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ABSTRACT
Wepresent techniques for solving the problemof detecting element
failures in phased array antennas by using a combination of a sin-
gle fixed probe and an optimization of element excitations using
principles derived from compressive sensing. This departs signifi-
cantly from conventional techniques where the excitations are held
constant and probes are instead moved spatially to collect mea-
surements. Doing so helps us to accomplish two objectives with
regards to successful fault diagnosis. First, we achieve a reduction
in the number of measurements required compared to the state
of the art; this reduction is particularly significant in the case of
high-noise measurements where existing methods fail. Second, our
techniques solve the problem of fault diagnosis in the case of real
valued measurements (i.e. intensity measurement along with phase
detection instead of phase measurement), which leads to simpler
measurement hardware.Weuse nonconvex optimization algorithms
to generate numerical results in support of our conclusions.
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1. Introduction

Phased array antennas are widely used in wireless communications, remote sensing, and
radar applications [1]. Future deployments of telecommunications [2] and automotive
radars [3] will extensively rely on the proper functioning of such systems. The failure of one
or more antenna elements can severely impair the system operation, making the moni-
toring of the health of these systems increasingly critical. In particular, methods of fault
diagnosis that can work in situwith minimal modification are particularly appealing, rather
than those that require systems to be taken inside specialized test facilities. For instance,
recent work in wireless monitoring applications have used embedded antennas [4], where
the antenna’s proper functioning is to be assured for optimal operation.

In this article, we propose techniques of fault diagnosis that rely on a single fixed probe,
and canworkwith complex or real valuedmeasurement data in the near and far-field. Since
we do not require probes to scan the array under test (AUT) from different spatial loca-
tions, the techniques are in-principle compatible with in situ measurements of the AUT in
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operational settings, provided that scattering from the neighboring environment can be
minimized.

The typical use-case scenario for fault diagnosis considered in recent literature has cen-
teredaroundelement failureof a small fractionof the total elementnumber. In this scenario,
the principles of compressive sensing (CS) [5] have offered the promise of fault diagnosis
by making much fewer measurements than the number of antennas in the array [6]. Sev-
eral variations on this theme have been studied, such as fault diagnosis from near [6] or far
[7] field data, and from measurements with [8] and without [9] phase. It is known that for
CS techniques to work, the sensing matrix must satisfy the so-called “Restrictive Isometry
Property” (RIP) [10]. A matrix A of size n × m (n<m) is said to satisfy the s−RIP with a con-
stant δs if the following relation holds true for any sub-matrix As formed by choosing s (< n)
columns of A:

(1 − δs)‖x‖22 ≤ ‖As x‖22 ≤ (1 + δs)‖x‖22, ∀ x ∈ R
s. (1)

By choosing the measurement locations in a particular way [7], it was shown that the sens-
ingmatrixwas a randompartial Fouriermatrix,which in turn satisfiedRIPprovided sufficient
measurements were made.

Typically, the RIP property is difficult to verify in practise, and often the CS machinery
is used in a heuristic manner by resorting to random measurement locations [9]. Instead
of the RIP, it is known that minimizing the mutual coherence of the sensing matrix pro-
vides (weaker) guarantees of convergence [11]; recentwork has shownhow this idea canbe
applied to electromagnetic compressive sensing applications [12]. Returning to the theme
of fault diagnosis in phased arrays, we note that in all thework referred to so far, the sensing
matrix was generated by choosing different sensing locations in space. This imposes severe
restrictions on how suitable the sensing matrices are for applying CS principles.

Recent work [13,14] has shown an elegant method of fault diagnosis where the probe
locations are kept fixed and the phase of the element excitations are varied to generate a
series ofmeasurements. Thephaseswere chosen at randomand fault diagnosiswas accom-
plished by solving an unconstrained �p minimization problem (0 < p ≤ 1). We extend this
idea further by allowing the entire sensing matrix to be subject to design. In particular, we
allow both the amplitude and phases of the element excitations to be optimized in order to
minimize the mutual coherence of the sensing matrix. The theory of compressive sensing
tells us that by doing so, the number ofmeasurements required for successful fault diagno-
sis can be reduced, much more so in the average case as compared to the worst case [15,
Ch. 7].

In our work we consider two types of measurements, depending on the type of hard-
ware available. We denote the phasor of a time-harmonic electromagnetic field by rejθ ,
where r and θ represent the amplitude and phase, respectively. Then, the measurements
are defined as follows:

• A complex measurement is one which measures both the amplitude (r) and the phase
(θ ) via measurements of the in-phase and quadrature components.

• A realmeasurement is onewhichmeasures the amplitude (r) and the signof the in-phase
component (sgn(cos θ)); this can be implemented by using a power meter (measure-
ment ∝ r2) and a phase detector to determine the sign given a known reference.
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Since the latter type of measurement does not actually measure the phase, a real
measurement requires simpler hardware than a complex measurement and offers the
possibility of cheaper hardware for large scale Internet of Things (IoT) type of applications.

In our approach, the same technique can be used for solving both problems without
any approximations, and the only difference lies in the nature of the sensing matrix that
is employed. This is accomplished in the real measurements case by a specific choice of
the element excitation phase which will be detailed subsequently. This confers a great
deal of generality to our approach, not previously offered by other approaches. We note
that there exists a related problem of fault diagnosis using intensity-only (or phase-less)
measurements (e.g. [9]); however, we do not address this problem in the current work.

This paper is organized as follows: we formulate the problem mathematically in
Section 2, where we also describe the solution strategies. In Section 3, we present numer-
ical results in support of the efficacy of our technique for complex and real measurements
along with their analysis. Finally, we conclude in Section 4 with a summary of our results.

2. Problem formulation andmethods

2.1. Problem setup

We consider the measured far-field, E(θ), from a one dimensional N-element array of
elements spaced uniformly by a distance d as:

E(θ) =
N∑

n=1

En(θ) exp (jknd cos θ) xn ρn, (2)

where k is thewavevector, θ is the anglemeasured from the array axis, and En, xn, ρn are the
element pattern, excitation, and fault state (1 if the element is working, and 0 if it has failed)
of the nth element, respectively. The expression can easily be generalized for planar arrays
or near field measurements.

We first sketch the conventional scheme of fault diagnosis where measurements are
taken at different locations in space. Assuming for simplicity that the elements are identical
(with pattern E0), andMmeasurements are taken at locations: {θm}Mm=1, (2) becomes:

ỹ = A ρ, Amn = E0 exp(jnkd cos θm)xn, (3)

where ỹ ∈ C
M, ρ ∈ C

N represent the vectors of measurements and sensor fault states,
respectively, and A ∈ C

M×N is the system sensing matrix. Evidently, the only control over
designing the systemmatrix comes by adjusting the measurement locations, θm.

Our key observation is that (2) can also be recast in the followingway, with an allowance
for using different excitations for each measurement at the fixed observation angle, θ0, as:

ỹ = Bρ, Bmn = E0 exp(jnkd cos θ0) xmn, (4)

where xmn is the excitation of the nth element for the mth observation, and B ∈ C
M×N is

the new systemmatrix. Since the element excitations have entered the systemmatrix, one
can aim to improve the efficiency of fault diagnosis by optimizing the element excitations;
this will be demonstrated shortly. The contrast between the conventional and proposed
methods is shown graphically in Figure 1.
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Figure 1. A mathematical counterpart to the schematic in Figure 2, showing the difference between
the conventional and proposedmethod to generate a set ofmeasurements. In the former, measurement
locations θi are varied, keeping element excitations constant. In the latter, the measurement location is
kept constant, while element excitations xij are varied. Due to the lower mutual coherence obtainable
frommatrix B, the proposedmethod gives high success in fault diagnosis. For the sake of illustration, we
have set En(θ) = E0, a constant, in (2).

Figure 2. Contrast between (a) conventional, and (b) theproposedmethod for fault detection. A sample
3 × 3 phased array is shown bymeans of a grid, with the filled tiles indicating a faulty element. The filled
circles indicate a field measurement sensor, the dashed lines indicate wave propagation between the
array and the sensor(s), and a single line of a binary pattern indicates the inputs to the amplitude and
phase control of the phased array. For the proposed method, the input signals are optimized in order to
minimize the mutual coherence of the sensing matrix. Figure 1 shows a mathematical depiction of the
same idea.

To complete the connection with compressive sensing, we refer to the measurements
obtained from the ‘healthy’ array, recorded in ŷ ∈ C

M, and denote the difference in mea-
surements between the healthy and faulty array by y = ŷ − ỹ. We assume that the number
of faults is a small fraction of the total element number,N, and the fault state is binary (i.e.ρn
is either 0 or 1). As a result, the vector given by 1 − ρ is sparse (with 1 ∈ R

N being a vector
of ones). Therefore, the problem that needs to be solved for fault diagnosis becomes:

min
z

‖z‖0, s.t. ‖y − Bz‖2 < η, (5)

where z = 1 − ρ and η is a small scalar proportional to the variance of measurement noise.
Wehave defined the problem statement for far fieldmeasurementswith identical elements
for ease of illustration. However, we emphasize that our methods are completely general,
and demonstrate the generalizations required to deal with heterogeneous arrays and near
field measurements in the Appendix.
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2.2. Solution philosophy andmethodology

As the name ‘phased array’ suggests, the element excitations have phase and or ampli-
tude control, thus providing a larger canvas to design the sensing matrix than is possible
by adjusting receiver positions only.

It is known that themutual coherence,μ, of a generalM × N fatmatrix is lower bounded

by the Welch bound,
√

N−M
M(N−1) ≤ μ ≤ 1, and that alternating projection algorithms can be

used for designing matrices which approach this bound [16,17]. Of great interest is the
improvement in performance (e.g. a reduction in thenumber ofmeasurements) on account
of a reduction in μ. Worst case analysis, which tends to be rather pessimistic, says that a
signal can be reconstructed from compressive measurements only if it has a sparsity fac-
tor (i.e. its 0-norm) up to O(1 + 1

μ
); on the other hand, when average case performance is

sought, the sparsity factor canbeup toO( 1
μ2 ) [15, Thm. 7.3]. Sinceμ < 1, thismeans that for

a given number ofmeasurements, a greater number of faults can be detected if the sensing
matrix is optimized to have lower mutual coherence.

The idea of optimizing the mutual coherence of the sensing matrix and not using a ran-
dom matrix is one of the key ideas of our work, and a distinguishing feature compared to
recent literature [14]. This allows a reduction of the needed number of measurements for
a successful fault diagnosis. This reduced number can be an important factor in multiple
scenarios, for e.g. : (1) when the forward model used to compute the radiation pattern has
a significant computational cost when changing excitation signals (e.g. see reconfigurables
reflectarray antennas in [18]), and (2) when the fault diagnosis performed in an onsite way
has tominimally affect the operation time of the antenna array. The numerical results in the
subsequent Section amply demonstrate the power of our approach.

Often, the nonconvex, combinatorial ‖z‖0 function in (5) above is relaxed to ‖z‖1, since
this is the closest convex function to the �0 function. Another approach that is considered is
the relaxation to the nonconvex function given by ‖z‖p with 0<p<1. Although this non-
convex relaxation does not come with convergence guarantees, it has been empirically
found to outperform the �1 convex relaxation [14,19]. These approaches are summa-
rized in terms of the following unconstrained optimization problem to be solved for fault
diagnosis:

min
z

‖y − Bz‖2 + λ‖z‖p, 0 < p ≤ 1, (6)

where λ is an empirical hyperparameter.
In our work, we assume that the phase and amplitude of the phased array is quantized

to 6 bits each to reflect realistic hardware for phase shifters. In implementing related work
[14], we generate the amplitude (0 to 1) and phase (0 to 2π ) by drawing from the multino-
mial probability distribution function. In our optimized matrix approach, we initialize with
the earlier random matrix, then apply an alternating projection procedure [15, Ch. 2][16],
and end by quantizing the amplitude and phase to 6 bits each. The behavior of the mutual
coherence values of the matrices used in the results below are shown in Figure 3. It can
be seen that even after quantization, the optimized matrices closely approach the Welch
bound (attained by Grassmanian matrices [15]).
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Figure 3. Mutual coherence values forM × 100matrices for random, optimized, and real sensingmatri-
ces. The amplitude and phase of every matrix element has been quantized to 6 bits each in the case of
complex measurements, whereas this quantization is to 6 bits amplitude and 1 bit phase (i.e. a ± sign),
in the case of real measurements.

2.3. Approach for real measurements

Wenowdiscuss the caseof thenew typeof ‘real’measurementsproposed in thisArticle. The
essential idea can be distilled by inspecting (2), and noting that if the element patterns, En,
and excitations, xmn, are real valued andmeasured at θ = π

2 using our proposed approach,
then the measured field, ỹm, given by:

ỹm =
N∑

n=1

Enxmn ρn, 1 ≤ m ≤ M, (7)

is also real valued. Thus, no information of the fault state is lost by using a sensor capable of
only real-valuedmeasurements. In a practical scenario, the radiation pattern of an antenna
element need not be real valued. However, using an extension of our method detailed in
Appendix 1, it is possible to restrict the field at a measurement point to be real valued by
appropriately engineering the element excitations.

For the case of optimizing the sensingmatrix here, we restrict the phase to only 1 bit (i.e.
a phase of 0 orπ ), and allow 6 bits of amplitude control as before. Again, we emphasize that
the restriction of real valued element patterns and θ = π

2 are for illustrative purposes only,
and we demonstrate the lifting of these simplifications in the Appendix.

2.4. Summary of proposed algorithm

Based on the theory described above, our approach to diagnosing the faults in an antenna
array takes the following steps:
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(1) Choose M, the number of measurements to be taken, and initialize the M × N system
matrix, B, as defined in (4) with random excitations, {xmn}.

(2) Optimize the excitations, {xmn}, tominimize themutual coherence of the systemmatrix
B, and quantize the excitations to the available resolution of bits in amplitude and
phase.

(3) After subtracting the healthy array measurements from the obtained measurements,
solve the optimization problem in (6) to obtain the sensor fault state vector, ρ.

The system matrix obtained in Step (2) above differs depending on whether the mea-
surements are complex or real, as has already been described previously. In the next
Section, we provide details of the algorithms used and the results obtained. In particular,
we quantify the number of measurements required to guarantee successful fault diagnosis
as per a ‘rate of successful recovery’ defined subsequently.

3. Results & analysis

Algorithms: In this Article, we present the solution to the fault diagnosis problem by three
strategies:

(i) A solution to the original problem in (5) by means of a greedy pursuit algorithm, the
Compressive Sampling Matching Pursuit (CoSaMP) [20],

(ii) and (iii) Solutions to the relaxed convex and nonconvex problem in (6) with
p = 1, and 0<p<1, respectively, by means of an iteratively reweighted �1 (IRL1)
minimization algorithm [21] implemented via the alternating direction method of
multipliers (ADMM) [22].

Errormetrics:We report fault diagnosis success as a rateof successful recovery (RSR), which
is a metric computed on the recovered solution vector, ρ. RSR-k is the number of mea-
surements such that k% of trials give a perfect reconstruction of the fault state of the array
(noting that our definition is more explicit than [14], where RSR is defined in terms of the
mean squared error (MSE) being< −30dB). Further,we implement a thresholding function
on the reconstructed vector prior to computing the RSR (i.e. if ρn < 0.5, set ρn = 0, else set
ρn = 1). In our simulations, we consider 200 Monte Carlo trials for every result shown.

Implementation details: Note that CoSaMP requires a priori information of the expected
sparsity of the solution vector. Since this information is typically not known, we run the
algorithm with various guesses (1 to 20) for the solution sparsity. Of those, we pick the
sparsity corresponding to the smallest residual error.

In the �p norm relaxation algorithm, we determine the λ hyperparameter of (6) empiri-
cally using a grid search. A study of this search is shown in Figure 4 where the value of λ is
varied logarithmically. We find that λ = 0.1 worked the best for optimized matrices, while
λ = 0.01 was optimal for random matrices. The termination criteria used in CoSaMP and
IRL1 is a limit on the total number of iterations (500 in our case). For every result, we per-
form 200 Monte Carlo iterations; simulations were performed on an Intel Core i7-8700 CPU
3.20GHz × 12 processor and took 45–50 seconds on average for IRL1 and 3-4 minutes for
CoSaMP.

Comparative results for varying fault numbers: We consider a 100-element linear array
consisting of ideal isotropic radiators with measurements at θ = π

2 in the far field (noise
corrupted with a signal to noise ratio (SNR) of 10 dB). The centerpiece of our results is
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Figure 4. Performance of IRL1 on a 100 element linear array for different values of the hyperparameter,
λ for the case of (complex) random and optimized sensing matrices. The number of faults and SNR are
fixed at 10 and 20 dB, respectively.

Table 1. Measurements required as a function of number of fault: Number ofmeasurements required to
achieve RSR-100 (top rows) and RSR-90 (bottom rows) as a function of fault number, s, for a 100-element
array and 10 dB SNR. Boldface entries denote the best results for that particular value of s and RSR-k.
R,O,E refer to random, optimized, and real matrices, respectively. The symbol � refers to cases where
the number of measurements exceed the number of elements (N) and compressive sensing is no longer
meaningful.

IRL1 p = 1 IRL1 p = 0.5 IRL1 p = 0.1 CoSaMP

s R O E R O E R O E R O E

Number of measurements for RSR-100 ↓
1 13 11 15 10 10 15 9 9 14 34 15 27
5 58 39 49 61 36 56 59 25 64 79 48 63
10 � 69 79 � 61 80 � 63 91 99 70 84
15 � 80 99 � 71 94 � 79 98 � 80 99

Number of measurements for RSR-90 ↓
1 9 9 10 6 6 10 6 6 10 13 10 14
5 34 30 36 28 20 34 30 19 40 47 34 50
10 � 53 59 � 43 63 � 38 68 77 58 66
15 � 67 77 � 61 79 � 65 86 97 67 82

Table 1, where varying numbers of faults are diagnosed by a variety of methods, includ-
ing our optimized matrix approach, the random matrix approach from [14], as well as the
real-measurements case.

Comparative results for varying SNR:Next, in Table 2we consider the same array as above,
except that we fix the number of faults to 10, and vary the SNR on the measurements.

Comparative results for varying array size: Finally, in Table 3 we consider the performance
of various algorithms against varying array sizes, keeping the number of faults and SNR
fixed at 10 and 10 dB, respectively.

Analysis: We now analyze the results that we have obtained, drawing out the salient
features of our work.
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Table 2. Measurements required as a function of SNR: Number of measurements required to achieve
RSR-100 (top rows) and RSR-90 (bottom rows) as a function of SNR, for an 100-element array and a fixed
number of faults, s = 10. Boldface entries denote the best results for that particular value of SNR and
RSR-k. Other symbols are as in Table 1.

IRL1 p = 1 IRL1 p = 0.5 IRL1 p = 0.1 CoSaMP

SNR R O E R O E R O E R O E

Number of measurements for RSR-100 ↓
10 � 65 75 � 55 82 � 65 85 100 64 85
20 40 38 47 31 29 43 33 30 45 34 30 42
30 38 35 44 31 28 41 32 30 44 29 30 40

Number of measurements for RSR-90 ↓
10 � 53 62 � 39 61 � 37 69 70 51 67
20 36 32 40 28 24 36 28 26 39 27 26 35
30 33 31 37 26 24 35 29 25 40 26 26 34

Table 3. Number of measurements required to achieve RSR-100 (top rows) and RSR-90 (bottom rows)
as a function of array size,N, for a fixed number of faults, s = 10, and 10 dB SNR. Boldface entries denote
the best results for that particular value of N and RSR-k. Other symbols are as in Table 1.

IRL1 p = 1 IRL1 p = 0.5 IRL1 p = 0.1 CoSaMP

N R O E R O E R O E R O E

Number of measurements for RSR-100 ↓
50 � 42 � � 43 � � 40 � � 50 �
70 � 51 � � 46 68 � 57 69 � 52 �
90 � 65 69 � 56 74 � 61 84 85 57 78

Number of measurements for RSR-90 ↓
50 � 36 41 � 31 41 � 33 44 � 39 48
70 � 43 52 � 33 53 � 35 51 63 44 58
90 � 51 57 � 39 59 � 37 66 63 50 62

(1) The results in all the Tables strongly suggest that regardless of the algorithm used, the
optimized matrix approach always outperforms the random matrix approach under
varying number of faults, noise levels, as well as different array sizes. The difference
between theoptimizedand randommatrix approachesbecomes clearer as thenumber
of faults increases. This is to be expected from the study of the mutual coherence (see
Figure 3), where an improvement as compared to the randommatrix case is seen only
after the number of measurements exceeds 9 (for an arrary of 100 elements).

(2) We emphasize that our approach is particularly robust under high noise conditions; in
particular, as the (10 dB SNR) results in Table 1 show, in most cases the randommatrix
approach fails (markedby adiamond symbol indicative of> Nmeasurements, atwhich
point a brute force approach of testing each element individually is better). In general
it is seen that the optimizedmatrix approach takes 1-2 times fewermeasurements than
the random sensing matrix case.

(3) A remarkable observation from all the results is that the number of measurements
required for the case of real measurements is comparable with that from the ran-
dom sensing matrix case with complex measurements. In fact, in several instances the
former succeeds, while the latter fails.
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(4) Among themethods considered in this Article, the IRL1 algorithmwith p = 0.5 delivers
the best results, though the results with p = 0.1 are only slightly worse in comparison.
The results of the CoSaMP algorithm are also competitive.

4. Conclusion

In summary,wehavepresentedanew framework inwhich fault diagnosis canbeperformed
on phased arrays without taking recourse to moving detectors in space. Our approach
optimizes the element excitations and leverages ideas from compressive sensing to per-
form this diagnosis, giving us two distinct advantages with respect to the most advanced
state-of-the-art: the fault diagnosis can be done with (a) fewer measurements, and (b) in
the presence of real measurements. We show the superior performance of our methods
through extensive numerical simulations; in particular, we show how our methods are
robust in the presence of noise, delivering results when other methods fail. Finally, our
methods can easily be generalized to near field measurements of heterogeneous arrays.

A practical way in which the proposed method can be used to diagnose faults in newer
antenna systems with modulated waveforms (e.g. 5G communication systems) is to intro-
duce specific time frames during which the array radiates narrow band signals for purely
diagnostic purposes. Since only a small number of electronic signals corresponding to
well-chosen element excitations need to be generated, no significant downtime in regular
device operation is expected. Also, potential extensions of our algorithm to use modu-
lated signals as diagnostic signals instead of narrow band signals is of interest and it will be
investigated as future work. The model used in our Article does not consider mutual cou-
pling effects, whichwe consider beyond the scope of our current work. Taking into account
mutual coupling among antenna elements could require more computationally expensive
electromagnetic solvers and increase the CPU time needed by the algorithm to identify
faults. Another aspect to be investigated as future work is how the mutual coherence of
the sensing matrix could be affected by taking into account mutual coupling effects.

Acknowledgements

The authors acknowledge useful discussions on array fault diagnosis with Rajat Vadiraj Dwaraknath,
IIT Madras.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Notes on contributors

K. P. Prajosh is currently pursuing the Ph.D. degree at the Indian Institute of Technology Madras,
India. He received anM.Tech degree in RF &Microwave Engineering from the Indian Institute of Space
Science andTechnology, Thiruvananthapuram, India, andB.Techdegree in Electronics &Communica-
tion engineering from the University of Calicut, India. His research interests include inverse problems
in electromagnetics and compressive sensing.

Uday K. Khankhoje is an Assistant Professor of Electrical Engineering at the Indian Institute of Tech-
nology Madras, India. He received a B.Tech. degree from the Indian Institute of Technology Bombay,
India, in 2005, an M.S. and Ph.D. degrees from the California Institute of Technology, Pasadena, USA,



JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS 11

in 2010, all in Electrical Engineering. He was a Caltech Postdoctoral Scholar at the Jet Propulsion
Laboratory (NASA/Caltech) from 2011-2012, a Postdoctoral Research Associate in the Department of
Electrical Engineering at theUniversity of SouthernCalifornia, Los Angeles, USA, from2012–2013, and
an Assistant Professor of Electrical Engineering at the Indian Institute of Technology Delhi, India from
2013-16. His research interests lie in the area of computational electromagnetics and its applications
to remote sensing and inverse imaging.

Francesco Ferranti is an Associate Professor with theMicrowave Department, Institut Mines-Télécom
(IMT) Atlantique, Brest, France. His research interests include data-driven andmodel-drivenmodeling
techniques, sampling techniques, design space exploration, uncertainty quantification, optimization,
applied electromagnetics, behavioral modeling, microwave design and characterization.

ORCID

K. P. Prajosh http://orcid.org/0000-0002-2160-2655
Uday K. Khankhoje http://orcid.org/0000-0002-9629-3922
Francesco Ferranti http://orcid.org/0000-0003-1060-3713

References

[1] Hansen RC. Phased array antennas. Vol. 213. Hoboken (NJ): John Wiley & Sons; 2009.
[2] HongW, Baek KH, Ko S.Millimeter-wave 5g antennas for smartphones: overview and experimen-

tal demonstration. IEEE Transactions on Antennas Propagation. 2017 Dec;65(12):6250–6261.
[3] Menzel W, Moebius A. Antenna concepts radar sensors. Proceedings of the IEEE. 2012

July;100(7):2372–2379.
[4] Castorina G, Di Donato L, Morabito AF, et al. Analysis and design of a concrete embedded

antenna for wireless monitoring applications [antenna applications corner]. IEEE Transactions
on Antenna and Propagation M. 2016;58(6):76–93.

[5] DonohoDL. Compressed sensing. IEEE Transaction on Information Theory. 2006Apr;52(4):1289–
1306.

[6] Migliore MD. A compressed sensing approach for array diagnosis from a small set of near-field
measurements. IEEE Transactions on Antennas Propagation. 2011 June;59(6):2127–2133.

[7] Migliore MD. Array diagnosis from far-field data using the theory of random partial fourier
matrices. IEEE Antennas and Wireless Propagation Letters. 2013;12:745–748.

[8] Oliveri G, Rocca P, Massa A. Reliable diagnosis of large linear arrays’a bayesian compressive
sensing approach. IEEE Transactions on Antennas Propagation. 2012 Oct;60(10):4627–4636.

[9] Morabito A, Palmeri R, Isernia T. A compressive-sensing-inspired procedure for array antenna
diagnostics by a small number of phaseless measurements. IEEE Transactions on Antennas
Propagation. 2016 July;64(7):3260–3265.

[10] Candes EJ. The restricted isometry property and its implications for compressed sensing.
Comptes Rendus Mathematique. 2008;346(9–10):589–592.

[11] Candes E, Romberg J. Sparsity and incoherence in compressive sampling. Inverse Probl.
2007;23(3):969.

[12] Obermeier R, Martinez-Lorenzo JA. Sensing matrix design via mutual coherence minimiza-
tion for electromagnetic compressive imaging applications. IEEE Trans Comput Imag. 2017
June;3(2):217–229.

[13] Eltayeb ME, Al-Naffouri TY, Heath RW. Compressive sensing for millimeter wave antenna array
diagnosis. IEEE Trans Commun. 2018 June;66(6):2708–2721.

[14] Xiong C, Xiao G, Hou Y, et al. A compressed sensing-based element failure diagnosis method
for phased array antenna during beam steering. IEEE Antennas Wirel Propag Lett. 2019
Sept;18(9):1756–1760.

[15] Elad M. Sparse and redundant representations: from theory to applications in signal and image
processing. 1st ed. New York: Springer-Verlag; 2010.

http://orcid.org/0000-0002-2160-2655
http://orcid.org/0000-0002-9629-3922
http://orcid.org/0000-0003-1060-3713


12 K.P. PRAJOSH ET AL.

[16] Dhillon I, Heath Jr R, Strohmer T, et al. Designing structured tight frames via alternating projec-
tion. IEEE Transactions on Information Theory. 2005 Jan;51(1):188–209.

[17] Hong T, Bai H, Li S, et al. An efficient algorithm for designing projection matrix in compressive
sensing based on alternating optimization. Signal Processing. 2016;125:9–20.

[18] Yann C, Loison R, Gillard R, et al. A new approach combining surrounded-element and compres-
sionmethods for analyzing reconfigurable reflectarray antennas. IEEE Transactions on Antennas
Propagation. 2012 July;60(7):3215–3221.

[19] Ince T, Ögücü G. Array failure diagnosis using nonconvex compressed sensing. IEEE Antennas
Wirel Propag Lett. 2015;15:992–995.

[20] Needell D, Tropp JA. Cosamp: iterative signal recovery from incomplete and inaccurate samples.
Appl Comput Harmon Anal. 2009;26(3):301–321.

[21] Foucart S, Lai MJ. Sparsest solutions of underdetermined linear systems via �q-minimization for
0 < q ≤ 1. Appl Comput Harmon Anal. 2009;26(3):395–407.

[22] Boyd S, Parikh N, Chu E, et al. Distributed optimization and statistical learning via the alter-
nating direction method of multipliers. Foundations and Trends� in Machine Learning.
2011;3(1):1–122.

A. Appendix 1. Heterogeneous arrays, near field measurements

We consider the casewhere the array elements are heterogeneous, and the (possibly near-field)mea-
surementsmay be away from the normal direction (i.e. θ 	= π

2 ). In thismost general case (still ignoring
mutual coupling, though), (2) gets generalized to:

E(r, θ) =
N∑

n=1

En(rn, θn) xn ρn. (A1)

For e.g. if a particular element were a Hertz dipole at the origin, and we were measuring the θ -
component of the field, Eθ (r, θ), we would have En(rn, θn) = −jZ0le−jkrn/(4πkr3n) sin θn, where l is the
dipole length and Z0 is free space impedance.

We define a matrix of excitations, X ∈ C
M×N s.t. Xmn = xmn, a vector t ∈ C

N s.t. tn = En(rn, θn)ρn,
a vector t̃ ∈ C

N s.t. t̃n = En(rn, θn), and a diagonal matrixW ∈ C
N×N s.t.Wnn = 1/En(rn, θn). Then the

fault diagnosis optimization problem is similar to the earlier (5) with a re-definition of z to guarantee
its sparsity, as below:

min
z

‖Wz‖0, s.t. ‖y − Xz‖2 < η, where z = t̃ − t. (A2)

With the identical reformulation of z, the nonconvex relaxation described by (6) can be used in this
general setting. Thus, as desired, the systemmatrix X can be completely optimized for fault diagnosis
even in this general setting. The proposed method is also applicable for fault diagnosis in a planar
array.

Real measurement scenario: In this case, the principle is to use the phase of the excitation, xn, to
cancel the phase of the accompanying En(rn, θn) term of (A1). While the phase is restricted in this
manner (up to a sign), we are free to adjust the amplitude of the excitations to optimize the sensing
matrix. As a result, the measurement, E(r, θ), is real valued. This approach depends on there being
sufficient bits available for phase control to approximate the negative of the phase of En(rn, θn).
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