Computational Electromagnetics: Method of Moments

Uday Khankhoje

Electrical Engineering, IIT Madras
Topics in this module

1. Motivation
2. Linear Vector Spaces
3. Formulating the Method of Moments
4. MoM: Surface Integral Equations
5. MoM: Volume Integral Equations
Table of Contents

1 Motivation

2 Linear Vector Spaces

3 Formulating the Method of Moments

4 MoM: Surface Integral Equations

5 MoM: Volume Integral Equations
Recall potential problem (finding $V(r) \forall r$)

$$V(r) = \frac{1}{4\pi\epsilon_0} \int_L \frac{\rho(r')}{R} \, dl'$$

Steps: (1) Find ρ, (2) then V.

Problems with this approach?

- Need large N.
- Basis functions can be better.
- Not enforcing $V(y) = V_0$ at pts other than y_m.

Want a more robust method.
Table of Contents

1 Motivation

2 Linear Vector Spaces

3 Formulating the Method of Moments

4 MoM: Surface Integral Equations

5 MoM: Volume Integral Equations
From continuous to the discrete world

Integral/differential operators \rightarrow Linear operator $\mathbb{L} \phi(r) = f(r)$

(a) Need a basis for $D(\mathbb{L})$

(b) Need a basis for $R(\mathbb{L})$

Condition on f? f must be in $R(\mathbb{L})$

Once we discretize \rightarrow

finite dimensional vector space $V \rightarrow V_N$

Characterized by:

$\{ b_n, n = 1, \ldots, N \}$

1) Linearly independent
2) Span the vector space

basis
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Motivation</td>
</tr>
<tr>
<td>2</td>
<td>Linear Vector Spaces</td>
</tr>
<tr>
<td>3</td>
<td>Formulating the Method of Moments</td>
</tr>
<tr>
<td>4</td>
<td>MoM: Surface Integral Equations</td>
</tr>
<tr>
<td>5</td>
<td>MoM: Volume Integral Equations</td>
</tr>
</tbody>
</table>
Formulating a system of equations

Express $\phi(r)$ in the basis $\{b_n(r)\}_{n=1}^N$

$$\phi(r) = \sum_{n=1}^N \phi_n b_n(r)$$

$$(b_n(r), \phi(r)) = \phi_m$$

Unknowns now are: $\phi_n, t_n(r), f_n$

Choosing one $t_m(r)$ ‘testing’ fn gives:

$$(t_m(r), f(r)) \rightarrow \sum_{n=1}^N \phi_n (t_m(r), L b_n(r)) = f_m = (t_m(r), f(r))$$

Overall matrix equation becomes:

$$A x = c$$

$$A_{mn} = (t_m(r), L b_n(r))$$

$$c_m = f_m$$

Similarly for $f(r)$ in basis $\{t_n(r)\}_{n=1}^N$

$$f(r) = \sum_{n=1}^N f_n t_n(r)$$

Boundary condn? e.g. $L = \frac{d}{dx}$ & $L \phi(r) = 1$
Old wine in new bottle

In the first problem of \(\frac{1}{4\pi \epsilon_0} \int_L \frac{\rho(r')}{R} \, dl' = V(r'), \)
how to describe the \textbf{old} solution procedure in the \textbf{new} language?

1) \textbf{basis:} \(\rho(r) = \sum_{n} p_n b_n(r) \)

2) \textbf{testing:} \(V(r_m) = \int_0 V(r) \delta(r-r_m) \, dr \)

\[\Rightarrow \ t_m(r) = \delta(r-r_m) \]

\textbf{pulse basis, delta testing}

\textbf{point testing}

\textbf{point collocation method.}
<table>
<thead>
<tr>
<th></th>
<th>Table of Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Motivation</td>
</tr>
<tr>
<td>2</td>
<td>Linear Vector Spaces</td>
</tr>
<tr>
<td>3</td>
<td>Formulating the Method of Moments</td>
</tr>
<tr>
<td>4</td>
<td>MoM: Surface Integral Equations</td>
</tr>
<tr>
<td>5</td>
<td>MoM: Volume Integral Equations</td>
</tr>
</tbody>
</table>
Surface Integral Equations: Recap

\[\phi_i(r') - \oint [g_1(r, r') \nabla \phi_1(r) - \phi_1(r) \nabla g_1(r, r')] \cdot \hat{n} dl \]

\[
= \begin{cases}
\phi_1(r') & r' \in V_1 \\
0 & r' \in V_2
\end{cases}
\]

Similarly for region 2:

\[\oint [g_2(r, r') \nabla \phi_2(r) - \phi_2(r) \nabla g_2(r, r')] \cdot \hat{n} dl \]

\[
= \begin{cases}
\phi_2(r') & r' \in V_2 \\
0 & r' \in V_1
\end{cases}
\]
Surface Integral Equations: Recap (contd.)

Use only the Extinction theorem:

\[
\oint \left[g_1(r, r') \nabla \phi(r) \cdot \hat{n} - \phi(r) \nabla g_1(r, r') \cdot \hat{n} \right] \, dl = \phi_i(r'), \quad r' \in V_2
\]

\[
\oint \left[g_2(r, r') \nabla \phi(r) \cdot \hat{n} - \phi(r) \nabla g_2(r, r') \cdot \hat{n} \right] \, dl = 0, \quad r' \in V_1
\]

\[\nabla \phi \cdot \hat{n} = \sum_{n=1}^{N} a_n p_n(r) \quad \phi(r) = \sum_{n=1}^{N} b_n p_n(r) \quad \text{for } r \in V_1\]

Boundary Integral method.

Extended BC method.
Surface Integrals: Which terms are problematic?

\[g(r, r') = - \frac{j}{4} H_0^{(2)}(k|r - r'|) \]

What about \(\nabla g \)? Use \(\frac{dH_0^{(2)}(x)}{dx} = -H_1^{(2)}(x) \)

Call \(\rho = |r - r'| = \sqrt{(x - x')^2 + (y - y')^2} \)

For \(\rho \ll 1 \):

\[H_0^{(2)}(k\rho) \approx 1 - \frac{j}{2} \left(\ln \frac{k\rho}{2} + \gamma \right) \approx 0.57 \]

Both \(g \) and \(\nabla g \) blow up as \(\rho \to 0 \)

Thus, care while integration:

- Segments where \(r \neq r' \) \rightarrow Numerical quadrature rules
- Segments where \(r = r' \) \rightarrow Singular integrals
Surface Integrals: Kinds of singularities?

\[H_0^{(2)}(x) \approx 1 - j \frac{2}{\pi} \left(\ln \left(\frac{x}{2} \right) + \gamma \right) \quad \leftarrow x \ll 1 \rightarrow \quad \Uparrow \quad H_1^{(2)}(x) \approx \frac{x}{2} + \frac{2j}{\pi} \frac{1}{x} \]

\[\lim_{\varepsilon \to 0} \int_{a}^{\frac{1}{\varepsilon}} \frac{1}{x} \, dx = \ln x \bigg|_{\varepsilon}^{a} = \ln a - \ln \varepsilon \]

\[= a \ln a - a \quad \text{convergent} \]

Thus the singularity of \(g \) is integrable but not of \(\nabla g \).
What happens when you integrate past a singularity?

Improper integral e.g. \(\int_{-a}^{b} \frac{1}{x} \, dx \) and both \(a, b > 0 \). Since \(\frac{1}{x} \to \infty \) as \(x \to 0 \),

Rewrite as: \(\int_{-a}^{b} \frac{1}{x} \, dx = \int_{-a}^{-\varepsilon} \frac{1}{x} \, dx + \int_{-\varepsilon}^{b} \frac{1}{x} \, dx \)

If BOTH \(\eta, \varepsilon \) approach zero independently, and the limit exists, then we say the integral is convergent. Is that true here?

\[\int_{-\varepsilon}^{b} \frac{1}{x} \, dx + \int_{-\varepsilon}^{b} \frac{1}{x} \, dx = (\ln \eta - \ln a) + (\ln b - \ln \varepsilon) \to \int_{-a}^{-\varepsilon} \frac{1}{x} \, dx + \int_{-\varepsilon}^{b} \frac{1}{x} \, dx \]

\[= \ln \frac{b}{a} \]

No! It is divergent. But this exists →

Called the Cauchy principle value (PV) of the integral

\(\text{PV} \int_{-\varepsilon}^{b} f(x) \, dx \)
Back to the surface integral equations:

$$\oint [g_1(r, r') \nabla \phi(r) \cdot \hat{n} - \phi(r) \nabla g_1(r, r') \cdot \hat{n}] \, dl = \phi_i(r'), \quad r' \in V_2$$

$$\oint [g_2(r, r') \nabla \phi(r) \cdot \hat{n} - \phi(r) \nabla g_2(r, r') \cdot \hat{n}] \, dl = 0, \quad r' \in V_1$$

How do we change the integration contours?
Putting it together: evaluating the integrals

\[\int_0^l dl = l \]

\[\int \mathbf{E} \cdot d\mathbf{l} = \pi \varepsilon \]

\[\int_0^\pi \varepsilon d\theta = -\pi \varepsilon \times \]

\[\int_0^\pi \varepsilon (-d\theta) = \pi \varepsilon \]

\[I_1 = \lim_{\varepsilon \to 0} -\frac{j k \varepsilon}{4} \times \frac{j^2}{\pi k} \varepsilon = -\frac{1}{2} \]

\[I_2 = \int_0^l \mathbf{E} \cdot d\mathbf{l} = \frac{j k}{4} \int_0^\pi H_1^{(2)}(k \rho) (-1) (-\varepsilon d\theta) \]

\[= +\frac{1}{2} \]
Table of Contents

1 Motivation
2 Linear Vector Spaces
3 Formulating the Method of Moments
4 MoM: Surface Integral Equations
5 MoM: Volume Integral Equations
Recap what we already know to solve:

\[\nabla^2 \phi(r) + k^2 \phi(r) = f(r) = j \omega \mu J(r) \quad \text{(1)} \]
\[\nabla^2 g(r, r') + k^2 g(r, r') = -\delta(r, r') \quad \text{(2)} \]

\[L = \nabla^2 + k^2 \]

\[\alpha = 0 \]

To solve this:

\[x^2 y'' + xy' + (x^2 - x^2)y = 0 \quad \text{(Bessel's Diff Eqn)} \]

\[f(r) = -\int g(r, r') f(r') \, dr' + \text{const.} \quad \text{Homogeneous object} \]
Volume Integral Equations: Setting up

How is our current problem different?

When there is no object:
\[\nabla^2 E_i(r) + k_0^2 E_i = j \omega \mu J_z(r) \quad (1) \]

Add the object \(V_2 \)
\[\nabla^2 E(r) + k_0^2 \epsilon_r(r) E(r) = j \omega \mu J_z(r) \quad (2) \]

\[\nabla^2 [E(r) - E_i(r)] + k_0^2 \epsilon_r(r) E(r) - k_0^2 E_i(r) = 0 \quad (3) \]

\[\nabla^2 g(r, r') + k_0^2 g(r, r') = -\delta(r, r') \quad (4) \]
\[\nabla^2 \phi + k_0^2 \phi = f(r) \]
Volume Integral Equations: Solving

Get it into a form that we can solve:

\[\nabla^2 (E - E_i) + k_0^2 \varepsilon_r E - k_0^2 E_i + k_0^2 E = k_0^2 E \]

Using

\[\nabla^2 g(r, r') + k_0^2 g(r, r') = -\delta(r, r') \]

we get

\[E(r) - E_i(r) = \int g(r, r') k_0^2 (\varepsilon_r(r') - 1) E(r') \, dr' \]

known: \(E_i(r), \varepsilon_r(r), g(r, r') \)

unknown: \(E(r) \)

Fredholm integral eqn of 2nd kind

\[E(r) - \int g(r, r') k_0^2 (\varepsilon_r(r') - 1) E(r') \, dr' = E_i(r) \]

\[\uparrow \]

Find \(E(r) \) inside \(V_2 \) \rightarrow choose \(r \in V_2 \)

2 steps:

1) Find \(E(r) \) inside \(V_2 \) \rightarrow choose \(r \in V_2 \)

2) Find \(E(r) \) anywhere \rightarrow choose \(r \in V_1 \)
Volume Integral Equations: Solving (MoM)

Use MoM: Pulse basis, delta testing

\[t_m(r) = \delta(r-r_m) \quad (2D \ delta \ function) \]

\[E(r) = \sum_{n=1}^{N} a_n P_n(r) \]

To solve for:

\[E(r) = \int k_0^2 g(r, r') \chi(r')E(r')dr' = E_i(r) \]

1) Pulses:

\[\sum_{n=1}^{N} a_n P_n(r) - \int k_0^2 g(r, r') \sum_{n=1}^{N} x_n a_n P_n(r) dr' = E_i(r) \]

2) Testing:

\[\int (\cdot) \delta(r-r_m) dr \Rightarrow a_m - \int k_0^2 g(r_m, r') \sum_{n=1}^{N} x_n a_n P_n(r') dr' = E_i(r_m) \]

\[-j \frac{H_0}{4} (k |r-r_m|) \]

\[n^{th} \ pulse \]
Volume Integral Equations: Solving (contd)

Any problems with singularities here?

2 cases

\[\gamma_m \in n^{th} \text{ pulse } (m \neq n) \]
\[\gamma_m \in n^{th} \text{ pulse } (m = n) \rightarrow \text{ potential singularity} \]

\[\int g(\gamma_m, y') \, dy' \]

\[\int \int H_o^{(2)}(k \rho) \, d\rho \, d\theta = \begin{cases}
\frac{2\pi a}{k} \int J_1(k\rho) H_0^{(2)}(k \rho_{mn}) & m \neq n \\
\frac{2}{k^2} \left[\pi k a H_1^{(2)}(ka) - 2j \right] & m = n.
\end{cases} \]

\[\rho = \gamma_m + \delta \]
Volume Integral Equations: Summary

Putting it all together:

\[a_m = \sum_{n=1}^{N} a_n x_n k_0^2 \int g(r_m, r') p_n(r') \, dr' = E_i(r_m) \]

System:

\[
\begin{bmatrix} a_1 \\ \vdots \\ a_N \end{bmatrix} = \begin{bmatrix} b \\ \vdots \\ b \end{bmatrix}
\]

\[
\begin{bmatrix} E_i(r_1) \\ \vdots \\ E_i(r_N) \end{bmatrix}
\]

\[E(r) = E_i(r) + k_0^2 \int g(r, r') x(r') E(r') \, dr' \]

\[v < v_i \]

Known

Total = Incident + Scattered.

Subs. \[E(r) = \sum_{n=1}^{N} a_n p_n(r') \]

Known
Topics that were covered in this module

1. Motivation
2. Linear Vector Spaces
3. Formulating the Method of Moments
4. MoM: Surface Integral Equations
5. MoM: Volume Integral Equations

References:

- Ch 8 of ‘Waves and fields in inhomogeneous media’, Chew
- Ch 2.5 of ‘Computational Methods for Electromagnetics’, Peterson, Ray, Mitra