Computational Electromagnetics : Finite Difference Time Domain Methods – Sources

Uday Khankhoje

Electrical Engineering, IIT Madras

1 Current Sources

1

2 Indirect Sources: Scattering problems

Table of Contents

1 Current Sources

1

2 Indirect Sources: Scattering problems

(21) TE case
$$\rightarrow (E_x, E_y, H_z)$$

 $Volume current excitation
 $\forall \vec{J}(r, t)$
 $\vec{J}(r, t)$
 $\vec{J}(r$$

Let Dx, Dt, a

Relation between current source and Δt , Δx ? \vec{f} , $\vec{J}(f)$, say band limited. JH) J(f)=0, f>f₀ =) High BW courrent source =) Space discretization fixed. Nyquist than: Correctly represent J(+) $\Delta t \leq 1$ 2 fo At the same time, Courant fadre: $\alpha = \frac{C}{\Delta z}$ fo fixed =) Dt fixed =) Dx fixed.

3

Table of Contents

1 Current Sources

2 Indirect Sources: Scattering problems

Table of Contents

1 Current Sources

2 Indirect Sources: Scattering problems

Topics that were covered in this module

- 1 Current Sources
- **2** Indirect Sources: Scattering problems
- **3** Summary of FDTD

- References:
- * Ch 12 of Computational Methods for Electromagnetics Peterson, Ray, Mitra
 * Computational Electrodynamics: The Finite-Difference Time-Domain Method Allen Taflove (the 'Bible' for FDTD)