
EE5120 Linear Algebra: Tutorial 3, July-Dec 2018, Dr. Uday Khankhoje, EE IIT Madras
Covers Ch 2.4, 2.6 of GS

1. (a) Find the dimension and a basis for the four fundamental subspaces for

(i) A =

1 2 0 1
0 1 1 0
1 2 0 1

 (ii)U =

1 2 0 1
0 1 1 0
0 0 0 0


(b) Without computing A, find bases for the four fundamental subspaces:

A =

1 0 0
6 1 0
9 8 1

1 2 3 4
0 1 2 3
0 0 1 2


(c) Without multiplying matrices, find bases for the row and column spaces of A:

A =

1 2
4 5
2 7

 [3 0 3
1 1 2

]

How do you know from these shapes that A is not invertible?

Hint:
(a)NullspacesforATisleftnullspaceofA.
(b)AisoftheformLUandpivotelementsarenon-zero.So,GetC(A),Leftnullspaces
fromLandR(A),NullspacefromU.
(c)Seethenumberofpivotelementsinbothmatrices,ascalculatesameas(b).

Solution:

(a)

(i) C(A) : r = 2,

1
0
1

 ,

0
1
0

 , N(A) : n− r = 2,


2
−1
1
0

 ,


−1
0
0
1



R(A) : r = 2,


1
2
0
1

 ,


0
1
1
0

 , Le f t Null(A) : m− r = 1,

−1
0
1



(ii) C(U) : r = 2,

1
0
0

 ,

0
1
0

 , N(U) : n− r = 2,


2
−1
1
0

 ,


−1
0
0
1



R(U) : r = 2,


1
2
0
1

 ,


0
1
1
0

 , Le f t Null(U) : m− r = 1,

0
0
1





(b)

R(A) :


1
2
3
4

 ,


0
1
2
3

 ,


0
0
1
2

 , N(A) :


0
−1
−2
1


C(A) :

1
0
0

 ,

0
1
0

 ,

0
0
1

 , Le f t Null(U) : 0

(c) If Am×p = Bm×nCn×p, and Rank(B) = Rank(C) = n. Then, C(A) = C(B),
N(AT) = N(BT), R(A) = R(C) and N(A) = N(C).
Rank of both matrices are 2. So,

R(A) :

3
0
3

 ,

1
1
2

 , C(A) :

1
4
2

 ,

2
5
7


Rank(BC) ≤ min(Rank(B), Rank(C))⇒ Rank(A) ≤ 2. So, Not invertible.

2. Given a rectangular matrix, prove that (a) if it has full row rank, then (AAT) is invertible,
(b) if it has full column rank, then (AT A) is invertible. Finally, (c) prove that the left and
right inverse of a square invertible matrix are identical.

Hint:Thinkofthesizesofthenullspacesof(ATA)and(AAT).

Solution: Recall these basic facts: (i) if A has full row rank, then m = r and the left
null space which is of dimension m− r, is empty, i.e. N(AT) = {0}, similarly, (ii) when
A has full column rank, then n = r and the null space is empty, i.e. N(A) = {0}.
Also note that both (AT A) and (AAT) are square and proving their invertibility amounts
to proving that their null spaces are empty.

(a) • Let us assume that there is a non-zero vector y such that AATy = 0.

• Left multiply both sides by yT, giving yT AATy = ‖ATy‖2 = 0, leading to
ATy = 0.

• =⇒ y is in N(AT). But, as noted earlier for a full row rank matrix, N(AT) =
{0}.

• Thus we have a contradiction and y must be 0 and AAT is invertible.

(b) Mimic the above proof starting by assuming a non-zero vector x such that AT Ax =
0, and use the fact that N(A) = {0} to arrive at a contradiction.

(c) • Since the matrix, A is invertible, so is AT. A has independent rows and inde-
pendent columns. Hence both (AAT)−1 and (AT A)−1 are invertible.

• Left inverse of A is (AT A)−1AT = A−1(AT)−1AT = A−1 I = A−1.

• Right inverse of A is AT(AAT)−1 = AT(AT)−1A−1 = IA−1 = A−1.

3. Given that a set of k vectors, Sk = {v1, vr, . . . , vk} is linearly independent. Let us expand
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this set by adding a non-zero vector vk+1 that is orthogonal to all elements of Sk. Prove that
the resulting set is also linearly independent.

Hint:Usethedefinitionoflinearindependenceinmatrixlanguage.

Solution: A is the matrix formed with vis, i ∈ [1, k] as the columns. Since Sk is linearly
independent, Ax = 0 is possible only for x = 0 (by defn). Now consider the matrix
B formed by appending vk+1 as a new column to A, i.e. B = [A vk+1]. To prove linear
independence of Sk+1, we must show that Bw = 0 only if w = 0. Rewrite as follows,
with w = [x y]T:
Bw = [A vk+1][x y]T = Ax + vk+1y = 0, where x ∈ Rk, y ∈ R. Now take an inner
product with vk+1 by left multiplying by vT

k+1 to get 0 + ‖vk+1‖2y = 0, i.e. y = 0
regardless of the value of x. In other words, Bw = 0 collapses to Ax = 0, which we
know is possible only if x = 0. Putting these two facts together we get that bw = 0
happens only when w = 0, and thus we have proved the linear independence of the
new set of vectors.

4. (a) If A is square, (i) show that the nullspace of A2 contains the nullspace of A. (ii) Show
also that the column space of A2 is contained in the column space of A.

(b) If AB = 0, prove that rank(A) + rank(B) ≤ n, where A is a m× n matrix.

Solution:

(a) (i) Let x ∈ N(A), ⇒ Ax = 0. Multiplying A on both sides, A2x = A0 = 0. So,
x ∈ N(A)⇒ x ∈ N(A2). Hence, N(A) ⊆ N(A2)
(ii) It can be seen that columns of A2 are linear combinations of columns of A.
So, C(A2) ⊆ C(A).

(b) Given AB = 0 ⇒ R(A) are orthogonal to C(B). Rows of A and columns of B
are of length n. So, we can have maximum of ’n’ orthogonal vectors. For R(A) to
be orthogonal to C(B), select ’p’ vectors from ’n’ orthogonal vectors for R(A) and
selecting ’q’ vectors from the remaining vectors ’n− p’, such that p + q ≤ n. Also,
Rank of a matrix = dimension of row space of matrix = dimension of column
space of matrix.
So, rank(A) + rank(B) = p + q ≤ n.

5. Find the matrix representation for each of the following linear transformations. Also, say if
the transformation is invertible or not just by looking at the matrix representation. Justify
your answer.

(a) Let M2 be the vector space of 2× 2 real finite valued matrices, having an ordered basis{ [1 0
0 0

]
,
[

0 1
0 0

]
,
[

0 0
1 0

]
,
[

0 0
0 1

] }
. The linear transformation given is L : M2 → R,

and is defined as, L(A) = trace(A), where A ∈M2.

(b) Consider the linear transformation F on R2 defined by F(x, y) = (5x − y, 2x + y)
and the following bases of R2: E = (e1, e2) = ((1, 0), (0, 1)) and S = (u1, u2) =
((1, 4), (2, 7)). Find the matrix A that represents F in the basis E . Also, find the matrix
B that represents F in the basis S .
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Solution:

(a) We have the following:

L
( [1 0

0 0

] )
= trace

( [1 0
0 0

] )
= 1

L
( [0 1

0 0

] )
= trace

( [0 1
0 0

] )
= 0

L
( [0 0

1 0

] )
= trace

( [0 0
1 0

] )
= 0

L
( [0 0

0 1

] )
= trace

( [0 0
0 1

] )
= 1

Thus, the matrix representation is L = [1 0 0 1]. It is not a square matrix and hence
not invertible.

(b)

A =

[
5 −1
2 1

]
.

To find the matrix B, find the coordinates of F(u1) = F
(
(1, 4)

)
and F(u2) =

F
(
(2, 7)

)
relative to the basis S . This may be done by first finding the coordi-

nates of an arbitrary vector (a, b) in R2 relative to the basis S . We have,

(a, b) = x(1, 4) + y(2, 7) = (x + 2y, 4x + 7y)
⇒x + 2y = a and 4x + 7y = b.

Solve for x and y in terms of a and b to get x = −7a + b and y = 4a− b. Then,

(a, b) = (−7a + 2b)u1 + (4a− b)u2.

Then,
F(u1) = F(1, 4) = (1, 6) = 5u1 − 2u2,

and
F(u2) = F(2, 7) = (3, 11) = u1 + u2.

Thus, the matrix representation is,

B =

[
5 1
−2 1

]
.

Further, since both matrices A and B are full rank square matrices, they are invert-
ible.

6. Let V be a vector space and T : V → V be a linear transformation. Suppose x ∈ V is such
that Tk(x) = 0, Tm(x) 6= 0, ∀ 1 ≤ m < k and k > 1, then prove that the set of vectors
{x,T(x),T2(x), ...,Tk−1(x)} is linearly independent.
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Solution: Given k > 1. Thus, T(x) 6= 0⇒ x 6= 0. Since Tk(x) = 0, for all p ≥ 1,

Tk+p(x) = Tp
(
Tk(x)

)
= Tp(0) = 0. (1)

Assume that {x,T(x),T2(x), ...,Tk−1(x)} is linearly dependent. Then,

a1x + a2T(x) + ... + akT
k−1(x) = 0,

with not all ai’s being zero, i.e., some ais are not equal to zero. Now, consider the
following:

Tk−1
(

a1x + a2T(x) + ... + akT
k−1(x)}

)
= Tk−1(0)

⇒a1T
k−1(x) + a2T

k(x) + a3T
k+1(x) + ... + akT

2(k−1)(x) = 0

⇒a1T
k−1(x) + 0 + 0 + ... + 0 = 0.

The above result is a consequence of equation (1) and other given information. Since
Tk−1(x) 6= 0, a1 = 0. Now,

Tk−2
(

a1x + a2T(x) + ... + akT
k−1(x)}

)
= Tk−2(0)

⇒a1T
k−2(x) + a2T

k−1(x) + a3T
k(x) + ... + akT

2k−3(x) = 0

⇒0 + a2T
k−1(x) + 0 + ... + 0 = 0.

Again, since Tk−1(x) 6= 0, we get a2 = 0. On repeating this procedure, we get ai =
0, ∀i = 1, 2, ..., k, which is contradicting to the initial assumption. Hence, the initial
assumption of the set {x,T(x),T2(x), ...,Tk−1(x)} being linearly dependent is incorrect.
Thus, the above set is linearly independent.

7. Prove that,

(a) A linear transformation L : V −→ W is invertible if and only if the matrix representa-
tion for L is square and its null-space has only all-zero element.

(b) L−1 is also a linear transformation and (L−1)−1 = L.

Solution:

(a) part 1: Assume that L is a square matrix and its null space has only the zero vector.
To prove: L is invertible, i.e., L is one-to-one and onto. one-to-one: Let v1, v2 ∈ V
s.t. L(v1) = L(v2). This implies, L(v1 − v2) = 0 ⇒ v1 − v2 ∈ null space of L. But
null space of L has only all-zero vector. So, v1 − v2 = 0 ⇒ v1 = v2. This proves
one-to-one relation. onto: It is required to prove that the range space of L equals
the output vector spaceW . Let u1, ..., un be basis of V ⇒ dim(V) = n. Now, for
some scalars a1, ..., an,

n

∑
i=1

aiL(ui) = 0⇒ L
( n

∑
i=1

aiui

)
= 0⇒

n

∑
i=1

aiui ∈ null space of L.
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This further implies,
n
∑

i=1
aiui = 0 ⇒ a1 = a2 = ... = an = 0 as ui’s are basis

vectors. Hence, we now showed that the set of vectors S =
{
L(u1), ..., L(un)

}
is

linearly independent inW , infact, in the range space of L. Let b ∈ range space of
L. Then, ∃u ∈ V s.t. L(u) = b. But u will have a unique basis expansion; let it be

u =
n
∑

i=1
biui. Then, we get,

b = L(u) = L
( n

∑
i=1

biui

)
=

n

∑
i=1

biL(ui).

This is true for any b in range space of L. Thus, the set S is the basis for the range
space of L which implies dimension of range space of L equals n. L being a square
matrix implies dim(V) = dim(W) = n. Since range space of L is a sub-space of
W having same dimension, range space of L must be equal toW . Hence, proved.

part 2: Now assume that L is an invertible transformation, i.e., it is one-to-one
and onto. We know that L(0) = 0. Because of one-to-one nature no other element
in V will map to 0 inW , thus null space of L has only the all-zero vector. Further,
onto implies range space of L equalsW ⇒ dim(W) equals that of range space of
L. But by proof in part 1, dim(range space of L) = dim(V). So, dimensions of input
and output vector spaces are equal implying that the matrix representation of L
will be a square matrix.

(b) We now prove that L−1 is a linear transformation. Let w1, w2inW , where L(v1) =
w1 and L(v2) = w2, for v1, v2 in V . Then, since L(av1 + bv2) = aL(v1) + bL(v2) =
aw1 + bw2 for some a, b real numbers, we have, L−1(aw1 + bw2) = av1 + bv2 =
aL−1(w1 + bL−1(w2), which implies that L−1 is a linear transformation. Now, say,
(L−1)−1(v) = w, for some v ∈ V and for some w ∈ W . It implies L−1(w) = v ⇒
L(v) = w. So, (L−1)−1 = L.

8. Consider the problem, Ax = b, with b =


4
6
10
14

. The set of all solutions is given by {x | x =

 0
0
−2

+ c

0
1
0

+ d

1
0
1

 and c, d ∈ R}

(a) Find the size of the matrix A.

(b) Find the dimension of all the four fundamental spaces of A.

(c) Find the matrix A.

Solution:

(a) Here b ∈ R4, hence A has 4 rows. Also x ∈ R3, hence A has 3 columns. The size
of A is 4×3.
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(b) • Solution set is expressed as the shifted null space, where a particular solution
is added to shift the null space. Hence it can seen from the solution set that
the dimension of nullspace is 2.

• Dim(Rowspace(A)) = 3 - Dim(Nullspace(A)) = 1.

• Dim((Columnspace(A))) = Dim(Rowspace(A)) = 1

• Dim(Leftnullspace(A)) = 4 - Dim(Columnspace(A)) = 3

(c) • Let c1, c2, c3 be the columns of A.

•

 0
0
−2

 is a solution to Ax = b.

=⇒ −2c3 = b
=⇒ c3 = b/− 2

=⇒ c3 =


−2
−3
−5
−7


•

0
1
0

 is in nullspace of A.

=⇒ c2 =


0
0
0
0


•

1
0
1

 is in nullspace of A.

=⇒ c1 + c3 = 0.
=⇒ c1 = −c3

=⇒ c1 =


2
3
5
7



• Therefore, A =


2 0 −2
3 0 −3
5 0 −5
7 0 −7

.

9. Matrix P is called a projector if P2 = P. Suppose v is an n-length vector, with v 6= 0 and
A = vvT

vTv .

(a) Prove that A is a projector.

(b) Let I be an n× n identity matrix. Are I− A, I + A and A(AT A)−1AT projectors? Prove
your answers. Assume AT A is invertible.

(c) Let v1 6= 0 be another n-length vector and v2 = (I − A)v1. Compute vTv2. What can
you say about vectors v and v2?
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Solution:

(a) We have the following:

A2 =
(vvT

vTv

)(vvT

vTv

)
=

v(vTv)vT

(vTv)2 =
vvT

vTv
= A.

Hence, A is a projector.

(b) Now, (I − A)2 = I2 + A2 − IA − AI = I + A − 2A = I − A. Thus, I − A is a
projector. Here, we used the fact that A is a projector. Then, (I + A)2 = I2 + A2 +
IA + AI = I + 3A 6= I + A in general. So, I + A is not a projector. Finally,

(A(AT A)−1AT)2 =
(

A(AT A)−1AT
)(

A(AT A)−1AT
)

= A(AT A)−1
(

AT A
)
(AT A)−1AT = A(AT A)−1AT.

Hence, it is a projector.

(c) Here, we have,

vTv2 = vT(I − A)v1 = vT
(

v1 −
vvTv1

vTv

)
= vTv1 −

(vTv)(vTv1)

vTv
= vTv1 − vTv1 = 0.

Hence, vectors v and v2 are perpendicular to each other.

Matlab Section (Optional)

Useful Matlab functions: dftmtx(N) → Generates N × N DFT matrix, fft(x) → Generates
the DFT of a vector x.

1. Computing N-point DFT of a N-length sequence x is a linear transformation. Assuming
N = 4, compute the matrix representation of this linear transformation using the stan-
dard basis (i.e. by giving one basis vector after the other to the fft command). Verify the
obtained matrix with that generated using dftmtx command.

2. (a) Plot the point (3, 0) in Matlab.

(b) Generate a matrix that reflects (3, 0) about the x = y line and plot the resultant point
in the same figure obtained in (a).

(c) Compute the matrix that can project (3, 0) onto the line x = y and plot the resultant
point in the same figure.

(d) Evaluate the matrix which rotates the vector (3, 0) by 600 clockwise and plot the final
obtained vector too.

Code to visualize second problem:

%% Program to plot vector ’u’ and its transformation vector ’v=Au’

%% ’u’ is of size 2X1 and ’A’ of size 2X2.
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%% ’u’,’Ax’ vector can be represented with (x,y) coordinates, in 2D-plane

clc;close all;clear all;

u = [1;2]; % Initalizing vector ’u’

A = [1 -1;-1 0]; % Initalizing matrix ’A’

v = A*u; % v is the transformed vector

figure(1);plot(u(1),u(2),’bs’,’MarkerSize’,20, ’MarkerEdgeColor’,’blue’,...

’MarkerFaceColor’,[0 0 1]);hold on;

plot(v(1),v(2),’rs’,’MarkerSize’,20, ’MarkerEdgeColor’,’red’,...

’MarkerFaceColor’,[1 0 0]);grid on;grid minor;

plot(0,0,’bo’,’MarkerSize’,10, ’MarkerEdgeColor’,’black’,...

’MarkerFaceColor’,[0 0 0]);

legend(’vector "u"’,’Transformed vector "v"’,’Origin’);

minn = min(min([u(1) v(1) u(2) v(2)])-2,-1);

maxx = max(max([u(1) v(1) u(2) v(2)])+2,1);

xlim([minn,maxx]);

ylim([minn,maxx]);

set(gca,’FontSize’,30);

xlabel(’x ---->’,’fontweight’,’bold’,’fontsize’,30);

ylabel(’y ---->’,’fontweight’,’bold’,’fontsize’,30);

hTitle = title(’Plot of points x, Ax’);

set(hTitle,’FontSize’,30); axis equal;
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