
EE5120 Linear Algebra: Tutorial 7, July-Dec 2018, Dr. Uday Khankhoje, EE IIT Madras
Covers 6.1,6.2,6.3 of GS

1. The following information is given about a 4× 4 matrix A.

A[0.5, 0.5, , 0.5, 0.5]T = 3[0.5, 0.5, 0.5, 0.5]T,

A[0.5,−0.5i,−0.5, 0.5i]T = 2.5[0.5,−0.5, 0.5,−0.5]T,

A[0.5,−0.5, 0.5,−0.5]T = [0.5, 0.5,−0.5,−0.5]T,

A[0.5, 0.5i,−0.5,−0.5i]T = 0.5[0.5,−0.5,−0.5, 0.5]T,

Compute a rank i matrix A by considering only the first i equations from the above (i =
1, 2, 3, 4).

Solution: Added by Manoj.

Let B1 =


0.5 0.5 0.5 0.5
0.5 −0.5i −0.5 0.5i
0.5 −0.5 0.5 −0.5
0.5 0.5i −0.5 −0.5i

 and B2 =


0.5 0.5 0.5 0.5
0.5 −0.5 0.5 −0.5
0.5 0.5 −0.5 −0.5
0.5 −0.5 −0.5 0.5

. It can be

verified that B1 and B2 are unitary matrices. Then, the given equations can be written

as AB1 = B2D, where D =


3 0 0 0
0 2.5 0 0
0 0 1 0
0 0 0 0.5

. It is similar to the SVD form where we

have AV = UD, with V = B1 and U = B2. Hence, rank i matrix A can be written as

A =
i

∑
k=1

dkukvH
k , where ul and vl are the lth columns of matrices U and V respectively.

Thus, we have,

Rank 1 matrix A = 0.75


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 ,

Rank 2 matrix A =


1.375 0.75 + 0.625i 0.125 0.75− 0.625i
0.125 0.75− 0.625i 1.375 0.75 + 0.625i
1.375 0.75 + 0.625i 0.125 0.75− 0.625i
0.125 0.75− 0.625i 1.375 0.75 + 0.625i

 ,

Rank 3 matrix A =


1.625 0.5 + 0.625i 0.375 0.5− 0.625i
0.375 0.5− 0.625i 1.625 0.5 + 0.625i
1.125 1 + 0.625i −0.125 1− 0.625i
−0.125 1− 0.625i 1.125 1 + 0.625i

 ,

Rank 4 matrix A =


1.75 0.5 + 0.5i 0.25 0.5− 0.5i
0.25 0.5− 0.5i 1.75 0.5 + 0.5i

1 1 + 0.75i 0 1− 0.75i
0 1− 0.75i 1 1 + 0.75i

 .

2. Consider a wireless communication system consisting of a transmitter (Tx) and a receiver
(Rx). Tx wishes to transmit a data vector x ∈ Cn to Rx. But Tx processes the data x before
transmission. Thus, the final data which Tx transmits is x̃ = Px, where x̃ is the processed
data and the n× n matrix P describes how Tx had processed the original data vector x. The



transmitted signal vector x̃ passes through the wireless channel represented by the matrix
H of rank r. The channel matrix H is known both to Tx and Rx. The signal vector received
by Rx is given by,

ỹ = Hx̃ + w̃,

where ỹ ∈ Cm is the observation vector and w̃ is the low power additive unknown noise
vector. Then Rx processes ỹ and obtains a vector y as, y = Qỹ. It is given that w = Qw̃
will still be a low power unknown noise vector. Finally, Rx has to predict the information
(or the original data vector x) sent by Tx, for which Rx computes the least squares estimate
of x, denoted as x̂LS. Now, answer the questions that follow:

(a) Suppose r = n = m and H has n-dimensional eigen-space. Let H = SΛS−1 be the
eigen-value decomposition of H.
(i) Write the expression for y in terms of x (the original data vector) and w (the pro-

cessed noise vector), if P = S and Q = S−1.
(ii) Compute a simplified expression for x̂LS. Observe that x̂LS(i) = aiy(i), ∀i =

1, ..., n where ai’s are some scalars, i.e., each element of x can be estimated in-
dependent of the other.

(iii) What are those ai’s?
[Note: For a vector g, g(i) refers to ith entry in the vector g].

(b) Let r < n ≤ m.
(i) Choose the matrices P and Q using SVD of H so that elements of x can be esti-

mated independent of each other (just like the way in part (a)).
(ii) As done in (a), write an expression for y in terms of x and w.

(iii) However, it is imperative to note here that you will not be able to estimate all the
entries in x. Guess why?

(iv) As a result of (iii), Tx will send only those many data elements in x that can be
estimated, with remaining entires set to zero. Can you now say how many data
points can be transmitted and estimated successfully in this case? Say the number
of data points that can be sent is N. Can it be any N elements of x?

(v) Having answered these, can you write a simplified design for matrices P and Q,
i.e., fill only certain columns with what is needed and fill the remaining part of
these matrices with zeros? Based on this design of P and Q, write the structure of
the original data vector x. Answer clearly.

(c) From the expression of y in part (b), the singular values of H, say
{

σk

}r

k=1
, take the

interpretation of the gain values offered by the channel H to the data elements present
in x. Suppose 0 ≈ σi <<< w(i), but clearly, σi 6= 0, ∀i ∈ S , where S ⊂ {1, ..., r}, and
assuming that this information is known to Tx and Rx, what is the best way for the
Tx to transmit data vectors so that Rx makes considerably a decent job of estimating
them successfully with very less error.

(d) For this question, assume that Tx and Rx does not have the knowledge of H, but they
know that rank of H is r. Both Tx and Rx obtain two estimates of H (somehow), say

Ĥ1 and Ĥ2. Let
{

αk

}r

k=1
and

{
βk

}r

k=1
be the sets of singular values of Ĥ1 and Ĥ2, such

that α1 = βr = 0. Let all the non-zero αi’s and βi’s be sufficiently large compared to
the noise power level and αi = βi, ∀i = 2, ..., r− 1. Also assume that there is no error
in estimating the unitary matrices that appears in the SVD of H. Again, the goal is to
obtain estimates of entries (that can be possible) of x independent of each other (refer
to condition in part (a) with scalars ai’s).
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(i) How would you now precisely and compactly design matrices P and Q using the
estimates [case 1] Ĥ1 alone, [case 2] Ĥ2 alone, and [case 3] Ĥ1 and Ĥ2 both?

(ii) Can the system successfully transmit and receive the same number of data points
as found in part (b) in each of the above cases? Explain your answer clearly.

(iii) What would be the ai’s in part(a) here, for each of the above cases?

Solution: Added by Manoj.

(a) Here, P = S and Q = S−1. Hence, we have,

y = Qỹ = Q
(

Hx̃ + w̃
)
= QHPx + w

= S−1
(

SΛS−1
)

Sx + w

= Λx + w.

Λ is the eigenvalue matrix with all eigenvalues present along its diagonal. Let
ith diagonal entry in Λ be λi. Note that H is given to be a full-rank matrix. This
implies, λi 6= 0, ∀i and matrix Λ is invertible. Thus, least squares estimate of x is
given by,

x̂LS = Λ−1y.

But since Λ is a diagonal matrix, so is its inverse, with the diagonal entries being
reciprocal of diagonal entries of Λ. Thus, we get,

x̂LS(i) =
y(i)
λi

,

thereby, proving that every element of x can be estimated independent of the
other. (The scalars ai’s mentioned in the question are nothing but 1

λi
’s).

(b) H is an m× n matrix with rank r. Thus, its SVD can be written as, H = UΣVH,
where V and U are n × n and m × m unitary matrices and Σ is an m× n matrix
with the elements at (i, i)th position having singular values of H, for i = 1, ..., r
and all remaining entries of Σ being zero. In this case, optimal choices for P and
Q matrices would be,

P = V and Q = UH.

Note that Q is an m×m matrix here. As a consequence, we get,

y = QHPx + w = UH
(

UΣVH
)

Vx + w

= Σx + w,

and y is an m× 1 vector, which will be of the form y(i) = σix(i)+w(i), ∀i = 1, ..., r
and y(i) = w(i), ∀i > r, where σi’s are the singular values (non-zero elements in
D). Due to this, the received observation vector will have information only about
r entries in x. Because of this reason, only those r entries can be estimated at
the receiver and not the remaining. So, as per the notation given in the question
N = r. And, the least square estimate of x will be,

x̂LS(i) =
y(i)
σi

, i = 1, ..., r.
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As required, we are able to estimate data points in x individually. Now, SVD of
H can be written as UrΣrVH

r , where Vr and Ur are n× r and m× r sub-matrices of
V and U respectively, containing the r columns the correspond to the r non-zero
singular values, and Σr is an r× r diagonal matrix with σi’s as its diagonal entries.
Then, we can have,

P = [Vr

∣∣∣O1] and Q = [Ur

∣∣∣O2]
H,

where O1 and O2 are n × n − r and m × m − r all-zero matrices. And, so the
structure of x can be [x(1) x(2) ... x(r) 0 ... 0]T. It can be verified that even for this
design, we obtain the same y as mentioned above.

Note: The r entries cannot be at any random locations in x. It should be those
that correspond to the right singular vectors Vi that are associated with non-zero
singular values σi’s. Also, the above structure of P, Q and x is not unique. Any
permutations of columns of P and Q are allowed, however, the r data points in x
as to be permuted by the same way as the columns in P are. Similar arrangement
relationship hold for y and Q.

(c) With the design of P and Q discussed in part (b), we have,

y(i) = σix(i) + w(i), i = 1, ..., r.

As a result, we get,

x̂LS(i) =
y(i)
σi

=
1
σi

(
σix(i) + w(i)

)
= x(i) +

w(i)
σi

, i = 1, ..., r.

Since for every i ∈ S , 0 ≈ σi << w(i) ⇒ w(i)
σi

>> x(i), there is a chance that,

x̂LS(i) ≈ w(i)
σi

. So, none of these data points will be decoded correctly and the error
will be huge. To have less error, it is suggested not to send any data points along
the singular values σ2

i , ∀i ∈ S as S is known to Tx and Rx.

(d) Given: Ĥi = UrΣ̂iVH
r , where Σ̂i, ∀i = 1, 2 are r× r diagonal matrices with αi’s and

βi’s being the diagonal elements for Σ̂1 and Σ̂2 respectively.

For case 1, since only Ĥ1 is to be used and α1 = 0, the singular vectors correspond-
ing to it are not useful. Hence, matrices P and Q can be,

P = [v2 v3 ...vr

∣∣∣O3] and Q = [u2 ... ur

∣∣∣O4]
H,

where O3 is an n× n− (r− 1) all zero matrix and O4 is an m×m− (r− 1) all zero
matrix. Further, vi and ui are ith columns of Vr and Ur respectively. Even though
Tx and Rx know about rank of H, if they have to design P and Q only using Ĥ1,
since α1 = 0, Tx and Rx has no option other than not to use v1 and u1. As a result
only r− 1 data points can be successfully transmitted and estimated in this case.
And, the scalars ai’s are: ai =

1
αi

, ∀i = 2, ..., r.

Similarly in case 2, we design P and Q only using v1, ..., vr−1 and u1, ..., ur−1 as
βr = 0. Even in this case, only r− 1 data points can be transmitted and estimated.
In this case, ai =

1
βi

, ∀i = 1, ..., r− 1.
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In case 3, since both the estimates of the channels can be used, P and Q can be the
same matrices as used in part (b). r data points can be successfully transmitted
and estimated. And, the scalars ai’s will be: a1 = α1, ar = βr and ai = αi, ∀i =
2, ..., r− 1.

3. Suppose the factorization below is an SVD of a matrix A with the entries in U and V
rounded to two decimal places.

A =

 0.40 −0.78 0.47
0.37 −0.33 −0.87
−0.84 −0.52 −0.16

7.10 0 0
0 3.10 0
0 0 0

0.30 −0.51 −0.81
0.76 −0.64 −0.12
0.58 −0.58 0.58


(a) What is the rank of A?
(b) Use this decomposition of A, with no calculations, to write a basis for C(A), the col-

umn space of A, and a basis for N(A), the null space of A.
(c) Repeat parts (a) and (b) for the matrix B

B =

−0.86 −0.11 −0.50
0.31 0.68 −0.67
0.41 −0.73 −0.55

12.48 0 0 0
0 6.34 0 0
0 0 0 0




0.66 −0.03 −0.35 0.66
−0.13 −0.90 −0.39 −0.13
0.65 0.08 −0.16 −0.73
−0.34 0.42 −0.84 −0.08



Solution: Added by Prajosh.

(a) A has two non-singlular values. So, rank of A = 2.

(b) u1, u2=  0.40
0.37
−0.84

 ,

−0.78
−0.33
−0.52


is a basis for col A. and

v3 =

 0.58
−0.58
0.58


is a basis for Null A.

(c) Rank=2
u1, u2= −0.86

0.31
0.41

 ,

−0.11
0.68
−0.73


is a basis for col A.
v3, v4= 

0.65
0.08
−0.16
−0.73

 ,


−0.34
0.42
−0.84
−0.08


is a basis for Null A.
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4. A is an m× n matrix with singular value decomposition A = UΣVT, where U is an m×m
orthonormal matrix,Σ is an m× n diagonal matrix with r positive entries, and V is an n× n
orthonormal matrix. Justify the following

(a) Show that if A is square, then |det(A)| is the product of the singular values of A.

(b) Show that if P is an orthonormal m×m matrix, then PA has the same singular values
of A.

(c) Justify that the second singular value of a matrix A is the maximum of ||Ax|| as x
varies overall unit vectors orthonormal to v1, with v1 a right singular vector corre-
sponding to first singular value of A.

Solution: Added by Prajosh.

(a) Determinant of an orthonormal matrix is +1 or −1.

1 = det(I) = det(UTU) = det(UT)det(U) = (det(U))2

. Suppose that A is square and A = UΣVT. Then Σ is square, and

det(A) = det(U)det(Σ)det(VT) = ±detΣ = ±σ1.....σn

(b) Let A = UΣVT. If P and U are orthonormal, the matrix PU is also orthonormal.
Because,
if P and U are orthonormal and each is invertible, PU is invertible and (PU)−1 =
U−1P−1 = UTPT = (PU)T. So, the equation PA = (PU)ΣVT has the form re-
quired for a singular value decomposition. The diagonal entries of in Σ are the
singular values of PA.

(c) The right singular vector v1 is an eigenvector for the largest eigenvector λ1 of
AT A. The second largest eigenvalue λ2 is the maximum of xT(AT A)x overall unit
vectors orthogonal to v1. Since xT(AT A)x = ||Ax||2, the square root of λ2, which
is the second largest singular value of A, is the maximum of ||Ax|| over all unit
vectors orthogonal to v1.

5. Prove that a symmetric positive definite matrix has a unique symmetric positive definite
square root.

Solution: Added by siva
Let A be the given n× n symmetric positive definite matrix.
(i) Let’s first prove that there exists a positive definite B such that B2 = A.
Let λ1, λ2 . . . λn be the eigen values of A. Hence the eigen decomposition of A is
A = SDST. Now, consider the matrix B = SD′ST where D′ is diagonal and it’s en-
tries are

√
λ1,
√

λ2, . . . ,
√

λn. Clearly B2 = A and B is symmetric positive definite.
(ii) Proof for uniqueness of B:
Let’s assume a symmetric positive definite matrix with eigen decomposition C =
PTPT such that C2 = A. Let the eigen values of C be µ1, µ2, . . . , µn.
Consider the matrix PT AP. Then, PT AP = PTC2P = (PTCP)2 = T2. The ma-
trix P diagonalizes A. Hence the entries of T must be the eigen values of A, i.e.,
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µ2
i = λi =⇒ µi =

√
λi =⇒ T = D′.

We have B2 = A = C2

(SD′ST)2 = (PD′PT)2

SD′2ST = PD′2PT

(PTS)D′2 = D′2(PTS)

QD′2 = D′2Q where Q = PTS

Assuming all the eigen values of A are distinct, Q must be diagonal. (If the elements
of D′2 were not distinct, Q will not necessarily be diagonal but will be block diagonal
of appropriate sizes. Even the following proof will hold. But for better understanding
we will stick to distinct eigen values.)
We also have QD′ = D′Q =⇒ D′ = QTD′Q.
Consider the matrix B. B = SD′ST = S(QTD′Q)ST = SSTPD′PTSST = PD′PT = C.
Hence proved.

6. The symbol A � B means A− B is positive definite, A ≺ B means B− A is positve definite.
Consider a symmetric positve definite matrix H.

(a) Prove mI ≺ H ≺ MI if and only if eigen values of H are bounded between m and M,
where I is the identity matrix and M > m > 0.

(b) Prove that the diagonal elements of H cannot be non-positive.
(c) Given a symmetric matrix G, find appropriate m, M such that mI � G � MI.

Solution: Added by Siva Note that A ≺ B⇐⇒ xT Ax < xTBx ∀x

(a) (i) Given mI ≺ H ≺ MI

=⇒ xTmIx < xTHx < xT MIx ∀x

=⇒ m ‖ x ‖2
2 < xT Hx < M ‖ x ‖2

2 ∀x

Since the inequality is true for all x, let’s consider the unit eigen vector, v of H
whose corresponding eigen value is λ

=⇒ m ‖ v ‖2
2 < λ ‖ v ‖2

2< M ‖ v ‖2
2

=⇒ m < λ < M

(ii) Given m < λ < M
Since H is symmetric, any vector x can be written as a linear combination of the
eigen vectors of H i.e., x = ∑n

i=1 civi, where vi are the eigen vectors and n is the
size of matrix.
Consider

xT Hx = (
n

∑
i=1

civi)
T H(

n

∑
i=1

civi) = (
n

∑
i=1

civi)
T(

n

∑
i=1

ciλivi)

=
n

∑
i=1

c2
i λi ∀x (Since {vi} is an orthogonal set)
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Since eigen values are bounded, we have the following

n

∑
i=1

c2
i m <

n

∑
i=1

c2
i λi <

n

∑
i=1

c2
i M

=⇒
n

∑
i=1

civi
T(m)

n

∑
i=1

civi <
n

∑
i=1

c2
i λi <

n

∑
i=1

civi
T(M)

n

∑
i=1

civi

=⇒ xT(mI)x < xT Hx < xT(MI)x ∀x
=⇒ mI ≺ H ≺ MI

(b) Since H is positive definite, we have xT Hx > 0 ∀x. Choosing x to be ei which is a
vector with 1 in it’s ith position and zero elsewhere, we get ei

T Hei > 0 =⇒ Hii > 0

(c) We have mI � G � MI, where we intend to find m and M. Let λmin and λmax are
the minimum and maximum eigen values of G respectively.
Consider xTGx = ∑n

i=1 c2
i λi. This can be bounded as follows

n

∑
i=1

c2
i λmin ≤

n

∑
i=1

c2
i λi ≤

n

∑
i=1

c2
i λmax

=⇒ xT(λmin I)x ≤ xTGx ≤ xT(λmax I)x ∀x
=⇒ λmin I ≺ G ≺ λmax I

Hence m and M can be λmin and λmax respectively.

7. Decide between a minimum, maximum, or saddle point for the following functions, if they
are stationary points.

(a) F = −1 + 4(ex − x)− 5x sin(y) + 6y2 at the point x = y = 0.

(b) F = (x2 − 2x) cos(y), at the point x = 1, y = π.

(c) F = 1
4 x4 + x2y + y2 at the point x = 1, y = 2.

Hint:Usethesecondderivativematrices.

Solution: Gradient of the function at the stationary point is zero. For minima, maxima
and saddle points the eigenvalues of second derivative matrices are real and positive,
real and negative, and real and non-zero respectively; along with being stationary.

(a)

∇F =

[
4ex − 4− 5 sin(y)
−5x cos(y) + 12y

]
⇒ ∇F(0,0) =

[
0
0

]
So, It is a stationary point.

∇2F =

[
4ex −5 cos(y)

−5 cos(y) 5x sin(y) + 12

]
⇒ ∇2F =

[
4 −5
−5 12

]
So, eigenvalues are 1.59,14.4. So, It is a minima.

Page 8



(b)

∇F =

[
(2x− 2) cos(y)

(x2 − 2x)(− sin(y))

]
⇒ ∇F(1,π) =

[
0
0

]
So, It is a stationary point.

∇2F =

[
2 cos(y) (2x− 2)(−sin(y))

(2x− 2)(−sin(y)) (x2 − 2x)(− cos(y))

]
⇒ ∇2F =

[
−2 0
0 −1

]
So, eigenvalues are -1,-2. So, It is a maxima.

(c)

∇F =

[
x3 + 2xy
x2 + 2y

]
⇒ ∇F(1,2) =

[
5
5

]
6= 0

So, It is not a stationary point as the gradient is not equal to zero.

8. (a) Solve the generalized eigenvalue problem i.e, Ax = λBx for eigenvectors[
4 3
3 7

]
x = λ

[
1 2
2 1

]
x

Hint: Solve |A − λB| = 0 for eigenvalues and substitute them in Ax = λBx for
eigenvectors. Also, If B is invertible. Then multiplying on both sides by B−1 gives
B−1Ax = λx.

(b) Solve the generalized eigenvector problem, i.e., (A− λI)Px = 0 for

A =

1 1 0
0 1 2
0 0 3


Theory of generalized eigenvectors: |A−λI| = 0 has to be solved for eigenvalues. For
eigenvectors, you atmost need to solve for (A− λI)kx = 0, where k is the algebraic
multiplicity of A. You start with P=1 and increment the P by 1, till you get all the
eigenvectors.

Solution:

(a) |A− λB| = 0⇒ (4− λ)(7− λ)− (3− 2λ)(3− 2λ) = 0

⇒ 28− 11λ + λ2 − (9− 12λ + 4λ2) = 0⇒ 3λ2 − λ− 19 = 0

Eigenvalues are: 1±
√

229
6 .

Eigenvectors are
[
−1
−0.55

]
,
[

1
−0.82

]
respectively.

(b) For eigenvalues, |A− λI| = 0, implies λ = 1, 1, 3.
For eigenvectors,

λ = 3, (A− 3I)v1 = 0,⇒ v1 = [1 2 2]T

λ = 1, (A− 1I)v2 = 0,⇒ v2 = [1 0 0]T

Now for 3rd eigenvector corresponding to λ = 1,

(A− 1I)2v3 = 0, (A− 1I)v3 6= 0, and (A− 1I)v3 = v2 ⇒ x = [0 1 0]T
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