EE5120 Linear Algebra: Tutorial Test 6, 05.11.18A

Give your answers in the space provided. No calculators or smartphones allowed. Please take a few minutes to read the questions carefully and answer (briefly) only what is asked.

 Roll: No:______
 NAME:______
 Time: 20 mins

Useful fact from tutorial: For any matrix *A*, for every eigenvalue of *A* there exists a row (call it the *m*th row) such that $|\lambda - A_{mm}| \le \sum_{i=1, i \ne m}^{n} |A_{mi}|$.

3 1. Consider a matrix A of the form $A = B^H B$ and an arbitrary vector u. Express $A^n u$ purely in terms of eigenvalues/vectors of A. Justify your steps.

Solution: Spectral theorem holds for *A* since it is a Hermitian matrix, thus $A = U\Lambda U^H = \sum_i \lambda_i u_i u_i^H$ [1]. This leads to $A^n = U\Lambda^n U^H = \sum_i \lambda_i^n u_i u_i^H$ [1]. Finally $A^n u = \sum_i \lambda_i^n u_i (u_i^H u)$ [1].

3 2. Consider the usual 3 dimensional space characterized by cartesian coordinates, *C*. Now, consider another coordinate system *D* derived from *C* by rotation about the z axis by 30° (place your right thumb along the z-axis and rotate counter-clockwise). Find the 3 × 3 matrix that will convert the coordinates of a vector expressed in *C*'s frame to the coordinates in *D*'s frame. Draw diagrams where necessary.

Solution: A vector in *C* frame has basis vectors $[c_1, c_2, c_3]$ and coordinates $\alpha = [\alpha_1, \alpha_2, \alpha_3]$, and in *D* has basis vectors $[d_1, d_2, d_3]$ and coordinates $\beta = [\beta_1, \beta_2, \beta_3]$. Since the point remains the same, but only the representation changes, (i.e. identity transformation T) we can say that : $T([c_1 c_2 c_3]) = [d_1 d_2 d_3]M$ [1]. We take the c_i 's to be the canonical $\cos\theta$ $\sin\theta 0$ basis and going one by one we see that M = $-\sin\theta$ $\cos\theta = 0$ [1]. To get the final 1 0 0 answer, i.e. the β 's given the α 's we only need to do $\beta = M\alpha$. [1] As an example, take the point in *C* frame as $\alpha = (\cos \theta, \sin \theta, 0)$. We know that this lies on the new *x* axis after rotation, i.e. in *D* frame it should be $\beta = (1, 0, 0)$. You can verify that $\beta = M\alpha$.

4 3. Denote the rows of a square matrix *A* by A_i . This matrix has a special property that the 1-norm of each row is given as $||A_i||_1 = i$, for $i = 1 \dots n$. Can you estimate a bound on the maximum and minimum possible eigenvalues of *A*? Recal the defn $||x||_1 = \sum_i |x_i|$

Solution: We can interpret the useful fact geometrically as follows: Let A_{mm} be the centre of a circle along the *x*-axis, whose radius is $\sum_{i=1, i \neq m}^{n} |A_{mi}|$, thus λ lies within this circle as per the given relation [2]. Thus the maximum possible eigenvalue can happen when λ is at the extreme right point on the biggest possible circle, i.e. $\lambda = A_{mm} + \sum_{i=1, i \neq m}^{n} |A_{mi}| = ||A_m||_1$. Thus $\lambda_{max} = \max ||A_i||_1 = n$ [1]. Similarly, the minimum can happen when it is at the extreme left end of the biggest circle, $\lambda_{min} = -\max ||A_i||_1 = -n$ [1]. Draw and see this to get clarity.