EE2025 Engineering Electromagnetics: July-Nov 2019

Tutorial 1: Transmission Lines

Note : All transmission lines can be assumed to be lossless, unless mentioned otherwise.

- 1. Sinusoidally varying voltages and currents can in general be represented as $V \cos(\omega t + \psi)$ and $I \cos(\omega t + \phi)$, where V, I are real. These can also be written in phasor notation as $Re[Ve^{j\psi}e^{j\omega t}]$ and $Re[Ie^{j\phi}e^{j\omega t}]$: we now call the terms accompanying $e^{j\omega t}$ as the *phasors* corresponding to the voltage and current respectively (i.e. $Ve^{j\psi}$ and $Ie^{j\phi}$). Note that phasors are always time independent. Find an expression for the average power (over a cycle) in terms of these phasors.
- 2. The length of a microstrip trace line connecting two components on a chip is 50 cm. A sinusoidal signal of frequency 1 GHz is supplied to the trace at one end. Assuming the velocity of propagation of the signal is 2×10^8 m/sec and there are no reflections,
 - 1. Calculate the time taken by the signal to reach the other end of the trace.
 - 2. What is the phase difference between the signal at the two ends of the trace ?
- 3. Using the concepts of electrostatics, find the capacitance per unit length, C of
 - 1. parallel wire line, with each wire of radius a and separated by a distance 2d, where $a \ll 2d$.
 - 2. coaxial cable of inner radius a and outer radius b.

Figure 1: (a)Two wire transmission line. $a \ll d$. (b) Coaxial transmission line with inner radius a and outer radius b and length l

- 4. You are required to buy a cable from an electronics shop to connect your dish antenna to your set top box and your set top box to your TV.
 - 1. Write the name of the cable you would buy.
 - 2. Upto what length do you think you can use this cable, in the lumped circuit model and why ?
- 5. A transmission line with characteristic impedance $Z_0 = 50$ j5 Ω and propagation constant $\gamma = 0.2 + j2.5$ /m is connected to a load impedance of 100 + j50 Ω . Find

Frequency Band	RF Channels	Frequency (MHz)
Very high frequency-Low	2 - 6	54 - 88
Very high frequency-High	7 - 13	174 - 216
Ultra high frequency	14 - 69	470 - 806

Table 1: Frequency bands in television

- 1. Reflection coefficient of the line at the load end.
- 2. Reflection coefficient of the line 5m from the load.
- 6. (a) Show that the impedance along the line will lie between Z_0/ρ and $Z_0\rho$, where ρ is the VSWR. (b)A 300 Ω transmission line is connected to a circuit with an input impedance of 75+j35 Ω . Find
 - 1. ρ
 - 2. Maximum impedance seen on the line
 - 3. Minimum impedance seen on the line
- 7. An RG-59U coaxial cable has a loss of 10 dB per 100 ft of length. A 10 V 3 A signal is generated using a function generator and connected to one end of the 50 ft long cable. On the other side, the cable is impedance matched to a set top box unit. Find the power delivered to the load.
- 8. According to the maximum power transfer theorem, maximum time averaged power is transferred from a source with internal impedance Z_g to a load, Z_L when $Z_g = Z_L^*$. A 50 MHz generator with an internal impedance (Z_g) of 50 Ω is connected to an impedance 50–j25 Ω . How would you ensure maximum power transfer in this case using a lossless transmission line of characteristic impedance 100 Ω , and what should be the minimum length of the transmission line element ? Assume $v = 2 \times 10^8 \text{m/s}$ as wave velocity.

Figure 2: Impedance matching using a transmission line of length l

- 9. On a 50 Ω BNC cable line, the reflection co-efficient is measured at the load end to be $0.7 \angle 30^{\circ}$. If the propagation constant of the line is $20 \angle 89^{\circ} / m$, find the impedance seen on the transmission line at a distance of 4 m from the load. (Note : BNC is a very popular type of coaxial cable used for frequencies even up to 4 GHz)
- 10. Calculate the average power dissipated by each resistor in the circuit shown in Fig. 4.
- 11. Given the system in (Fig. 5) is operating with $\lambda = 100cm$ and $Z_0 = 300\Omega$. If $d_1 = 10cm$, d = 25cm, and the system is matched to 300 Ω , find Z_L ?

Figure 3: Impedance matching using a short circuited stub of length l and its equivalent circuit

Figure 4

- 12. The two-wire lines shown in Fig. 6 are all lossless and have $Z_0 = 200\Omega$. Find the possible values of d and d_1 to provide a matched load if $\lambda = 100 cm$. (Note that the un-shaded and shaded conductor are both parts of the same transmission line, for example they can be the inner and outer conductor of a coaxial cable.)
- 13. Approximate distributed circuit models of (lossless) a lossless transmission operating in high frequency modes is shown in Fig. 7. Note that L has units $H \cdot m$, C has units $F \cdot m$, L_0 has units H/mand C_0 has units F/m. Obtain expressions for the propagation constant β and the characteristic impedance Z_0 of the line for both circuits at frequency ω .
- 14. For the transmission line represented in Fig. 8, calculate the potential developed across the 80Ω resistor for (a) f = 60Hz, (b) f = 1MHz, (c) Repeat part (a) with length 10^7m instead of 80m.

Figure 5

Figure 8