EE2025 Engineering Electromagnetics: July-Nov 2019

Tutorial 2: Maxwell's equations \& Plane waves

1. Prove that electric and magnetic fields obey the principle of super position. Hint: Use Maxwell's equations to show this.
2. In the class, we said that the 'lab quantity' $e(t)$ can be written in terms of it's phasor E as, $e(t)=\operatorname{Re}\left(E e^{j \omega t}\right)$. However, the choice of $e^{j \omega t}$ over $e^{-j \omega t}$ is just a convention, i.e. we could have also chosen $e(t)=\operatorname{Re}\left(E e^{-j \omega t}\right)$. Using this information, find out whether the following waves are forward traveling or backward traveling waves.
(a) $e^{-j \omega t}$ convention, $E(z)=A e^{-j k z}$
(b) $e^{j \omega t}$ convention, $E(z)=A e^{-j k z}$
(c) $e^{j \omega t}$ convention, $E(z)=A e^{-j k z}+B e^{j k z}$
where $A, B \in \mathbb{C}$ are constants.
3. Using the differential form of Maxwell's equations, derive the continuity equation $\left(\nabla \cdot \vec{J}=-\frac{\partial \rho}{\partial t}\right)$.
4. Given a plane wave travelling in the $+x$ direction in free space has the following phasor expressions for the electric and magnetic fields: $\vec{E}=\hat{y} E_{y}(x)+\hat{z} E_{z}(x)$ and $\vec{H}=\hat{y} H_{y}(x)+\hat{z} H_{z}(x)$. Draw a vector diagram showing all these components, and indicate which of the E 's are related to which of the H's by a constant of proportionality.
5. If the electric and magnetic field in a medium are given by $\vec{E}=3 \sin (t-5 z) \hat{x}$ and $\vec{H}=$ $4 \cos (t-5 z) \hat{y}$, then calculate (at $z=0$) the
a) the instantaneous power density,
b) instantaneous power transmitted through a surface with an area of $5 \mathrm{~m}^{2}$ at $z=0$ and the normal pointing in \hat{z} direction, and
c) total energy carried by the wave through the given surface from $t=0 \mathrm{~s}$ to $t=5 \mathrm{~s}$.
6. In a non-magnetic material $\left(\mu_{r}=1\right)$ with dielectric constant $\epsilon_{r}=4$, the electric field is given by $\vec{e}(t)=20 \sin \left(10^{8} t-\beta z\right) \hat{y}$. Calculate the propagation constant β and the magnetic field $\vec{h}(t)$.
7. The magnetic field component of a plane wave in a lossless dielectric is $\vec{H}=30 \sin \left(2 \pi \times 10^{8} t-5 x\right) \hat{z}$ mA / m.
(a) if $\mu_{r}=1$, find ϵ_{r}
(c) Determine the intrinsic impedance
(e) Find the corresponding electric field component.
8. Consider a x-directed time varying electric field propagating in z direction $E_{x}(x, y, z)=f(x, y)+$ $g(z)$ in source-free, free space. Using Maxwell's equations, prove that if it is a plane wave, then $f(x, y)=0$.
9. What values of A and β are required if the two fields given below satisfy Maxwell's equations in a linear, isotropic, homogeneous medium with $\epsilon_{r}=\mu_{r}=4$ and $\sigma=0$?

$$
\begin{gathered}
\vec{E}=120 \pi \cos \left(10^{6} \pi t-\beta x\right) \hat{a_{y}} V / m \\
\vec{H}=A \pi \cos \left(10^{6} \pi t-\beta x\right) \hat{a_{z}} V / m
\end{gathered}
$$

Assume there are no current or charge densities in space.
10. Consider a point on the surface of a perfect conductor. The electric field intensity at that point is $\vec{E}=(500 \hat{x}-300 \hat{y}+600 \hat{z}) \cos 10^{7} t$ and medium surrounding the conductor is characterized by $\mu_{r}=5$ and $\epsilon_{r}=10$ and $\sigma=0$.
(a) Find a unit vector normal to the conductor at that point of the conductor surface.
(b) Find the surface charge density at the point.
11. Assume two regions are separated by $z=0$ plane. Let $\mu_{1}=4 \mu \mathrm{H} / \mathrm{m}$ in region 1 where $z>0$, while $\mu_{2}=7 \mu \mathrm{H} / \mathrm{m}$ in region 2 wherever $z<0$. We are given $\mathbf{B}_{1}=2 \mathbf{a}_{x}-3 \mathbf{a}_{y} \mathrm{mT}$, in region 1 . Find \mathbf{B}_{2} for both the cases (a) and (b). a) Let surface current be $\mathbf{J}_{s}=80 \mathbf{a}_{x} \mathrm{~A} / \mathrm{m}$ on $z=0$. b) Let surface current be $\mathbf{J}_{s}=80 \mathbf{a}_{z} \mathrm{~A} / \mathrm{m}$ on $z=0$.
12. Consider the result of superimposing left and right circularly polarized fields of the same amplitude, frequency and propagation direction, but where a phase shift of δ radians exists between two. What is the polarization of the resultant field? (consider the wave is travelling in +z direction)
13. We have seen in class that a good conductor is classified by the condition that $\epsilon^{\prime \prime} / \epsilon^{\prime} \gg 1$, where the permittivity $\epsilon=\epsilon^{\prime}-j \epsilon^{\prime \prime}$. For such a conductor, find a simple relationship for α and β. Further, derive the expression for phase velocity as a function of conductivity σ and frequency f. How does velocity vary with frequency, and how does it vary with conductivity?
14. A uniform plane wave is travelling in seawater. Assume that the x-y plane resides just below the sea surface and the wave travels in the $+z$ direction into the water. The constitutive parameters of seawater are $\epsilon_{r}=80$, and $\sigma=4 S / m$. If the magnetic field at $z=0$ is $\boldsymbol{H}(0, t)=\hat{\boldsymbol{y}} 100 \cos (2 \pi *$ $\left.10^{3} t+15^{\circ}\right)(\mathrm{m} \mathrm{A} / \mathrm{m})$,
(a) obtain expressions for $\boldsymbol{E}(z, t)$ and $\boldsymbol{H}(z, t)$, and
(b) determine the depth at which the magnitude of \boldsymbol{E} is 1% of its value at $z=0$.

