EE5120 Linear Algebra: Tutorial 4, July-Dec 2018, Dr. Uday Khankhoje, EE IIT Madras Covers Ch 3.1,3.2,3.3,3.4 of GS

1. Given a matrix *P* that satisfies $P^2 = P$ and $P^T = P$. Using these facts, prove that *Pb* is the projection of *b* onto the column space of *P*.

Hint: Use appropriate orthogonality relations of subspaces

- 2. (a) Consider the system of linear equations $A\mathbf{x} = \mathbf{b}$, where *A* is a full column rank matrix, **x** is an *n*-length vector and **b** is an *m*-length vector. What is the least squares (LS) solution to the above system? Prove that the error in the estimate is in the left null-space of *A*.
 - (b) Once again consider $A\mathbf{x} = \mathbf{b}$, with $A = \begin{bmatrix} 1 & 3 & -1 & 3 & 2 \\ 2 & -1 & 0 & 1 & 0 \end{bmatrix}^T$ and $\mathbf{b} = \begin{bmatrix} -1 & 4 & 1 & 2 & 1 \end{bmatrix}^T$. Can you find a solution to the given system of linear equations using Gauss elimination? Can you find a LS solution? Verify (a) for this example. Further, determine the left null space of *A* and verify actually whether the LS error lies in the left null space of *A*.
- 3. Consider the *QR* decomposition of a matrix *A* as shown below. Matrix on the LHS is *A*. On the RHS, first matrix is *Q* and is multiplied with *R*. Fill in the blanks.

$\begin{bmatrix} 1\\ 1\\ -1\\ 1 \end{bmatrix}$	 -1 2 3 1	 =	 	$\begin{array}{c} 0\\ \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}}\\ 0 \end{array}$	 $\begin{bmatrix} \frac{6}{\sqrt{72}} \\ -\frac{4}{\sqrt{72}} \\ \frac{4}{\sqrt{72}} \\ \frac{2}{2} \end{bmatrix}$	[$\begin{array}{c} 0\\ \sqrt{2}\\ 0\\ 0\\ \end{array}$	 0.5 2.1213 0.5 1.4815	-
[1	 1		L	0	 $\frac{2}{\sqrt{72}}$	L	0	 1.4815	

- 4. (a) Prove that the trace of $P = \mathbf{a}\mathbf{a}^T/\mathbf{a}^T\mathbf{a}$ —which is the sum of its diagonal entries—always equal 1.
 - (b) Is the projection matrix *P* invertible? Why or why not?
- 5. (a) Show that length of $A\mathbf{x}$ equals the length of $A^T\mathbf{x}$ iff $AA^T = A^TA$.
 - (b) If Q_1 and Q_2 are orthogonal matrices in $\mathbb{R}^{2\times 2}$, so that $Q^T Q = I$, show that $Q_1 Q_2$ is also orthogonal. If Q_1 is rotation through θ , and Q_2 is rotation through ϕ , what is $Q_1 Q_2$? Can you find the trigonometric identities for $\sin(\theta + \phi)$ and $\cos(\theta + \phi)$ in the matrix multiplication $Q_1 Q_2$?
- 6. (a) Teacher taught kinematics in the class that, $s = ut + \frac{1}{2}at^2$. She asked all the students to find out what is the earth's acceleration due to gravity by doing a experiment at home. What would you do to get an accurate value.
 - (b) Given a system with input and output relation: $y = ax + bx^2$. To find the coefficients, an experiment is done and data is shown below. Find the coefficients?

x	20	21	22	23	24	25	26
У	2396	2562	2727	2904	3070	3254	3427

Hint: Use Least square error curve fit.

7. Let $\mathbb{P}_3(t)$ be the vector space of polynomials at degree at most equal to 3, defined with inner product $(f(t), g(t)) = \int_{-1}^{1} f(t)g(t)dt$, for any two functions $f(t), g(t) \in \mathbb{P}_3$. Apply the Gram-Schmidt procedure to $\{1, t, t^2, t^3\}$ to find an orthonormal basis $\{f_0, f_1, f_2, f_3\}$.

- 8. Let $\bar{x} = \frac{1}{n}(x_1 + ... + x_n)$ and $\bar{y} = \frac{1}{n}(y_1 + ... + y_n)$. Show that the least-squares line for the data $(x_1, y_1), ..., (x_n, y_n)$ must pass through (\bar{x}, \bar{y}) . That is, show that \bar{x} and \bar{y} satisfy the linear equation $\bar{y} = \hat{\beta}_0 + \hat{\beta}_1 \bar{x}$.
- 9. Suppose *E* = {e₁, e₂, ..., e_n} is an orthonormal basis of *V*. Prove
 (a) For any u ∈ *V*, we have u =< u, e₁ > e₁+ < u, e₂ > e₂ + ...+ < u, e_n > e_n.
 (b) < a₁e₁ + + a_ne_n, b₁e₁ + ... + b_ne_n >= a₁b₁ + a₂b₂ +a_nb_n.
 (c) For any u, v ∈ *V*, we have < u, v >=< u, e₁ >< v, e₁ > +...+ < u, e_n >< v, e_n >
- 10. Consider the function $f : \mathbb{R} \to \mathbb{R}$. Sample input,output pairs of the function are given as (1,1), (2,3), (3,1)
 - (a) Find the straight line y = mx, which has least mean squared error at the given sample points, using calculus.
 - (b) Find the same line (find *m*), by writing a system of linear equations then projecting a vector onto the columnspace of system matrix. Find the vector that is being projected and find the vectorspace onto which that vector is projected.
 - (c) Compare the data given in (a) and vector/vectorspace used for projection in (b). Convince yourself that the picture used in (a) and that in (b) are not same.