EE5120 Linear Algebra: Tutorial 6, July-Dec 2017-18
Coverssec4.2,5.1,5.2 of GS

1. State True or False with proper explanation:
(a) All vectors are eigenvectors of the Identity matrix.
(b) Any matrix can be diagonalized.
(c) Eigenvalues must be nonzero scalars.

(d) A and B are said to be Similar matrices if there exists an invertible matrix P such that
P~!AP = B. A and B always have the same eigenvalues.

(e) The sum of two eigenvectors of an operator T is always an eigenvector of T.

2. Let T be the linear operator on 1 x 1 real matrices defined by T(A) = A’. Show that +1
are the only eigenvalues of T. Describe the eigenvectors corresponding to each eigenvalue
of T.
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3. Prove that the geometric multiplicity of an eigenvalue, 14 (A;), can not exceed its algebraic
multiplicity, y4(A;). Thus, from here conclude (and prove that) 1 < y4(A;) < pa(Ai) <n

4. Consider the following N x N matrix:

x —x 0 0 0 0 0 0 O
x x —x 0 0 0 0 0 0
0 «x x —x 0 O 0 0 0
A=10 0 X x —x 0 0 0 0
0 0 0 X x —x
L0 0 O 0 x x|

This implies for N = 1,2, 3, matrix A looks like,

[x B x] x —x O
[x]  x X x —x
0 «x X

Show that the determinant of A is (Fy_1 + FN,Z)xN, where F; = 1, 5, = 2and Fy =
Fyo1+ Fn-2.
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5. Let p(A) = T1(A; — A) be the characteristic polynomial of the n x n matrix A. Derive the
i=1
characteristic polynomial of A% — I, where I is an identity matrix of appropriate dimension.
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6. Prove that a linear transformation T on a finite dimensional vector space is inverible iff
zero is not an eigen value of T
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7. (a) What is wrong with this proof that projection matrices have det P = 1?

1

P=AATA) AT  so |P|=|A|—r]
| AT[|A]

ATl =1
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(b) Suppose the 4by4 matrix M has four equal rows all containing a, b, ¢, d. We know that
det(M) = 0. Find the det(I + M) by any method?

14a b c d

a 1+b ¢ d

det(I+ M) = b 14c d

a b c 1+d
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8. Find the eigenvalues and eigenvectors for both of these Markov matrices A and A®. Ex-
pain why A% is close to A®:

6 2 o [1/3 1/3
A= [.4 .8} AT = [2/3 2/3}
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9. When a + b = ¢ + d, show that (1,1) is an eigenvector and find both eigenvalues:
a b
a=[cd]
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10. EXTRA: Find u(t) that satisfies the differential equation du/dt = Pu, when P is a projec-
tion:
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Here u(t) is a vector of time-varying functions, i.e., we can write u(t) = [Z)((?)} . You will

find that a part of u increases exponentially while another part stays constant.
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