EE2025 Engineering Electromagnetics: July-Nov 2019

Tutorial 7: Antennas and Antenna Arrays

1. (a) Find the electric and magnetic fields generated by an Hertz dipole antenna?
(b) Show that the power radiated in a far field and near field regions from a Hertzian dipole is independent of the distance of a test object from the antenna.

Solution:

(a) (Derivation is available in section 8.2 of Shevagaonkar's textbook)

1. Specify $\overrightarrow{\mathbf{J}}$ (electric current density source)

$$
\overrightarrow{\mathbf{I}}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=I_{0} e^{j w t} \hat{a_{z}} \quad \text { when } x=0, y=0, d l / 2 \leq z^{\prime} \leq d l / 2
$$

Where $\overrightarrow{\mathbf{I}}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\int_{x} \int_{y} \overrightarrow{\mathbf{J}} d x d y$
2. find $\overrightarrow{\mathbf{A}}$

$$
\begin{aligned}
\overrightarrow{\mathbf{A}} & =\frac{\mu}{4 \pi} \iiint_{V} \overrightarrow{\mathbf{J}} \frac{e^{-j \beta r}}{r} d v^{\prime} \\
& =\frac{\mu}{4 \pi} \int_{-d l / 2}^{d l / 2} I_{0} e^{j w t} \hat{a_{z}} \frac{e^{-j \beta r}}{r} d z^{\prime} \\
& \left.=\frac{\mu}{4 \pi} I_{0} d l \frac{e^{-j \beta r}}{r} e^{j w t} \hat{a_{z}} \quad \text { (Assuming } d l \lll r\right) \\
& =A_{z} \hat{a_{z}}=A_{z} \cos \theta \hat{a_{r}}-A_{z} \sin \theta \hat{a_{\theta}}+0 \hat{a_{\phi}} \text { (spherical coordinates) }
\end{aligned}
$$

where $k^{2}=w^{2} \mu \epsilon, r=\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}}$.
3. Find the $\overrightarrow{\mathbf{E}}, \overrightarrow{\mathbf{H}}$ fields using

$$
\begin{gathered}
\overrightarrow{\mathbf{H}}=\frac{1}{\mu} \nabla \times \overrightarrow{\mathbf{A}} \\
\overrightarrow{\mathbf{E}}=\frac{1}{j \omega \epsilon} \nabla \times \overrightarrow{\mathbf{H}}=-j \omega \overrightarrow{\mathbf{A}}-\frac{j}{\omega \mu \epsilon} \nabla(\nabla \cdot \overrightarrow{\mathbf{A}})
\end{gathered}
$$

(b) The expressions for \mathbf{E} and \mathbf{H} field components for a Hertzian dipole in a spherical coordinate system are:

$$
\begin{gathered}
E_{r}=\frac{I_{0} d l}{2 \pi} \eta\left[\frac{1}{r}-\frac{j}{k r^{2}}\right] \frac{e^{-j k r}}{r} \cos \theta ; \\
E_{\theta}=\frac{I_{0} d l j \omega \mu}{4 \pi}\left[1+\frac{1}{j k r}-\frac{1}{(k r)^{2}}\right] \frac{e^{-j k r}}{r} \sin \theta ; \text { and } E_{\phi}=0 \\
H_{\phi}=\frac{I_{0} d l}{4 \pi} j k\left[1+\frac{1}{j k r}\right] \frac{e^{-j k r}}{r} \sin \theta ; \text { and } H_{r}=H_{\theta}=0
\end{gathered}
$$

The time-average power density $\left(S_{a v}\right)$:

$$
\mathbf{S}_{\mathrm{av}}=\frac{1}{2} \operatorname{Re}\left[\mathbf{E} X \mathbf{H}^{*}\right]=\frac{1}{2} R e\left[E_{\theta} H_{\phi}^{*} \hat{r}-E_{r} H_{\phi}^{*} \hat{\theta}\right]
$$

Now we surround the dipole with an imaginary sphere of radius r and compute the radiated power W by taking the surface integral of the power density \mathbf{S}_{av} : i.e.

$$
W=\int_{S} \mathbf{S}_{\mathrm{av}} \cdot \mathbf{d s}=\frac{1}{2} R e \int_{\theta=0}^{\pi} \int_{\phi=0}^{2 \pi}\left[E_{\theta} H_{\phi}^{*} \hat{r}-E_{r} H_{\phi}^{*} \hat{\theta}\right] \cdot r^{2} \sin \theta d \theta d \phi \hat{r}
$$

$$
\begin{gathered}
\Longrightarrow W=\frac{1}{2} R e \int_{\theta=0}^{\pi} \int_{\phi=0}^{2 \pi} E_{\theta} H_{\phi}^{*} r^{2} \sin \theta d \theta d \phi \\
W=\frac{1}{2} R e \int_{\theta=0}^{\pi} \int_{\phi=0}^{2 \pi} \frac{\eta\left(I_{0} d l\right)^{2}}{16 \pi^{2}} \sin ^{2} \theta\left[\frac{j k}{r}+\frac{1}{r^{2}}-\frac{j}{k r^{3}}\right]\left[-\frac{j k}{r}+\frac{1}{r^{2}}\right] r^{2} \sin \theta d \theta d \phi
\end{gathered}
$$

Considering only the real parts, and rearranging result in;

$$
\begin{gathered}
W=\frac{1}{2} \int_{\theta=0}^{\pi} \int_{\phi=0}^{2 \pi} \frac{\eta\left(I_{0} d l\right)^{2}}{16 \pi^{2}} \sin ^{3} \theta\left[\frac{k^{2}}{r^{2}}+\frac{1}{r^{4}}-\frac{k}{k r^{4}}\right] r^{2} d \theta d \phi \\
W=\frac{1}{2} \int_{\theta=0}^{\pi} \int_{\phi=0}^{2 \pi} \frac{\eta k^{2}\left(I_{0} d l\right)^{2}}{16 \pi^{2}} \sin ^{3} \theta d \theta d \phi \\
W=\frac{1}{2} \frac{\eta k^{2}\left(I_{0} d l\right)^{2}}{16 \pi^{2}} 2 \pi \int_{\theta=0}^{\pi} \sin ^{3} \theta d \theta
\end{gathered}
$$

Upon substituting, $k=\frac{2 \pi}{\lambda}$ and $\int_{\theta=0}^{\pi} \sin ^{3} \theta d \theta=4 / 3$;

$$
W=\frac{I_{0}^{2} \pi \eta}{3}\left(\frac{d l}{\lambda}\right)^{2}
$$

W is independent of the term r in the above expression. Thus, the radiated power in near field or in far field conditions is independent of the radial distance r.
2. A 1 m long dipole is excited by a $5 M H z$ current with an amplitude of 5 A . At a distance of 2 km , what is the power density radiated by the antenna along $\theta=90^{\circ}$ (broadside direction)?

Solution:

$$
\begin{equation*}
S=\frac{\eta_{0} k^{2} I^{2} l^{2}}{32 \pi^{2} R^{2}} \sin ^{2} \theta \tag{1}
\end{equation*}
$$

We know that $\eta_{0}=120 \pi, \lambda=60 m, l=1 m, R=2000 m, I=5 A, k=2 \pi / \lambda$. Substituting these values, we get $S=8.18 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2}$
3. The power radiated by a lossless antenna is 10 watts. The directional characteristics of the antenna is represented by the radiation intensity of $U(\theta, \phi)=B_{0} \cos ^{3} \theta$ (W/unit solid angle) $0 \leq \theta \leq \pi / 2$ $0 \leq \phi \leq 2 \pi$ Find
a) Maximum power density (in watts per square meter) at a distance of 1000 m (assume far field). Specify the angle where it occurs.
b) Directivity of the antenna (dimensionless and in dB)

Solution: a) Average power is given by
$S_{a v g}=\int_{0}^{2 \pi} \int_{0}^{\pi / 2} U(\theta, \phi) \sin \theta d \theta d \phi=B_{0} \int_{0}^{2 \pi} \int_{0}^{\pi / 2} \cos ^{3} \theta \sin \theta d \theta$
$10=2 \pi B_{0} \int_{0}^{\pi / 2} \cos ^{3} \theta \sin \theta d \theta d \phi$
$B_{0}=6.36$
$U(\theta, \phi)=6.36 \cos ^{3} \theta$
$W=\frac{U}{r^{2}}=\frac{6.36 \cos ^{3} \theta}{r^{2}}$
$W_{\max }=\frac{U_{\max }}{r^{2}}=\frac{6.36}{r^{2}}=6.36 \times 10^{-6} \mathrm{~W} / \mathrm{m}^{2}$
Angle at which we have maximum power density is $\theta=0$
b) $D_{0}=\frac{4 \pi U_{\text {max }}}{S_{\text {avg }}}=8=9 \mathrm{~dB}$
4. Calculate the directivity, total power radiated and radiation resistance of an half-wave dipole (length $=\lambda / 2$) antenna with far fields given below:

$$
\begin{aligned}
& E_{\theta} \simeq \frac{j \eta I_{0} e^{-j k r}}{2 \pi r}\left[\frac{\cos \left(\frac{\pi}{2} \cos \theta\right)}{\sin \theta}\right] \\
& H_{\phi} \simeq \frac{j I_{0} e^{-j k r}}{2 \pi r}\left[\frac{\cos \left(\frac{\pi}{2} \cos \theta\right)}{\sin \theta}\right]
\end{aligned}
$$

Hint: $\int_{0}^{\pi} \frac{\cos ^{2}\left(\frac{\pi}{2} \cos \theta\right)}{\sin \theta} d \theta=1.21883$

Solution: Time-average power density:

$$
\begin{aligned}
\overrightarrow{S_{a v}} & =\frac{1}{2} \operatorname{Re}\left(\overrightarrow{\mathbf{E}} \times \overrightarrow{\mathbf{H}}^{*}\right) \\
& =\frac{1}{2} \operatorname{Re}\left[\frac{j \eta I_{0} e^{-j k r}}{2 \pi r}\left(\frac{\cos \left(\frac{\pi}{2} \cos \theta\right)}{\sin \theta}\right) \hat{a_{\theta}} \times \frac{-j I_{0} e^{j k r}}{2 \pi r}\left(\frac{\cos \left(\frac{\pi}{2} \cos \theta\right)}{\sin \theta}\right) \hat{a_{\phi}}\right] \\
& =\frac{\eta}{2}\left[\frac{I_{0}}{2 \pi r}\left(\frac{\cos \left(\frac{\pi}{2} \cos \theta\right)}{\sin \theta}\right)\right]^{2} \hat{a_{r}}
\end{aligned}
$$

Total power radiated:

$$
\begin{aligned}
W & =\iint_{S} \overrightarrow{S_{a v}} \cdot \overrightarrow{d s}=\int_{0}^{2 \pi} \int_{0}^{\pi} \overrightarrow{S_{a v}} \cdot\left(r^{2} \sin \theta d \theta d \phi \hat{a_{r}}\right) \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi} \frac{\eta I_{0}^{2}}{8 \pi^{2}}\left(\frac{\cos ^{2}\left(\frac{\pi}{2} \cos \theta\right)}{\sin \theta}\right) d \theta d \phi \\
& =\left[\int_{0}^{2 \pi} d \phi\right]\left[\int_{0}^{\pi} \frac{\cos ^{2}\left(\frac{\pi}{2} \cos \theta\right)}{\sin \theta} d \theta\right] \frac{\eta I_{0}^{2}}{8 \pi^{2}} \\
& =[2 \pi][1.21883] \frac{\eta I_{0}^{2}}{8 \pi^{2}}=\frac{1.21883 \eta I_{0}^{2}}{4 \pi}
\end{aligned}
$$

Radiation intensity:

$$
\begin{aligned}
U(\theta, \phi)=r^{2}\left|\overrightarrow{S_{a v}}\right| & =\frac{\eta}{2}\left[\frac{I_{0}}{2 \pi}\left(\frac{\cos \left(\frac{\pi}{2} \cos \theta\right)}{\sin \theta}\right)\right]^{2} \\
U_{\max } & =\frac{\eta}{2}\left[\frac{I_{0}}{2 \pi}\right]^{2}
\end{aligned}
$$

Directivity:

$$
D(\theta, \phi)=4 \pi \frac{U(\theta, \phi)}{W}=1.641\left(\frac{\cos \left(\frac{\pi}{2} \cos \theta\right)}{\sin \theta}\right)^{2}
$$

(Maximum Directivity $=1.641$. $)$
Radiation Resistance $\left(R_{r}\right)$:

$$
\begin{aligned}
W & =\frac{I_{0}^{2} R_{r}}{2}=\frac{1.21883 \eta I_{0}^{2}}{4 \pi} \\
& \Longrightarrow R_{r}=\frac{1.21883 \eta}{2 \pi}=\frac{1.21883 \times 120 \pi}{2 \pi}=73.13 \Omega
\end{aligned}
$$

Half-wave dipoles and mono-poles are the most commonly used antennas. Monopole antennas have only one pole with length $\lambda / 4$ and the other pole is replaced with ground plate. Monopole antenna has a radiation resistance of $73.12 / 2 \Omega=36.56 \Omega$ (half of half-wave dipoles as they radiate only to one hemisphere).
5. An antenna has been designed as a half wavelength dipole for use with a TV transmitter at 600 MHz (UHF channel 35) and the transmitter supplies 50 kW to the antenna. The antenna is 6 mm thick and made of aluminium with conductivity $\sigma=3 \times 10^{7} \mathrm{~S} / \mathrm{m}$. Consider the radiation resistance of dipole ($R_{r a d}$) is 73.08Ω and the current is uniform. Calculate:
(a) The radiated power at 600 MHz
(b) The efficiency of the antenna (eff $\left.=\frac{P_{r a d}}{P_{i n}}=\frac{R_{\text {rad }}}{R_{\text {rad }}+R_{\text {in }}}\right)$

Solution: The length of the antenna is

$$
\lambda=\frac{c}{f}=\frac{3 \times 10^{8}}{600 \times 10^{6}}=0.5 \Longrightarrow L=0.25
$$

To find the radiated power, we need to find the internal resistance and radiation resistance of the antenna. The radiation resistance $\left(R_{r a d}\right)$ of the half wave dipole is 73.08Ω. Internal resistance can be found by using the equation for resistance of a hollow cylinder

$$
R_{d}=\frac{L}{\sigma S}
$$

Where S is,

$$
S=2 \pi r \delta
$$

where δ is the skin depth. In this problem, diameter is given as $6 \mathrm{~mm}(r=3 \mathrm{~mm})$.

$$
\begin{gathered}
\delta=\frac{1}{\sqrt{\pi f \mu_{0} \sigma}}=3.751 \times 10^{-6} \mathrm{~m} \\
R_{d}=\frac{L}{2 \pi r \delta \sigma}=0.1179 \Omega \\
P_{\text {in }}=\frac{I^{2}\left(R_{r a d}+R_{d}\right)}{2} \Longrightarrow I^{2}=1366.16 \Longrightarrow I=36.96 \mathrm{~A}
\end{gathered}
$$

Radiated power

$$
P_{r a d}=\frac{I^{2} R_{r a d}}{2}=49.919 \mathrm{KW}
$$

(b) The efficiency of the antenna

$$
e f f=\frac{P_{\text {rad }}}{P_{\text {in }}}=99.84 \%
$$

This is a very high efficiency beacause of its low internal resistance.
6. Four isotropic sources are placed along the z -axis as shown in Fig.1. Assuming that excitations of elements (current fed to the elements) 1 and 2 are +1 and the excitations of elements 3 and 4 are $-1\left(180^{\circ}\right.$ out of phase with 1 and 2$)$. Find
(a) The array factor in simplified form
(b) All the nulls when $d=\frac{\lambda}{2}$.

Figure 1: isotropic sources

Solution: (a)

$$
E=K\left[\frac{e^{-j k r_{2}}}{r_{2}}+\frac{e^{-j k r_{1}}}{r_{1}}-\frac{e^{-j k r_{3}}}{r_{3}}-\frac{e^{-j k r_{4}}}{r_{4}}\right]
$$

where,

$$
\begin{aligned}
& r_{1}=r-\frac{d}{2} \cos (\theta) \\
& r_{2}=r-\frac{3 d}{2} \cos (\theta) \\
& r_{3}=r+\frac{d}{2} \cos (\theta) \\
& r_{4}=r+\frac{3 d}{2} \cos (\theta)
\end{aligned}
$$

K is a constant.

$$
E=\frac{K e^{-j k r}}{r}\left[e^{\frac{j 3 k d}{2} \cos (\theta)}+e^{\frac{j k d}{2} \cos (\theta)}-e^{-\frac{j k d}{2} \cos (\theta)}-e^{-\frac{j 3 k d}{2} \cos (\theta)}\right]
$$

For amplitude variations, $r_{1} \approx r_{2} \approx r_{3} \approx r_{4} \approx r$

$$
A F=2 j\left[\sin \left(\frac{3 k d}{2} \cos \theta\right)+\sin \left(\frac{k d}{2} \cos \theta\right)\right]
$$

Let $x=k d \cos \theta, y=\frac{k d}{2} \cos \theta$

$$
A F=4 j\left[\sin (k d \cos \theta) \cos \left(\frac{k d}{2} \cos \theta\right)\right]
$$

(b)

$$
A F\left(d=\frac{\lambda}{2}\right)=4 j\left[\sin (\pi \cos \theta) \cos \left(\frac{\pi}{2} \cos \theta\right)\right]
$$

The nulls will be placed at θ such that $A F(\theta)=0$.

$$
\theta_{n}=0,90,180
$$

7. Consider two isotropic antennas kept in a plane separated by a distance of two wavelengths. If both the antennas are fed with currents of equal phase and magnitude. Calculate the number of lobes in the radiation pattern.

Solution: Magnitude and phase of currents in both the antennas are same and d, distance between the two antennas is 2λ.Hence the electric field can be written as:

$$
E=1+1 e^{\beta d \cos \theta}
$$

Solving the above equation, we have $E=2 e^{\frac{j \beta d \cos \theta}{2}}\left(\frac{e^{\frac{j \beta d \cos \theta}{2}}+e^{\frac{-j \beta d \cos \theta}{2}}}{2}\right)$

$$
\begin{gathered}
E=2 \cos \frac{\psi}{2} e^{\frac{j \beta d \cos \theta}{2}} \\
\psi=\beta d \cos \theta=4 \pi \cos \theta
\end{gathered}
$$

Hence the magnitude of electric field comes out to be

$$
E=2 \cos \left(\frac{\psi}{2}\right)=2 \cos (2 \pi \cos \theta)
$$

As θ varies from 0 to 2π.Maximum can occur at

$$
\theta=0, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}, \frac{3 \pi}{2}, \frac{5 \pi}{3}
$$

Hence there are 8 lobes in the radiation pattern.
8. Obtain an expression for the array factor of a two-element array of isotropic antennas with equal excitation and a separation $d=n \lambda / 2$ where $n \in \mathbb{N}$. The array is along the x-axis. How many beams are there between $\phi=0$ and $\phi=180$ in the radiation pattern? Do they have the same width and peak value?

Solution: Since the two antennas have equal excitation, $a_{0}=a_{1}=1$. The array factor expression simplifies to

$$
A F=\left|1+e^{j \gamma}\right|=\left|2 \cos ^{2}(\gamma / 2)+2 j \sin (\gamma / 2) \cos (\gamma / 2)\right|=2 \cos (\gamma / 2)
$$

where $\gamma=(2 \pi d / \lambda) \cos \theta$.
Given $d=n \lambda / 2$. Since $A F=2 \cos (\pi(n / 2) \cos \theta)$, for $\phi \in(0, \pi)$, radiation pattern has n beams. They will have the same peak, but different widths. Given below are the array factors for $d=\{1.5 \lambda, 2.5 \lambda, 3.5 \lambda\}$. As expected, there are 3,5 and 7 beams respectively.

9. For a uniform linear array of N isotropic antennas, determine the directivity of the antennas when the spacing between the elements is ' d ' and further find directivity when d is a) $\lambda / 4$
b) $\lambda / 2$

Solution: The maximum directivity (which occurs in the broadside direction) of a uniformly excited equally spaced linear array can be found as follows. First, the normalizedarray factor is

$$
\begin{equation*}
(A F)_{n}=\frac{\sin \left(\frac{N}{2} k d \cos \theta\right)}{N \sin \left(\frac{1}{2} k d \cos \theta\right)} \tag{2}
\end{equation*}
$$

If $d \ll \lambda$, we can employ the small angle approximation for the denominator, yielding $D_{0}=$ $2 N(d / \lambda)$

$$
\begin{equation*}
(A F)_{n}=\frac{\sin \left(\frac{N}{2} k d \cos \theta\right)}{\frac{N}{2} k d \cos \theta} \tag{3}
\end{equation*}
$$

The average radiation intensity is found using

$$
\begin{equation*}
U_{0}=\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi}\left[\frac{\sin \left(\frac{N}{2} k d \cos \theta\right)}{\frac{N}{2} k d \cos \theta}\right] \sin \theta d \theta d \phi \tag{4}
\end{equation*}
$$

Now, this integral is not easy to evaluate there are assumptions made on N which can approximate U_{0}. The directivity is

$$
\begin{equation*}
D=2 \frac{N d}{\lambda} \tag{5}
\end{equation*}
$$

Refer Balanis Antenna theory second edition page no 277 onwards. There is a derivation for end fire directivity also.
From the above formula (5) we have a) $D_{0}=10 \log _{10}(N / 2) \mathrm{dB}$ b) $D_{0}=10 \log _{10}(N / 2) \mathrm{dB}$
10. In a linear array of antennas with the same spacing between each element, four isotropic radiating elements are spaced $\frac{\lambda}{4}$ apart. What should the relative phase shift between the elements required for forming the main beam at 60 degrees with the axis of the array?

Solution: Uniform linear Array of N elements radiates in either broad side or end fire directions based on progressive phase shift, α between the excitation sources connected to antenna elements in the Array.The array factor is given by

$$
\begin{gathered}
A F=1+e^{j \beta d \cos \theta+\alpha}+e^{2(j \beta d \cos \theta+\alpha)}+e^{3(j \beta d \cos \theta+\alpha)}+\ldots \ldots \ldots . e^{(n-1)(j \beta d \cos \theta+\alpha)} \\
A F=\sum_{n} e^{j(n-1) \psi} \\
\psi=\alpha+\beta d \cos \theta
\end{gathered}
$$

Given, the main beam is 60° off end fire i.e. $\theta=60^{\circ}$ Substituting the value of θ, we get the value of α which is $\alpha=-\frac{\pi}{4}$
11. 1. Practice Exercise : Open your mobile phones , go to Settings $->$ About Phone $->$ Status (or Network) On this screen, view Signal Strength (or Network Type and Strength). Check your signals strength will be in dBm which is a unit of level used to indicate that a power ratio is expressed in decibels (dB) with reference to one milliwatt (mW).Convert the signal strength from dBm to mW .
2. Suppose a person with a receiver is 5 km away from the transmitter. What is the distance that this person must move further to detect a 3 dB decrease in signal strength?

Solution: From some position P_{1} the person having receiver moves some distance to detect 3 dB decrease is signal strength. Power strength at P_{2} is $\frac{1}{2}$ times power strength at position 1. As power varies as $\frac{1}{r^{2}}$. Hence

$$
\frac{P_{1}}{P_{2}}=\frac{r_{2}^{2}}{r_{1}^{2}}
$$

Solving for r_{2}, we have distance between initial point and final point to be 2.070 km

