Computational Electromagnetics: Review of Vector Calculus

Uday Khankhoje

Electrical Engineering, IIT Madras
Topics in this module

1. Chain rule of differentiation and the gradient
2. Gradient, Divergence, and Curl operators
3. Common theorems in vector calculus
4. Corollaries of these theorems; miscellaneous results
1. Chain rule of differentiation and the gradient

2. Gradient, Divergence, and Curl operators

3. Common theorems in vector calculus

4. Corollaries of these theorems; miscellaneous results
Chain rule of differentiation

- Consider a scalar function of several variables, \(f(x, y, z) \)

\[
\begin{align*}
\nabla \cdot \mathbf{r} & = \frac{\partial}{\partial x} f \mathbf{i} + \frac{\partial}{\partial y} f \mathbf{j} + \frac{\partial}{\partial z} f \mathbf{k} = \sqrt{\frac{1}{4} + \frac{1}{8} + \frac{1}{2}} \\
|\mathbf{r}| & = \sqrt{x^2 + y^2 + z^2}
\end{align*}
\]

- Want to calculate a small change in \(f \), i.e. \(df \). Say each variable has changed, e.g. \(x \rightarrow x + dx \ldots \)

- Chain rule tells us:

\[
df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz
\]

- Dot product between \(\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right) \) and \((dx, dy, dz) \)
Working with the gradient

- Compact way to write change: \(df = \nabla f \cdot \vec{dl} \)

- Now we want the total change going from \(\vec{a} \) to \(\vec{b} \)

\[
\int_{\vec{a}}^{\vec{b}} df = f(\vec{b}) - f(\vec{a})
\]

- Corollary: \(\oint \nabla f \cdot \vec{dl} = 0 \)
1 Chain rule of differentiation and the gradient

2 Gradient, Divergence, and Curl operators

3 Common theorems in vector calculus

4 Corollaries of these theorems; miscellaneous results
Gradient as the ‘Del’ operator

• Saw that \[\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right) \]

• Generalize a ‘Del’ operator as \[\nabla = \hat{x} \frac{\partial}{\partial x} + \hat{y} \frac{\partial}{\partial y} + \hat{z} \frac{\partial}{\partial z} \]

• Acts in three ways (like an ordinary vector)

(gradient) \(\nabla f \) (divergence) \(\nabla \cdot \vec{A} \) (curl) \(\nabla \times \vec{A} \)
Divergence: \(\nabla \cdot \vec{A} = \frac{x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z} \)

- Geometrically: measures how much a vector ‘diverges’ at a pt

- Examples

\[\vec{A} = (x, y, z) \]
\[\nabla \cdot \vec{A} = \frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial z}{\partial z} = 3 \]

\[\vec{A} = (0, 0, 1) \]
\[\nabla \cdot \vec{A} = 0 + 0 + \frac{\partial}{\partial z} = 0 \]

\[\vec{A} = (0, 0, z) \]
\[\nabla \cdot \vec{A} = 0 + 0 + \frac{\partial}{\partial z} = 1 \]
Curl: \(\nabla \times \vec{A} = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}, \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}, \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right) \)

- Geometrically: measures how much a vector ‘swirls’ around a pt
- Examples

\[\vec{A} = (x, y, z) \quad \vec{A} = (-y, x, 0) \quad \vec{A} = (0, x, 0) \]
1	Chain rule of differentiation and the gradient
2	Gradient, Divergence, and Curl operators
3	Common theorems in vector calculus
4	Corollaries of these theorems; miscellaneous results
Integrals in vector calculus

• Line integrals: \(\int \vec{A} \cdot d\ell \)

• Surface integrals: \(\int \vec{A} \cdot d\vec{s} \)

• Volume integrals: \(\int f \, dv \)

\[\int \vec{A} \, dv = \int A_x \, dv + \int A_y \, dv + \int A_z \, dv \]

\[\rightarrow \text{ vector} \]
Divergence (a.k.a. Gauss’s / Green’s) Theorem

Geometrically:
\[
\int_V \nabla \cdot \vec{A} \, dv = \oint_S \vec{A} \cdot \vec{d}s
\]

Proof sketch:
\[
\left(\oint_{\partial V} A \cdot ds \right) = \left[A_x(x_0 + \Delta x, y_0, z_0) - A_x(x_0 - \Delta x, y_0, z_0) \right] \Delta y \Delta z
\]

\[
\lim_{\Delta x, \Delta y, \Delta z \to 0} \frac{dV}{\Delta x, \Delta y, \Delta z} = \nabla \cdot \vec{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}
\]

CEM : Helps reduce dimensionality of problem
Curl (a.k.a. Stoke’s) Theorem

Geometrically:
\[\int_S (\nabla \times \vec{A}) \cdot \vec{ds} = \oint_{\Gamma} \vec{A} \cdot \vec{dl} \]

Proof sketch:
\[\int_S (\nabla \times \vec{A}) \cdot \vec{ds} \]
Corollary:
\[\oint_S (\nabla \times \vec{A}) \cdot \vec{ds} = 0 \]
Stoke’s Theorem in a multiply connected region

Geometrically: surface + hole

\[\int_S (\nabla \times \vec{A}) \cdot d\vec{s} = \oint_{\Gamma_1} \vec{A} \cdot d\vec{l} - \oint_{\Gamma_2} \vec{A} \cdot d\vec{l} \]

CEM: Helps reduce domain of computation
Table of Contents

1. Chain rule of differentiation and the gradient
2. Gradient, Divergence, and Curl operators
3. Common theorems in vector calculus
4. Corollaries of these theorems; miscellaneous results
Corollaries: Integration by parts

- Two scalar functions, \(f, g \). Know that:
 \[
 \frac{d(fg)}{dx} = f \frac{dg}{dx} + g \frac{df}{dx}
 \]
 Rearranging, integrating:
 \[
 \int_a^b f \frac{dg}{dx} \, dx = \int_a^b \frac{d(fg)}{dx} \, dx - \int_a^b \frac{df}{dx} g \, dx
 \]
 \[
 \int_a^b fg' \, dx = fg \bigg|_a^b - \int_a^b f'g \, dx
 \]

- Extend to vector calculus: scalar \(f \), vector \(\vec{A} \) functions

 Product rule:
 \[
 \nabla \cdot (f \vec{A}) = f (\nabla \cdot \vec{A}) + \vec{A} \cdot \nabla f
 \]

 Volume integration:
 \[
 \int_V f (\nabla \cdot \vec{A}) \, dv = \oint_S (f \vec{A}) \cdot \vec{ds} \quad \text{[Divg. thm]}
 \]
 Rearranging:
 \[
 \int_V f (\nabla \cdot \vec{A}) \, dv = \oint_S (f \vec{A}) \cdot \vec{ds} - \int_V \vec{A} \cdot \nabla f \, dv
 \]
Miscellaneous: Some vector calculus identities

- \(\nabla \times \nabla f = 0 \) for *any* scalar function \(f \)

- \(\nabla \cdot (\nabla \times \vec{A}) = 0 \) for *any* vector field \(\vec{A} \)

- \(\nabla \times (\nabla \times \vec{A}) = \nabla (\nabla \cdot \vec{A}) - \nabla^2 \vec{A} \)

- Vector field is specified up to a constant: if curl \((\nabla \times \vec{A}) \) and divergence \(\nabla \cdot \vec{A} \) are specified.
Miscellaneous: Getting the normal to a curve

A function: \(y = f(x) \)

Vector along the tangent at some point: \(\vec{v} = (1, \frac{df}{dx}) \)

Thus \(\hat{n} \) is along \(\nabla g \). Useful for boundary conditions in Electromagnetics.
Topics that were covered in this module

1. Chain rule of differentiation and the gradient
2. Gradient, Divergence, and Curl operators
3. Common theorems in vector calculus
4. Corollaries of these theorems; miscellaneous results

Reference: Chapter 1 of David Griffiths: Introduction to Electrodynamics, 4rth Ed., Pearson