EE2025 Engineering Electromagnetics: July-Nov 2019

Tutorial 2: Maxwell's equations & Plane waves

- 1. Prove that electric and magnetic fields obey the principle of super position. *Hint*: Use Maxwell's equations to show this.
- 2. In the class, we said that the 'lab quantity' e(t) can be written in terms of it's phasor E as, $e(t) = \operatorname{Re}(Ee^{j\omega t})$. However, the choice of $e^{j\omega t}$ over $e^{-j\omega t}$ is just a convention, i.e. we could have also chosen $e(t) = \operatorname{Re}(Ee^{-j\omega t})$. Using this information, find out whether the following waves are forward traveling or backward traveling waves.

(a) $e^{-j\omega t}$ convention, $E(z) = Ae^{-jkz}$ (b) $e^{j\omega t}$ convention, $E(z) = Ae^{-jkz}$

(c) $e^{j\omega t}$ convention, $E(z) = Ae^{-jkz} + Be^{jkz}$

where $A, B \in \mathbb{C}$ are constants.

- 3. Using the differential form of Maxwell's equations, derive the continuity equation $(\nabla . \vec{J} = -\frac{\partial \rho}{\partial t})$.
- 4. Given a plane wave travelling in the +x direction in free space has the following phasor expressions for the electric and magnetic fields: $\vec{E} = \hat{y}E_y(x) + \hat{z}E_z(x)$ and $\vec{H} = \hat{y}H_y(x) + \hat{z}H_z(x)$. Draw a vector diagram showing all these components, and indicate which of the *E*'s are related to which of the *H*'s by a constant of proportionality.
- 5. If the electric and magnetic field in a medium are given by $\vec{E} = 3\sin(t-5z)\hat{x}$ and $\vec{H} = 4\cos(t-5z)\hat{y}$, then calculate (at z = 0) the a) the instantaneous power density,

b) instantaneous power transmitted through a surface with an area of $5 m^2$ at z = 0 and the normal pointing in \hat{z} direction, and

- c) total energy carried by the wave through the given surface from t = 0 s to t = 5 s.
- 6. In a non-magnetic material ($\mu_r = 1$) with dielectric constant $\epsilon_r = 4$, the electric field is given by $\vec{e}(t) = 20 \sin(10^8 t \beta z)\hat{y}$. Calculate the propagation constant β and the magnetic field $\vec{h}(t)$.
- 7. The magnetic field component of a plane wave in a lossless dielectric is $\vec{H} = 30 \sin (2\pi \times 10^8 t 5x) \hat{z}$ mA/m.
 - (a) if $\mu_r = 1$, find ϵ_r (b) Calculate the wave length and wave velocity.
 - (c) Determine the intrinsic impedance (d) Determine the polarization of the wave.
 - (e) Find the corresponding electric field component. (f) calculate the Poynting vector
- 8. Consider a x-directed time varying electric field propagating in z direction $E_x(x, y, z) = f(x, y) + g(z)$ in source-free, free space. Using Maxwell's equations, prove that if it is a plane wave, then f(x, y) = 0.
- 9. What values of A and β are required if the two fields given below satisfy Maxwell's equations in a linear, isotropic, homogeneous medium with $\epsilon_r = \mu_r = 4$ and $\sigma = 0$?

$$\vec{E} = 120\pi \cos(10^6\pi t - \beta x)\hat{a_y}V/m$$
$$\vec{H} = A\pi\cos(10^6\pi t - \beta x)\hat{a_z}V/m$$

Assume there are no current or charge densities in space.

- 10. Consider a point on the surface of a perfect conductor. The electric field intensity at that point is $\vec{E} = (500\hat{x} 300\hat{y} + 600\hat{z})\cos 10^7 t$ and medium surrounding the conductor is characterized by $\mu_r = 5$ and $\epsilon_r = 10$ and $\sigma = 0$.
 - (a) Find a unit vector normal to the conductor at that point of the conductor surface.
 - (b) Find the surface charge density at the point.

- 11. Assume two regions are separated by z = 0 plane. Let $\mu_1 = 4 \ \mu H/m$ in region 1 where z > 0, while $\mu_2 = 7 \ \mu H/m$ in region 2 wherever z < 0. We are given $\mathbf{B}_1 = 2\mathbf{a}_x 3\mathbf{a}_y$ mT, in region 1. Find \mathbf{B}_2 for both the cases (a) and (b). a) Let surface current be $\mathbf{J}_s = 80\mathbf{a}_x \ A/m$ on z = 0. b) Let surface current be $\mathbf{J}_s = 80\mathbf{a}_z \ A/m$ on z = 0.
- 12. Consider the result of superimposing left and right circularly polarized fields of the same amplitude, frequency and propagation direction, but where a phase shift of δ radians exists between two. What is the polarization of the resultant field? (consider the wave is travelling in +z direction)
- 13. We have seen in class that a good conductor is classified by the condition that $\epsilon''/\epsilon' \gg 1$, where the permittivity $\epsilon = \epsilon' - j\epsilon''$. For such a conductor, find a simple relationship for α and β . Further, derive the expression for phase velocity as a function of conductivity σ and frequency f. How does velocity vary with frequency, and how does it vary with conductivity?
- 14. A uniform plane wave is travelling in seawater. Assume that the x-y plane resides just below the sea surface and the wave travels in the +z direction into the water. The constitutive parameters of seawater are $\epsilon_r = 80$, and $\sigma = 4 S/m$. If the magnetic field at z = 0 is $H(0, t) = \hat{y} 100 \cos(2\pi * 10^3 t + 15^\circ) \text{ (m A/m)}$,
 - (a) obtain expressions for $\boldsymbol{E}(z,t)$ and $\boldsymbol{H}(z,t)$, and
 - (b) determine the depth at which the magnitude of E is 1% of its value at z = 0.