1. For a string tied at both ends $(x=0, x=l)$ in which the displacement is governed by the differential equation $\nabla^{2} u(x)=F(x)$, where F is a specified forcing function. The value of Green's function at $x=l / 3$ and $x^{\prime}=3 l / 4$ is given by:

Solution: (B) We know that Green's function in 1D can be written as

$$
g\left(x, x^{\prime}\right)= \begin{cases}\left(\frac{x^{\prime}-l}{l}\right) x & x<x^{\prime} \\ \left(\frac{x-l}{l}\right) x^{\prime} & x>x^{\prime}\end{cases}
$$

Now given that $x<x^{\prime}$, so we will use the first expression. So the value of Green's function becomes:

$$
g(l / 3,3 l / 4)=\frac{(-l / 4)}{l} \frac{l}{3}=-\frac{l}{12}
$$

2. For the above question, if the force applied on the string is given by $F(x)=1 N$ for all points on the string of length 1 m , then the displacement $u(x)$ is given by

Solution: The displacement $u(x)$ can be written in terms of the Green's function $g\left(x, x^{\prime}\right)$ and the forcing function $F(x)$ as

$$
\begin{equation*}
u(x)=\int_{0}^{1} g\left(x, x^{\prime}\right) F\left(x^{\prime}\right) d x^{\prime} \tag{1}
\end{equation*}
$$

The Green's function for $l=1 m$ is:

$$
g\left(x, x^{\prime}\right)= \begin{cases}(x-1) x^{\prime} & x^{\prime}<x \\ \left(x^{\prime}-1\right) x & x^{\prime}>x\end{cases}
$$

Splitting the integral in Equation (1):

$$
u(x)=\int_{0}^{1} g\left(x, x^{\prime}\right) F\left(x^{\prime}\right) d x^{\prime}=\int_{0}^{x} g\left(x, x^{\prime}\right) F\left(x^{\prime}\right) d x^{\prime}+\int_{x}^{1} g\left(x, x^{\prime}\right) F\left(x^{\prime}\right) d x^{\prime}
$$

Now we substitute the expression for $g\left(x, x^{\prime}\right)$ and $F(x)=1$.

$$
\begin{aligned}
u(x) & =\int_{0}^{x}(x-1) x^{\prime} d x^{\prime}+\int_{x}^{1}\left(x^{\prime}-1\right) x d x^{\prime} \\
& =\left[(x-1) \frac{x^{\prime 2}}{2}\right]_{0}^{x}+\left[\left(\frac{x^{\prime 2}}{2}-x^{\prime}\right) x\right]_{x}^{1} \\
& =(x-1) \frac{x^{2}}{2}+\left(\frac{1}{2}-1\right) x-x\left(\frac{x^{2}}{2}-x\right) \\
& =\frac{x^{3}}{2}-\frac{x^{2}}{2}-\frac{x}{2}-\frac{x^{3}}{2}+x^{2} \\
& =\frac{x^{2}-x}{2}
\end{aligned}
$$

Therefore, $u(x)=\left(x^{2}-x\right) / 2$.
Observe that this is consistent with the boundary conditions i.e.,$u(0)=u(1)=0$.

