead of focussing

on the RIP properties of the sensing matrix, parallel work
explored the bounds on the mutual coherence of the sensing
matrix to deliver performance guarantees on the compressive
sensing problem [4].

We synthesized the above ideas into a new proposal for
fault diagnosis in our first work, where a single fixed receiver
collected the fields being radiated by an array with “designer”
excitations [5]. Specifically, the excitations were optimized
to reduce the mutual coherence of the sensing matrix, which
directly led to a reduction in the number of measurements.

The above work focussed on measurements at a single
frequency. However, most modern wireless communications
systems such as massive MIMO systems use precoding tech-
niques within a band of frequencies to achieve spatial mul-
tiplexing capabilities. If a part of the user-allocated band
can be periodically used for fault diagnosis, it opens up
the possibility of online fault diagnosis. In fact, each sub-
carrier frequency can be used as an independent measurement,
thereby parallelizing the process of fault diagnosis. These ideas
were formalized into a set of techniques that can be used by
such multi-carrier precoding systems with different underlying
precoding architectures [6].

Most contemporary work has ignored the presence of elec-
tromagnetic mutual coupling between the elements of the
array. Since the relation between field measurements and
element excitations is still linear, adapting the fault detection
technique simply requires finding the correct system-matrix
characterization. We successfully demonstrated fault diagnosis
by using any of the two popular mutual coupling modeling
approaches, namely the average embedded element pattern and
a port-level coupling matrix approach [7]. The rest of the paper
lays out the problem formalism and the solution strategies
employed in the works discussed earlier [5]–[7].

II. METHODS

A. Problem formulation

A measurement yj(θ) at a location θ can be expressed
as a linear combination of the antenna element excitations,
xi, weighed by a function characterizing the electromagnetic
environment, αi(θ), and its fault state ρi (= 0 if faulty,
= 1 if working correctly), i.e. yj(θ) =

∑n
i=1 αi(θ)ρixi =

αT (ρ · x) = xT (ρ · α), where n is the number of elements
in the array, and (·) signifies element wise multiplication. If
the measurement location is kept fixed, and the excitations are
varied for each measurement, then the m-length measurement
vector, y, can be expressed as: y = X(ρ ·α), where each row
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of the matrix X corresponds to the element excitations for that
measurement.

Assuming sparsity in the number of faults, and subtracting
the measurements of the faulty array from that of a (reference)
healthy array (i.e. ρ = 1, all ones) with the same excitations
to obtain a differential set of measurements:

ỹ = Xα · (1− ρ) = Xz (1)

where z is a sparse vector, and a clear connection to the
compressive sensing solution approach can be made.

B. Problem solution

Equation 1 forms the core approach of problem formulation
for the works discussed in this paper. In particular,

1) In the vanilla approach [5], α comes from the array
factor approach.

2) In the frequency domain approach [6], α comes as
before (for each frequency) and several measurements
are taken at various carrier frequencies to build a mea-
surement scheme.

3) In the mutual coupling approach [7], α comes from
either the average embedded element pattern approach
[8] or the coupling matrix approach [9].

The central theme in these approaches is the optimization of
the sensing matrix, X , to reduce the number of measurements
required. In particular, we reduce the mutual coherence of
the matrix, a quantity bounded between the Welch bound
and unity; doing so directly translates to a reduction in
the number of measurements [10]. An alternating projection
algorithm helps attain this optimized matrix [11]. Having
done so, the optimization problem to be solved is cast as
min
z

∥ỹ − Xz∥2 + λ∥z∥p,, where λ is a hyperparameter that
is tuned empirically, and p ∈ (0, 1) is the quasi-norm index,
known to better promote sparse solutions than the traditional
1−norm. The above problem is solved by means of an
iteratively reweighted l1 (IRL1) minimization algorithm [12].

III. RESULTS

Results for each of the cases discussed so far are summa-
rized below:

1) In the vanilla single-frequency case when ignoring mu-
tual coupling: When considering a 100-element linear
array, we find that the number of measurements required
to correctly identify the 1,5,10, and 15 faults are 9, 25,
63, and 79, respectively. We contrast this with the case
where no optimization is done on the sensing matrix and
the element excitations are chosen at random. Here we
find that the number of measurements for 1 and 5 faults
are 9 and 59, respectively, whereas the number exceeds
the array size for 10 and 15 faults (and is therefore not
practical).

2) In the case considering multiple frequencies: When con-
sidering a 64-element square array with half wavelength
spacing, we find that the rate of successful recover to
exceed 90% when considering up to 3 faults with 12

sub-carriers (with SNR 15 dB) and a fully connected
RF precoder. When the sensing matrix is not optimized,
this rate drops down to 70 % at 3 faults, all measured
in a monte-carlo sense.

3) In the case incorporating mutual coupling: When con-
sidering a 49-element square array and 5 faults, we find
that the performance of an algorithm that ignores mutual
coupling versus one that doesn’t, is comparable only
with an inter-element spacing larger than 1.9λ. At lower
spacings, we find that that the approach that ignores
mutual coupling can take 50% or higher number of
measurements. In fact, at the smallest spacing studied,
0.45λ, the approach ignoring mutual coupling fails to
detect faults at all, pointing towards the importance of
incorporating mutual coupling in fault diagnosis.

Other detailed results are available in the references. The
results conclusively show the power of the paradigm of
choosing a single measurement location and optimizing the
element excitations for efficient fault diagnosis.
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