Computational Electromagnetics:
Finite Difference Time Domain Methods – Materials and Boundary Conditions

Uday Khankhoje

Electrical Engineering, IIT Madras
Topics in this module

1. Dealing with dielectric materials
2. Absorbing boundary conditions
Table of Contents

1. Dealing with dielectric materials

2. Absorbing boundary conditions
Dealing with dielectric materials – simplistic

\[\frac{\partial \vec{D}}{\partial t} = \nabla \times \vec{H} \]

\[\vec{D} = \varepsilon \vec{E} \]

\[\varepsilon \vec{E} = \nabla \times \vec{H} \]

fixed appropriately in each Yee cell.

usual update equations.

\[\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial t} + \vec{J} \]

Ohm's law: \[\vec{J} = \sigma \vec{E} \]

\[\nabla \times \vec{H} = \varepsilon \frac{\partial \vec{E}}{\partial t} + \sigma \vec{E} \]

FDTD

\[\nabla \times H^{n-1/2} = \varepsilon \frac{\partial E^{n-1/2}}{\partial t} + \sigma \frac{E^{n-1/2}}{2} \]

as before \[\left(\frac{E^n - E^{n-1}}{\Delta t} \right) \]

FD \[\left(\frac{E^n + E^{n-1}}{2} \right) \]

Say want to update \(E^n \)

Need \(E^{n-1} \), \(H^{n-1/2} \).
Dealing with PECs

\[E^n = \left[\frac{1 - \sigma \Delta t/2\varepsilon}{1 + \sigma \Delta t/2\varepsilon} \right] E^{n-1} + \left[\frac{1}{1 + \sigma \Delta t/2\varepsilon} \right] \frac{\Delta t}{\varepsilon} \left(\nabla \times H^{n-1/2} \right) \]

- dielectric materials: finite \(\sigma \).
- PEC \(\rightarrow \) \(\sigma \rightarrow \infty \)

Update Eqn: \(E^n = -E^{n-1} \)

If we initialize \(E \) to be zero on the PEC boundary, it stays zero.
Dealing with dispersive dielectric materials

\[
\tilde{D}(\omega) = \tilde{\varepsilon}_r(\omega) \varepsilon_0 \tilde{E}(\omega) \quad \text{(freq domain)}.
\]

Yee cell, time-space update.

Now, I need full time history of \(\vec{E} \) to get \(\vec{B} \).

\[
D(t) = \varepsilon_0 \int_{-\infty}^{t} E(t-r) \varepsilon_r(r) \, dr
\]

\[D(t) = \varepsilon_0 \int E(t) \, dt \]

0 due to causality

\[D(t) = \varepsilon_r \varepsilon_0 E(t) \quad \text{What is } \varepsilon_r(t) ? \]

\[\varepsilon_r(t) = \varepsilon_r \delta(t) \]

\(\Rightarrow \) Instantaneous response

(Unrealistic)
Dispersive materials – Debye model

\[\tilde{\varepsilon}_r(\omega) = \varepsilon_\infty + (\varepsilon_s - \varepsilon_\infty) \frac{1}{1+j\omega \tau}\]

High freq. static

\[\varepsilon_r(t) = \{\varepsilon_\infty \delta(t) + \left[\frac{\varepsilon_s - \varepsilon_\infty}{\tau}\right] e^{-t/\tau} U(t)\}\]

relaxation time (approximation)

\[\beta(t) = \left(\frac{\varepsilon_s - \varepsilon_\infty}{\tau}\right) e^{-t/\tau} U(t)\]

Unit Step

\[D(t) = \varepsilon_0 \int_0^t E(t-\tau) \tilde{\varepsilon}_r(\tau) d\tau\]

Discrete

\[D = \varepsilon_0 \left[\varepsilon_\infty E^n + \sum_{m=0}^{n-1} E^{n-m} \int_{m \Delta t}^{(m+1) \Delta t} \beta(\tau) d\tau\right] \]

\[\bar{\beta}^m\]
Plugging the dispersive relation into FDTD

\[
D^n = \varepsilon_0 \left[\varepsilon_\infty E^n + \frac{E^n - E^{n-1}}{\Delta t} + \sum_{m=0}^{n-2} \frac{E^{n-1}}{\bar{\beta}^m} \left(\frac{\bar{\beta}^{m+1} - \bar{\beta}^m}{\bar{\beta}^{m+1}} \right) \right] + \Delta t \left[\nabla \times H^{n-1/2} \right]
\]

Update eqn:

\[
E^n = \left[\frac{\varepsilon_\infty}{\varepsilon_\infty + \beta^0} \right] \left[E^{n-1} - \frac{1}{\varepsilon_\infty} \frac{\nabla \times H^{n-1}}{\varepsilon_\infty} + \frac{\Delta t}{\varepsilon_0} \nabla \times H^{n-1/2} \right]
\]
Final simplifications

\[
\tilde{\psi} = \sum_{m=0}^{n-1} E_m \Delta \beta_m
\]

Still need: \(\tilde{\psi} = \sum_{m=0}^{n-1-m} E_m \Delta \beta_m \) \(\Delta \beta_m = \Delta \beta^{m+1} - \Delta \beta^m = \int_{m \Delta t}^{(m+1) \Delta t} \beta(t) \, dt - \int_{m \Delta t}^{(m+1) \Delta t} \beta(t) \, dt \)

Use \(\beta(t) = \frac{\varepsilon_s - \varepsilon_\infty}{\tau} e^{-t/\tau} U(t) \)

\[
\Delta \beta_m = -2 \left(\frac{\varepsilon_s - \varepsilon_\infty}{\varepsilon} \right) \left(1 - 2 e^{-\Delta t/\tau} + e^{-2\Delta t/\tau} \right) e^{-m \Delta t/\tau}
\]

\(\Delta \beta_m \) 's resemble a geometric progression.

\[
\left(\frac{\Delta \beta_m^{m+1}}{\Delta \beta_m^m} = e^{-\Delta t/\tau} \right) \Rightarrow \tilde{\psi}^{n-1} = E^{n-1} \Delta \beta^0 + \sum_{m=1}^{n-2} E^{n-1-m} \Delta \beta_m
\]

\[
\frac{m-1 = p}{\sum_{p=0}^{n-3} E^{p+1} \Delta \beta_p} \quad \tilde{\psi}^{n-1} = E^{n-1} \Delta \beta^0 + (e^{-\Delta t/\tau}) \sum_{p=0}^{n-2} E^{n-2-p} \Delta \beta_p
\]
\[\Psi^{n-1} = E^0 \Psi^{n-2} + e^{-\Delta t/c} \Psi \]

For \(\Psi \)

So far we were storing \(E, H \) at \(x, t \) grids
Now \(E, H, \Psi \) at \(x, t \) grids

+ No need to store entire history of \(E, H \)!
- Store one new Aux variable, \(\Psi \)

Reduced a convolution integral to a running summation.

→ Assumption: Debye model
Others: Lorentzian resonances

MEEP
→ Ab Initio group at MIT
Scheme, C++
Table of Contents

1. Dealing with dielectric materials

2. Absorbing boundary conditions
ABC's come in 3 varieties (CEM in general)

1) Local ABC
2) Global ABC
3) Absorbing media (PML - perfectly matched layers)

Introduction and 1D situation

Engquist-Majda → 1st 2nd order

G. Mur → FDTD (1981)

Wave equation:
\[\frac{\partial^2 E}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 E}{\partial t^2} = 0 \]

\[\frac{\partial E}{\partial x} = \frac{1}{c} \frac{\partial E}{\partial t} \]

\[j(kx - wt) \]

Right hand side boundary

Impose:
\[\frac{\partial E}{\partial x} + \frac{1}{c} \frac{\partial E}{\partial t} = 0 \]
What happens in 2D?

Numerical

What is \(R? \)

(Ref coefficient)

\[j \left(\omega t - k_x x - k_y y \right) \]

Impose \(\frac{\partial^2 E}{\partial x^2} + \frac{1}{c^2} \frac{\partial^2 E}{\partial t^2} = 0 \)

\[-jk_x + j\frac{\omega}{c} \neq 0 \]

\[k_x^2 + k_y^2 = \left(\frac{\omega}{c} \right)^2 \]

Inc: \(e^{j(\omega t - k_x x - k_y y)} \)

Ref: \(Re^{j(\omega t + k_x x - k_y y)} \)

\[\text{tot} = \text{inc} + \text{ref} \]

BC \(\rightarrow \)

\[\left(\frac{\partial}{\partial x} + \frac{1}{c} \frac{\partial}{\partial t} \right) (\text{tot}) = 0 \]

\[(-k_x \cos \theta + R k \cos \theta) + \frac{1}{c} (\omega + R \omega) = 0 \]

\[R = \frac{\cos \theta - 1}{\cos \theta + 1} \]
Implementing in FDTD

Want to impose \(\frac{\partial}{\partial z} \left(\frac{\partial E_y}{\partial t} \right) = 0 \) in FDTD.

Could do BKWD differences, but error is high.

Compromise: Use centre differences, but impose half a cell inside boundary.

Adv: accurate to 2\(^{nd}\) order
Substituting to get update eqn for \(E_y^{n+1}(i,j+\frac{1}{2}) \)

\[
E_y^{n+1}(i,j+\frac{1}{2}) = \gamma E_y^n(i,j+\frac{1}{2}) - \gamma E_y^{n+1}(i-1,j+\frac{1}{2}) + E_y^n(i-1,j+\frac{1}{2}), \quad \gamma = \frac{1-\alpha}{1+\alpha}, \quad \alpha = \frac{c\Delta t}{\Delta x}
\]

Implementing in FDTD from usual update eqns.

Set \(E_y^0 = 0 \) initial conditions.

reasonable in most cases.
Generalizing to higher order ABC? (Higdon)

\[
\left(\frac{\partial}{\partial x} + \frac{1}{c} \frac{\partial}{\partial t} \right) E_x = 0 \quad \rightarrow \quad \text{1st order ABC}
\]

\[
\left(\frac{\partial}{\partial x} + \frac{\cos \theta_1}{c} \frac{\partial}{\partial t} \right) \left(\frac{\partial}{\partial x} + \frac{\cos \theta_2}{c} \frac{\partial}{\partial t} \right) E_x = 0 \quad \rightarrow \quad \text{2nd order ABC}
\]
Topics that were covered in this module

1. Dealing with dielectric materials
2. Absorbing boundary conditions

References:
* Ch 12 of Computational Methods for Electromagnetics - Peterson, Ray, Mitra
* Computational Electrodynamics: The Finite-Difference Time-Domain Method – Allen Taflove (the ‘Bible’ for FDTD)