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Scattering by a Dielectric Cylinder 

JACK H. RICHMOND. 

Abstract-The theory  and  equations  are developed  for the scat- 
tering  pattern of a  dielectric  cylinder of arbitrary  cross  section  shape. 
The harmonic  incident  wave is assumed  to  have  its electric  vector 
parallel with the axis of the cylinder, and  the field  intensities  are 
assumed to be independent of distance  along the axis.  Solutions  are 
readily  obtained  for  inhomogeneous  cylinders  when the permittivity 
is independent of distance along the cylinder axis. 

Although  other  investigators have approximated the field within 
the dielectric body by the  incident field, we treat  the  total field as an 
unknown function  which is  determined by solving  a system of linear 
equations. 

In the  case of the dielectric  cylindrical  shell of circular  cross  sec- 
tion, this technique  yields results which  agree  accurately  with the 
exact  classical  solution.  Scattering patterns  are  also  presented  in 
graphical  form  for a dielectric  shell of semicircular  cross  section, a 
thin homogeneous  plane  dielectric sheet of finite width, and an 
inhomogeneous  plane  sheet. The effects of surfacewave excitation 
and  mutual  interaction among the various  portions of the dielectric 
shell  are included  automatically in this solution. 
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of Arbitrary Cross Section Shape 
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A 
I. INTRODUCTION 

LTHOUGH  RIGOROUS  solutions  are  available 
for  scattering  by  homogeneous  dielectric  cylin- 
ders of circular  and  elliptical  cross  section,  only 

ipproximate  solutions  exist  for  homogeneous  or  in- 
lomogeneous  cylinders of other  shapes  with  finite  cross 
section dimensions. A ray-optics  technique  is  commonly 
?mployed  by  radome  designers.  Each  ras.  passing 
through  the  dielectric  body is assumed to  undergo  the 
same  reflection and  phase  delay  that  is  experienced  by  a 
plane  wave  passing  through an  infinitely  wide  plane 
sheet of the  same  thickness  and  with  the  same  angle of 
incidence. This  ray-optics  method  often  provides  rea- 
sonably  accurate  results  for  slightly  curved  dielectric 
shells, but  i t  is inadequate  for  rapidly  curving  shells  and 
the  edge  region of a  truncated shell. 

The  rap-optics  solution  has  been refined and  extended 
zonsiderably by  Kouyoumjian,  Peters  and  Thomas. [l] 
Their  technique  has  proven  quite  successful  with  cir- 
d a r  dielectric  cylinders,  spheres,  and a few other 
shapes.  However,  the  method  becomes  somewhat  com- 
plicated in the  general  case  and  it  does  not  always  pro- 
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vide  accurate  results  for  small  or  irregular  dielectric 
bodies. 

Rhodes [2] has  developed  an  iteration  technique for 
dielectric  scattering  problems. The  first-order  solution is 
obtained  by  approximating  the  total field in the dielec- 
tric  body  by  the  incident field, and  then  calculating  the 
scattered field by considering the  equivalent  volume 
currents in the  dielectric region to  radiate in unbounded 
free  space. Useful results  are  obtained  for  thin  dielectric 
shells  having a dielectric  constant  near  unity.  By  a 
similar  technique,  Andreasen  [3]  has  obtained  data  for 
thin  spherical  shells;  Stickler [4] has  calculated  the 
scattering  patterns of dielectric  cylinders of rectangular 
cross  section and Philipson [5] has  made  an  analysis of 
the  scattering  properties of thin  dielectric  rings. 

Using  a  variational  formulation,  Cohen [6] has  ob- 
tained  accurate  solutions for the  circular dielectric 
cylinder.  This  approach  becomes  rather  complicated, 
however, and  the  calculations  become  lengthy  when  the 
dielectric  body  has  an  arbitrary  shape  and dielectric 
constant. 

The  technique developed  in  this  paper is based  on the 
integral  equation for the field of a harmonic  source  in 
the presence of a dielectric  cylinder of arbitrary cross 
section  shape. The  dielectric  cylinder is divided  into 
square cells which  are  small  enough so that  the electric 
field intensity  is  nearly  uniform  in  each cell. The  total 
electric field intensity  within  each cell is  initially  con- 
sidered  to  be  an  unknown  quantity. -4 system of linear 
equations is obtained  by enforcing at   the  center of each 
cell the  condition  that  the  total field must  equal  the  sum 
of the  incident  and  scattered fields. This  system of 
equations  is  solved  with the  aid of a  digital  computer  to 
evaluate  the  electric field intensity  in  each cell. I t  is 
then  a  rather  simple  procedure  to  calculate  the  scat- 
tered field at any  other  point in space.  The  technique 
has the followi& advarltages. 

1) The  solution  approaches  the  exact  solution if a 
sufficiently  large  number of cells is emplotred. 

2) Solutions  are  obtained  for a dielectric  shell of arbi- 
trary  shape  as  quickly  and  systematically  as for  a  circu- 
lar shell. 

3) Simply  by  inserting  the  appropriate  equations  for 
the  incident field, one  obtains  the  solution for any  two- 
dimensional  source  (such  as a line  source,  any  array of 
line  sources,  or  a  plane-wave  source)  in  the  presence of 
a dielectric  cylinder. 
4) Solutions  are  readily  obtained  for  dielectric  shells 

of tapered  thickness  and  inhomogeneous  dielectric 
shells. 

5) The  effects of surface-wave  excitation  and  inter- 
action  among  the  various  parts of the  dielectric  cylinder 
are included  automatically in the  solution. 

6)  Accurate  solutions  are  obtained  for  dielectric 
cylinders  having  cross  section  dimensions up  to  several 
wavelengths.  The  ray-tracing  or  geometrical-optics 
methods  often fail when the cross  section  dimensions  are 
on the  order of one  wavelength  or less. 

7) Once  a  solution  has  been  obtained  for  any  particu- 
lar  source  location, a relatively  simple  calculation will 
provide  the new solution  corresponding  to  a  rotated  or 
translated  source. 

The following  sections  develop  the  theory  and the 
equations  involved  in  this  technique  and  present  nu- 
merical  results  for  homogeneous  and  inhomogeneous  di- 
electric  cylinders of various  cross  section  shapes. 

11. THE BASIC THEORY 

Consider  a  harmonic  wave  incident  in  free  space  on a 
dielectric  cylinder of arbitrary  cross  section  as  suggested 
in  Fig. 1. The  time-factor ejut is  understood. I t  is as- 
sumed  that  the  incident  electric field intensity E‘ has 
only  a z component  and  it is not  a  function of z, where 
the z axis is taken  to be  parallel  with  the  axis of the 
cylinder.  That is, 

Ei = &Ei(x, y )  (1) 

The  dielectric  cylinder is assumed  to  have  the  same  per- 
meability  as  free-space (p=po) .  The  dielectric  material 
is assumed  to  be  linear  and  isotropic,  but  it  may  be  in- 
homogeneous  with  respect to  the  transverse  coordinates 
as  follows: 

€ = € ( X ,  y )  (2) 

where e represents  the  complex  permittivity. 
Let E represent  the  total field; that  is, the field set 

up  by  the  source in the presence of the  dielectric  cylin- 
der.  The  “scattered field” is defined to  be  the  difference 
between  the  total  and  the  incident fields. Thus,  

E = E i + E 8  ( 3 )  

Under  the  assumed  conditions,  the  total  and  the  scat- 
tered  electric field intensities will have  only z com- 
ponents. 

The  scattered field Es may be  generated  by  an  equiv- 
alent  electric  current J radiating  in  unbounded  free 
space,  where 

J = j w ( ~  - €o)E (4) 

with w representing  the  angular  frequency 2nf. This 
equivalent  current  density is often  called  the  “polari- 
zarion  current.” 

The field of an electric current  filament dI parallel 
with the z axis  in  free  space is given by 

dEs  = - a(w/.L:’4)a,(2)(Kp)dI (5) 

where H o @ ) ( k p )  is the  Hankel  function of order  zero, 
p is the  distance from the  current  filament  to  the  obser- 
vation  point  and k = w d j i & ~  = 2njX. The free-space  wave- 
length  is  denoted  by X. The  increment of electric  current 
which  generates  the  scattered field is given  by 

d l  = J dS = ~ W ( E  - Q ) E  dS (6) 
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Fig. 1. Cross section of a dielectric  cylinder 
showing the coordinate  system. 

where dS is  the  increment of surface  area  on  the  cross 
section of the  dielectric  cylinder.  From (5) and ( 6 ) ,  the 
scattered field is given by 

w . 2 ,  Y )  

= - ( jk”/4)  JJ ( E ,  - l)E(X’, y ’ )a ,ykp)dx‘dy’  (7) 

where (x, y )  and (x!, y’) are  the  coordinates of the  ob- 
servation  point  and  the  source  point,  respectively, E? is 
the  complex  relative  dielectric  constant (E, =€ /EO)  and 

I X 

Fig. 2. The cross  section of the dielectric  cylinder 
is divided into small cells. 

By taking m = 1, 2, 3 ,  . . . , hT, (10)  yields a system of 
N linear  equations,  where N represents  the  total  number 
of cells. These  can  be  solved to  determine  the  total 
electric field intensity at   the  center of each cell 
( E l ,  E2, Es, . . . , E X ) .  Having  thus  determined  the  total 
field E ( x ,  y )  in  the  dielectric  region,  it is then possible 
to  calculate  the  scattered field of the  dielectric  cylinder 
at any  point  in  space  by  means of (7). The  details of the 
solution  are  described  in  the  following  section. 

p = I / ( x  - %”)2 + ( y  - y f ) 2  (8) 111. SURFACE INTEGRALS OF THE HANKEL FUNCTION 

The  integration  in (7) is to  be  performed  over  the  cross 
section of the  dielectric  cylinder.  In  the  inhomogeneous 
case  the  relative  dielectric  constant  is  considered  to  be a 
function of the  source  coordinates 

E, = €, (a!, y’) 

Equation (7) is  valid  for  the  scattered field at any 
point  inside  or  outside  the  dielectric  region.  The  integral 
equation  for  the  total field E is obtained  from ( 3 )  and 
( V ,  

E(x ,  y) + o‘k2/4) JJ ( E r  - l)E(x’, y‘)Bo‘?’(Kp)ds‘dy’ 

= E ( z ,  y )  (9) 

Let  us  divide  the  cross  section of the  dielectric  cylinder 
into cells sufficiently  small so that  the dielectric  constant 
and  the  electric field intensity  are  essentially  constant 
over  each cell. The division  into  cells is indicated  in 
Fig. 2. If (9) is  enforced at the  center of cell m, the 
following  expression  is  obtained : 

A T  

E m  + ( j k 2 / 4 )  (en - 1 ) L  
7l=l 

* ss,.,, L Ro(’)(kp)dx’dy‘ = Emi  (10) 

where E ,  and E ,  represent  the  complex  relative  dielectric 
constant  and  the  electric field intensity at the  center of 
cell n and 

The  surface  integrals  in (10) can  be  evaluated  by 
numerical  integration  formulas  such as the  trapezoidal 
rule  and  Simpson’s  rule.  These  methods  have  been  em- 
ployed  successfully, but  i t  was  found  that  the  calcu- 
lations  are  quite  lengthy,  and  care  must  be exercised  in 
integrating  through  the  singularity  that  exists  when  the 
observation  point  is at  the  center of cell n. The region 
of integration  (over cell 12) is  square  or  rectangular  in 
the  simplest  case,  and a closed-form  solution  for  this  in- 
tegral  is  not  known. A simple  solution  is,  however,  avail- 
able  for  the  integral of the  zero-order  Hankel  function 
over a circular  region. I t  is given  by 

where p is given  by (11) and p’ and 4’ are  polar co- 
ordinates  based  on  a  coordinate  origin at the  center of 
cell n. The first  solution  given  in (12) applies if the  ob- 
servation  point  is at the  center of the  circular  region 
(i.e., if m = n ) .  The second  solution  applies if the  ob- 
servation  point is at a distance pmn from  the  center of 
the  circular  region,  where p m x  is  greater  than  the  radius 
a of the  circular  region.  Numerical  calculations  have 
shown that  little  error  is  incurred  in  approximating 
square cells  with  circular cells of the  same  cross  section 
area  to  take  advantage of the  simple  expressions  given 
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in ( 1 2 ) .  The  distance  between  the  centers of cells m and 
n is given  by 

Pma = .\/(x, = X n ) *  + ( y m  - JI~)' (13) 

Now the  system of linear  equations  represented  by 
(10) can  be  written  in  the  following  form: 

.?r 
C,,E, = Emi with m = 1 ,  2, . - , X (14) 

7l=l 

If a,  represents  the  radius of the  equivalent  circular cell 
which  has  the  same  cross  section  area as cell n, the co- 
efficients C,, are  given  by 

~ m n  = 1 + ( em - 1 )  ( j / 2 )  [ n K a m B 1 ( 2 ' ( K ~ m )  - 2 j ]  

if n = m 

Cmn = (jTkU,/2)(€ ,  - l)J1(Ku,)Bo'~)(Kpmn) 

if n # f n .  

I v .  FORMUL-4TING THE SCATTERED FIELD 
Once  the  system of linear  equations (14) has 

solved,  the  scattered field of the  dielectric  cylinder  can 
be  calculated at  any  point  in  space  by  means of (7). 
To simplify  the  surface  integral  in ( 7 ) ,  i t  is convenient 
again to  divide  the  cylinder  into  small  cells  whose  cross 
section  shape  is  approximately  square.  From (7) and 
( 1 2 )  , the  scattered field a t   any  point  outside  the  di- 
electric  body is given  by 

E=(., 3,) 
N 

= - j ( n K i 2 )  (en - 1)E,a,J1(Kan)Ho'2)(kp,) ( 1 7 )  
n=1 

where E% represents  the  average  dielectric  constant  over 
cell n,  a,  is the  radius of the circle  having  the  same  area 
as  cell n and p n  is the  distance from the  observation 
point to  the  center of cell n, 

p n  = 2/(. - .,)4 + 01 - y n p  (18) 

The  distant  scattering  pattern of the  dielectric 
cylinder is obtained  by  employing  the  asymptotic  form 
for  the  Hankel  function of large  argument  and  taking 

p a  = P O  - x,  cos 4 - yn sin 4 (19) 

where po and + are  the  polar  coordinates of the  distant 
observation  point.  The  distant  scattered field is given  by 

Ea(po, 4) = - j ( ~ k / 2 ) & j / ~ k p o  
s 

ae- jkpo ( E ,  - l)E,a,J1(Ka,) 
n=l 

. &k(zn cos +fun sin 4) (20) 

The plane-wave  scattering  properties of any  cylindri- 
cal  body of infinite  length  are  conveniently  described  in 
terms of the  echo  width [ 7 ]  which is denoted  by W(4) 
and  is defined as follows: 

From (20) and ( 2 1 ) ,  the  echo  width of a  dielectric 
cylinder of arbitrary  cross  section  shape  is  given as 
follows: 

J r V  (4) 

V. NUMERICAL  RESULTS FOR THE CIRCULAR 
CYLINDRICAL SHELL 

Using (14) ,  ( l5) ,  (16), (20)  and ( 2 2 ) ,  numerical solu- 
tions  were  obtained  for  a  circular  dielectric  cylindrical 
shell.  Figure 3 shows  the  electric field distribution in the 
dielectric  shell  set  up  by  an  incident  plane  wave,  and 
Fig. 4 shows  the  distant  scattering  pattern.  Figure 4 
also  shows  the  exact  classical  solution  which  involves an 
infinite  series of cylindrical  mode  functions. I t   may  be  
noted  that  the  integral-equation  technique  yields results 
which  show  excellent  agreement  with  the  exact  solution. 
In view of the  nature of the  integral-equation  formula- 
tion,  it is believed that  highly  accurate  results  can  also 
be  obtained  for  dielectric  cylinders of other  cross  section 
shapes  where an exact  solution  is  not  available. 

In Fig. 3 it  may  be  noted  that  the  electric field in- 
tensity  in  the  dielectric  region  varies  from 0.8 t o  1.58 
in  magnitude.  The  incident  plane  wave  has  an  electric 
field intensity of 1.0. Thus, poor  accuracy  is t o  be  ex- 
pected if the  electric field intensity  in  the  dielectric 
region is approximated  by  the  incident  electric field 
intensity. 

In addition to   the plane-wave  solution  previously 
described,  the  integral-equation  technique  readily  yields 
solutions  when  the  incident  wave is the field of a line 
source  or  any  array of line  sources of infinite  length. 
The line  sources  are  assumed  to  be  parallel  with  the  axis 
of the  dielectric  cylinder.  Figure 5 shows  the  scattering 
pattern of a  circular  dielectric  cylindrical  shell  when  the 
incident field is  generated  by a nearby  line  source  having 
an  omnidirectional  pattern.  In  Fig. 5 the echo  width  is 
referred to  the  incident  power  density at   the  center of 
the  dielectric  cylindrical  shell.  Similar  calculations  show 
that  the  scattering  pattern  approaches  the  plane-wave 
solution  shown in Fig. 4 when  the  line  source  is a t  a 
great  distance  from  the  dielectric  shell.  This  provides 
one  check on the  accuracy  and  validity of the  integral- 
equation  technique  as  applied  to  the  dielectric  cylinder 
in  the  presence of a line  source. 
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Fig. 4. Distant  scattering  pattern of circular  dielectric 
cylindrical  shell  with  plane-wave  incident. 
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having  normal  incidence. 
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VI. NUMERICAL RESULTS FOR SEMICIRCL-LAR 
CYLINDRICAL SHELL 

Figure 6 shows  the  plane-wave  scattering  pattern of 
a semicircular  cylindrical  shell,  computed  with  the 
integral-equation  technique  developed  in  Sections  I  I 
and 111. This  particular  semicircular  dielectric  shell  has 
much  smaller  echo  width  than  the  corresponding  circu- 
lar shell  illustrated  in  Fig. 4. However, i t  is possible to  
obtain a considerable  increase  in  the  backscatter  echo 
width of a semicircular  shell  (compared  with  the  circular 
shell of the  same  radii)  by  proper choice of the  inner  and 
outer  radii  and  the  wavelength. No exact  solution  is 
available  for  comparison  with  the  results  shown  in  Fig. 
6, and  the  geometric-optics  solution  is  not  likely  to  be 
accurate  for a shell of such  small  cross  section  dimen- 
sions. 

I t  should  be  pointed out  that  the  solution  for  the 
semicircular  shell  (or any  other cross  section  shape)  is 
as simple,  straightforward  and  systematic as that  for 
the circular  cylindrical  shell  when the  integral-equation 
technique  is  employed.  This  represents  a  distinct  ad- 
vantage  over  the  boundary-value  solution,  the geo- 
metric-optics  solutions  and  the  variational  solutions. 

1711. NUMERICAL RESULTS FOR PLANE 
HOMOGENEOUS DIELECTRIC SLABS 

Figure 7 shows  the  calculated  scattering  patterns of 
a plane  dielectric  slab of finite  thickness  and  width  for 
the case  where  a  plane  wave  is  incident  normally  on  the 
slab.  Results  are  shown  both  for lossless and  dissipative 
homogeneous  slabs. 

For  comparison,  the  physical  optics  solutions  are 
also  shown. The physical  optics  solution  is  based on the 
approximation  that  the  electric field intensity  within 
the  dielectric  body  is  the  same  as  that  in  a  dielectric  slab 
of infinite  width.  Thus,  the  edge  effects  and  surface-wave 
phenomena  are  usually  neglected  in  the  physical-optics 
approximation  in  contrast  with  the  integral-equation 
solution.  Although  accurate  agreement is not  to  be  ex- 
pected  between  the  two  methods,  reasonably good 
agreement  is  observed  in  Fig. 7. 

I t  should  be  mentioned that  slightly  dissipative  di- 
electric  cylinders  are  handled  as  easily as lossless dielec- 
tric  bodies  with  the  integral-equation  technique.  In 
problems  involving  perfectly  conducting  or  highly  con- 
ducting  scatterers,  a  somewhat  different  formulation 
has  been  employed  with good  success.  Some  modifica- 
tions  must  be  made  in  the  techniques  developed  here  to 
study  the  scattering  properties of highly  dissipative 
dielectric  bodies,  since  in  this  case  it is not  reasonable 
t o  assume  the  electric field intensity  is  nearly  uniform 
over  each cell of the  type  employed  here. 

Figure 8 shows  the  scattering  patterns of the  same 
homogeneous  dielectric  slab  for  grazing  incidence.  Re- 

sults  are  shown  both  for  the lossless and  dissipative 
cases. The physical-optics  solution is not  shown  for  this 
case  simply  because  the  optical  solutions  do  not  yield 
useful results  for  grazing  incidence  unless  considerable 
effort is made  to include  the  effects of surface-wave 
excitation  in  the  dielectric  slab. It  may  be  noted  in 
Fig. 8 that  the  forward  scattering  intensity  is  much 
greater  for  grazing  incidence  than  for  normal  incidence, 
and  that  the  results  are  much  more  sensitive  to  the loss 
tangent  (tan 6) for  grazing  incidence. 
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Fig. 9. Calculated  scattering patterns of an inhomogeneous  plane 

dielectric slab with a plane  wave a t  normal and grazing  incidence. 
Dielectric constant varies  linearly from 4.0 a t  center  to 1.0 a t  
edges of slab. 

VIII. NUMERICAL RESULTS FOR PLANE IKHOMO- 
GENEOUS DIELECTRIC SLABS 

Figure 9 shows  the  scattering  patterns  for a lossless 
inhomogeneous  dielectric  slab  for  normal  incidence  and 
grazing  incidence. The dielectric  constant is assumed to  
vary  linearly  from 4.0 at the  center of the  slab  to 1.0 
a t   the  edges,  being  a  function  of  the y coordinate  only. 
A physical-optics  solution  for  this  problem  would  be 
somewhat  involved.  With  the  integral-equation  tech- 
nique  the  solution is straightforward  and  systematic. 

IX. CONCLUSIONS 
,4 technique is developed  for  calculating  the  scat- 

tered fields of a  dielectric  cylinder  or  cylindrical  shell of 
arbitrary cross  section  shape.  The  solution  is  based  on 
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the  integral  equation  for  the  problem,  and  it  involves 
the solution of a system of linear  equations.  The  first 
step  in  the  solution is t o  determine  the  electric field 
distribution  within  the  dielectric  body.  This field dis- 
trib’ution  is  often of considerable  interest  in  itself,  since 
it  promotes  an  understanding of the  phenomena  which 
are  important  in  the  scattering process. For  example, 
any  surface  waves  which  may  be  excited  in  the  dielec- 
tric  body  are revealed  in the  standing  waves in the field 
distribution,  and  the  edge  effects  are  evident  in  the 
field perturbations  near  the  edges of a  dielectric  shell. 

The  solution is best  accomplished  with  the  aid of a 
digital  computer.  This  integral-equation  solution  is 
more  systematic,  more  general  and  more  accurate  than 
the  optical  methods or the  variational  solutions.  For an 
inhomogeneous  dissipative  dielectric  shell of any cross 
section  shape,  one  merely  inserts in the  equations  the 
coordinates  which  define  the  shape of the  shell,  and  the 
appropriate  dielectric  constant  and loss tangent associ- 
ated  with  each  point  in  the  dielectric  body.  The  incident 
wave  may  be  a  plane  wave  or  any  combination of plane 
waves,  or i t   may be the field generated  by a parallel 
line  source  or any  array of parallel  line  sources.  One 
merely  inserts  the  value of the  incident field associated 
with  each  point  in  the  dielectric  body.  The  effects  of 
surface  waves  and  edge  diffraction  are  included  auto- 
matically in the  solution. 

Examples  are  included t o  show  the  scattering  pat- 
terns of circular  and  semicircular  dielectric  cylindrical 
shells and  plane  dielectric  slabs of finite  thickness  and 
width.  Results  are  illustrated  for  inhomogeneous  and 
dissipative  dielectric  slabs  as well as their  simpler 
counterparts. 

The  technique  can  be  extended  to  apply  to  incident 
waves  having  arbitrary  polarization,  to  dielectric  bodies 
having a permeability  differing  from that  of free  space, 
and  even  to  three-dimensional  scattering  problems. 

There will,  however,  be a corresponding  increase  in  the 
complexity  and  the  computational  costs. 

This  integral-equation  technique  is  applicable  pri- 
marily t o  problems  in  which  the  cross  section  area of 
the  dielectric  cylinder  is  not  too  large.  The  dielectric 
cross  section  is  divided  into cells which are  square  or 
nearly so. For  accurate  results,  the  edge  dimensions of 
each cell should  not exceed 0.2/& wavelengths.  If,  for 
example,  the  dielectric  constant is 4.0, a solution  can  be 
obtained at reasonable  cost  for  a  dielectric  shell of 
thickness  up  to 0.1 wavelength  and  width  up  to 10 
wavelengths.  This will involve  the  solution of 100 linear 
equations,  which  is  not  an  unreasonable  number.  By 
employing  interpolation  formulas, i t  is  possible to  han- 
dle  a  shell of thickness 0.1 wavelength  and  width  up  to 
40 wavelengths  by  solving a set of 100 linear  equations. 
The  computation  time is determined by the cross sec- 
tion  area of the  dielectric  cylinder. I t  is  believed that  a 
cross  section  area  up  to  four  square  wavelengths  can  be 
handled at reasonable  cost  and  without  difficulty  by 
this  technique  with  the  aid of a  computer  such as the 
IB1L.I 7094. 
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