EE2025 Engineering Electromagnetics: July-Nov 2019
 Tutorial 6: Waveguides

1. A section of a rectangular waveguide of cross-section $2 \mathrm{~cm} \times 1.5 \mathrm{~cm}$ is to be used as a delay line in a radar at 10 GHz . What should be the length of the section to realize a delay of 10 nsec ?

Solution:

Cutoff frequency of $T E_{10}$,

$$
f_{c}=\frac{c}{2 a}=\frac{3 \times 10^{8}}{2 \times 2 \times 10^{-2}}=7.5 \mathrm{GHz}
$$

Cutoff frequency of the next higher order mode $T E_{01}$ (Since, $a<2 b$ can't be $T E_{20}$),

$$
f_{c}^{\prime}=\frac{c}{2 b}=\frac{3 \times 10^{8}}{2 \times 1.5 \times 10^{-2}}=10 \mathrm{GHz}
$$

Thus only possible mode of transmission is $T E_{10}$
Group velocity

$$
v_{g}=c \times \sqrt{1-\left(\frac{f_{c}}{f_{o}}\right)^{2}}=3 \times 10^{8} \times \sqrt{1-\left(\frac{7.5}{10}\right)^{2}}=1.984 \times 10^{8} \mathrm{~ms}^{-1}
$$

Length for a delay of 10 ns ,

$$
l=v_{g} \times 10 \times 10^{-9}=1.984 \mathrm{~m}=198.4 \mathrm{~cm}
$$

2. (a) Derive an expression for the conductive loss in a rectangular waveguide for the fundamental mode.
(b) In a $5 \mathrm{~cm} \times 3 \mathrm{~cm}$ waveguide the $T E_{10}$ mode is propagating at 10 GHz . The total power carried by the waveguide is 10 W . If the conductivity of the waveguide walls is $2 \times 10^{7} \mathrm{~V} / \mathrm{m}$, find the attenuation constant of the waveguide in dB / m.

Solution:

(a) Refer to section 6.8.2 of R.K.Shevgaonkar's "Electromagnetic waves".
(b) Conductive loss in $T E_{10}$ mode in a rectangular waveguide is given by,

$$
\begin{equation*}
\alpha_{c}=\frac{R_{s}\left(1+\frac{2 b}{a}\left(f_{c} / f\right)^{2}\right)}{\eta b \sqrt{1-\left(f_{c} / f\right)^{2}}} \tag{1}
\end{equation*}
$$

$$
R_{s}=\sqrt{\frac{\omega \mu}{2 \sigma}}=\sqrt{\frac{2 \pi \times 10 \times 10^{9} \times 4 \pi \times 10^{-7}}{2 \times 2 \times 10^{7}}}=0.044 \Omega
$$

Considering dielectric as air,
$f_{c}=\frac{v}{2 a}=\frac{3 \times 10^{8}}{2 \times 0.05}=3 \mathrm{GHz}$
$\eta=377 \times \sqrt{1-0.3^{2}}=359.63 \Omega$
$\alpha_{c}=\frac{0.044\left(1+\frac{0.06}{0.05}(0.3)^{2}\right)}{359.63 \times 0.03 \sqrt{1-0.3^{2}}}=4.74 \times 10^{-3} \mathrm{~Np} / \mathrm{m}=0.041 \mathrm{~dB} / \mathrm{m}$
3. In an air-filled rectangular waveguide with $\mathrm{a}=2.286 \mathrm{~cm}$ and $\mathrm{b}=1.016 \mathrm{~cm}$, the y component of the TE mode is given by

$$
E_{y}=\sin (2 \pi x / a) \cos (3 \pi y / b) \sin \left(10 \pi \times 10^{10} t-\beta z\right) V / m
$$

Find
(a) the operating mode
(b) the propagation constant γ
(c) the intrinsic impedance η
(d) Find the dielectric loss α_{d} of the mode when the waveguide is filled with water (Complex permittivity of water at 50 GHz is $\left.\epsilon_{0}(16.40-j 26.31)\right)$

Solution: (a) $\mathrm{m}=2, \mathrm{n}=3$, so the mode is $T E_{23}$
(b) $\gamma=j \beta$

$$
\begin{gathered}
\beta=\beta_{1} \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}, f=50 G H z \\
f_{c}=\frac{1}{2 \pi \sqrt{\mu \epsilon}} \sqrt{\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}}=46.19 G H z
\end{gathered}
$$

$\beta=400.9 \mathrm{rad} / \mathrm{m}, \gamma=j 400.9 \mathrm{~m}^{-1}$
(c) Intrinsic impedance for the TE mode

$$
\eta=\frac{\eta_{1}}{\sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}}=984.6 \Omega
$$

(d)

$$
\begin{gathered}
\epsilon^{\prime \prime}=\frac{\sigma}{\omega} \\
\sigma=2 \pi \times 50 \times 10^{9} \times 8.85 \times 10^{-12} \times 26.31=73 \mho / m \\
\alpha_{d}=\frac{\sigma \eta^{\prime}}{2 \sqrt{1-\left(f_{c} / f\right)^{2}}} \\
\eta^{\prime}=\sqrt{\frac{\mu}{\epsilon}}=93 \Omega \\
\alpha_{d}=8.865 \times 10^{3} \mathrm{~Np} / \mathrm{m}
\end{gathered}
$$

4. A frequency of 9.5 GHz is used to excite all possible modes in a hollow rectangular waveguide of dimensions $3 \mathrm{~cm} \times 2 \mathrm{~cm}$. The length of the waveguide is 100 m . Find the difference between time of arrivals of the fastest mode and the slowest mode.

Solution:

Given, Operating frequency $=9.5 \mathrm{GHz}, \mathrm{a}=3 \mathrm{~cm}$ and $\mathrm{b}=2 \mathrm{~cm}$ length of the waveguide $=100 \mathrm{~m}$ cutoff frequency, $f_{c}=\frac{1}{2 \pi \sqrt{\mu_{0} \epsilon_{0}}} \sqrt{\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}}=15 \times 10^{9} \sqrt{\left(\frac{m^{2}}{9}\right)+\left(\frac{n^{2}}{4}\right)}$
For, $f>f_{c} \Rightarrow 9.5 \times 10^{9}>15 \times 10^{9} \sqrt{\left(\frac{m^{2}}{9}\right)+\left(\frac{n^{2}}{4}\right)} \Rightarrow\left(\frac{m^{2}}{9}\right)+\left(\frac{n^{2}}{4}\right)<0.4$

Therefore, possible operating modes are $T E_{10}, T E_{01}, T E_{11}$ and $T M_{11}$.
Group velocity of fastest mode $\left(T E_{11}\right)=c \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}=c \sqrt{1-\left(\frac{9}{9.5}\right)^{2}}=2.55 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Group velocity of slowest mode $\left(T E_{10}\right)=c \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}=c \sqrt{1-\left(\frac{5}{9.5}\right)^{2}}=0.96 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Difference of time of arrival of slowest and fastest mode $=\left(\frac{100}{0.96 \times 10^{8}}\right)-\left(\frac{100}{2.55 \times 10^{8}}\right)=0.649 \mu \mathrm{~s}$
5. A 240 degree phase shift is produced by a 4 GHz signal when traveling along a dielectric filled waveguide 3 cm long. If the cutoff frequency of the waveguide when air-filled is 10 GHz , calculate the relative permittivity of the dielectric.

Solution: Cut-off frequency in air-filled waveguide $=10 \mathrm{GHz}$
Cut-off frequency in dielectric waveguide $f_{c}=\frac{10 G H z}{\sqrt{\epsilon_{r}}}$
Given phase shift $\beta l=240^{\circ}$ and $l=0.03 \mathrm{~m}$
$\beta=\frac{400 \pi}{9} \mathrm{rad} / \mathrm{m}$
$\beta=\frac{\omega \sqrt{\epsilon_{r}}}{c} \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}$
Given $f=4 G H z$, substituting the values in above equation,
$\epsilon_{r}=9.0046$
6. For a square waveguide, show that attenuation α_{c} is minimum for $T E_{10}$ mode when $f=2.962 f_{c}$

Solution: In a rectangular waveguide, for TE_{10} mode
$\alpha_{c}=\frac{2 R_{s}}{\eta b}\left[\frac{\frac{1}{2}+\frac{b}{a}\left(\frac{f_{c}}{f}\right)^{2}}{\sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}}\right]$, where $R_{s}=\sqrt{\pi \mu f / \sigma}$
For square waveguide $a=b$, we get
$\alpha_{c}=\frac{2 R_{s}}{\eta a}\left[\frac{\frac{1}{2}+\left(\frac{f_{c}}{f}\right)^{2}}{\sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}}\right]$
For the frequency at which α_{c} is minimum, $\frac{d \alpha_{c}}{d f}=0$
Solving the equation, we get $f^{4}-9 f_{c}^{2} f^{2}+2 f_{c}^{4}=0$
substituting $f=k f_{c}$, in the above equation we obtain
$k^{4}-9 k^{2}+2=0 \Rightarrow r^{2}-9 r+2=0 ;\left(r=k^{2}\right)$
solving the quadratic equation for r we get $r=k^{2}=8.772,0.228 \Rightarrow k \approx 2.962,0.477$.
Even though we get two solutions (numerically), $k<1$ is not a physically realizable solution because for the operating frequency $f<f_{c}$ the mode of interest itself is not supported by the waveguide.
Therefore, for minimum attenuation $f=2.962 f_{c}$
7. A 4 cm square waveguide is filled with a dielectric with complex permittivity $\epsilon_{c}=16 \epsilon_{o}\left(1-j 10^{-4}\right)$ and is excited with the $T M_{21}$ mode. If the waveguide operates at 10% above the cutoff frequency, calculate attenuation α_{d}. How far can the wave travel down the guide before its magnitude is reduced by 20% ?

Solution:

$$
\begin{equation*}
\epsilon_{c}=\epsilon^{\prime}-j \epsilon^{\prime \prime}=\epsilon-j \frac{\sigma}{\omega} \tag{2}
\end{equation*}
$$

Comparing this with

$$
\begin{gather*}
\epsilon_{c}=16 \epsilon_{o}\left(1-j 10^{-4}\right)=16 \epsilon_{o}-j 16 \epsilon_{o} \times 10^{-4} \tag{3}\\
\epsilon=16 \epsilon_{o}, \quad \frac{\sigma}{\omega}=16 \epsilon_{o} \times 10^{4} \tag{4}
\end{gather*}
$$

For $T M_{21}$ mode, $\left(\right.$ with $\left.c^{\prime}=c / \sqrt{\epsilon_{r}}\right)$

$$
\begin{align*}
& f_{c}=\frac{c^{\prime}}{2}\left[\frac{m^{2}}{a^{2}}+\frac{n^{2}}{b^{2}}\right]^{\frac{1}{2}}=2.096 G H z \tag{5}\\
& f=1.1 f_{c}=2.306 G H z \tag{6}\\
& \sigma=16 \epsilon_{o} \omega \times 10^{-4}=16 \times 2 \pi \times 4.6123 \times 10^{9} \times \frac{10^{-9}}{36 \pi} \times 10^{-4}=2.05 \times 10^{-4} \tag{7}\\
& \eta^{\prime}=\sqrt{\frac{\mu}{\epsilon}}=30 \pi \tag{8}\\
& \alpha_{d}=\frac{\sigma \eta^{\prime}}{2 \sqrt{1-\left(f_{c} / f\right)^{2}}}=0.0320 \mathrm{~Np} / \mathrm{m} \tag{9}\\
& E_{o} e^{-\alpha_{d} z}=0.8 E_{o} \rightarrow z=6.97 m \tag{10}
\end{align*}
$$

