EE5120 Linear Algebra: Tutorial 3, July-Dec 2017-18

- 1. Let S_1 and S_2 be two subsets of a vector space V such that $S_1 \subset S_2$. Say True/False for each of the following. If True, prove it. If False, justify it.
 - (a) If S_1 is linearly independent, then S_2 is so.
 - (b) If S_1 is linearly dependent, then S_2 is so.
 - (c) If S_2 is linearly independent, then S_1 is so.
 - (d) If S_2 is linearly dependent, then S_1 is so.

Solution:

- (a) False. Need not be the case always. If S_2 contains a linear combination of elements of S_1 , then it will not be linearly independent. For example, let $S_1 = \{1\}$ and $S_2 = \{1,2\}$ both subsets of \mathbb{R} . Here S_1 is linearly independent, while S_2 is not.
- (b) True. Since S_1 is linearly dependent we have nite vectors $x_1, x_2, ..., x_n$ in S_1 and so in S_2 such that $a_1x_1 + a_2x_2 + a_nx_n = 0$ is a nontrivial representation. But this nontrivial representation is also a nontrivial representation of S_2 . Therefore S_2 is also linearly dependent.
- (c) True. Proof by contradiction: Assume S_1 is linearly dependent. Then we can find a non-trivial representation for S_1 , which will also be a non-trivial representation for S_2 and contradicts the fact that S_2 is linearly independent.
- (d) False. Need not be the case always. Refer example for (a)
- 2. Let P₂ be the set of all second degree polynomials. Clearly, it is a vector space. Which of the following sets are the bases for P₂? Justify your answer.

(a)
$$\{-1-x+2x^2, 2+x-2x^2, 1-2x+4x^2\}.$$

(b)
$$\{1+2x+x^2, 3+x^2, x+x^2\}.$$

(c)
$$\{1-2x-2x^2, -2+3x-x^2, 1-x+6x^2\}$$
.

(d)
$$\{-1+2x+4x^2, 3-4x-10x^2, -2-5x-6x^2\}$$
.

(e)
$$\{1+2x-x^2, 4-2x+x^2, -1+18x-9x^2\}$$
.

Solution:

Each of the given sets has three polynomials. Since dimension of P_2 is 3, it is sufficient to test linear independency for the sets to be a basis for P_2 (*Note that dimension of a vector space is the total number of basis vectors present in a basis set of that vector space*). Test procedure is as follows: Let the polynomials in each set be $\{p_1(x), p_2(x), p_3(x)\}$. Solve $ap_1(x) + bp_2(x) + cp_3(x) = 0$ for constants a, b and c. If these constants are all zero, then the set is a linearly independent. Else, it is not. According to this, we obtain that the sets in (b), (c) and (d) are the bases for P_2 .

3. Consider a vector $\mathbf{x} = (x_1, x_2, x_3, x_4)$ in \mathbb{R}^4 . It has 24 rearrangements like (x_2, x_1, x_3, x_4) , (x_4, x_3, x_1, x_2) , and so on. Those 24 vectors, including x itself, span a subspace S. Find specific vectors \mathbf{x} so that the dimension of S is: (a) 0, (b) 1, (c) 3, (d) 4.

Solution:

- (a) A subspace of dimension 0 in \mathbb{R}^4 is the origin. So the vector that spans it is (0,0,0,0).
- (b) A subspace of dimension 1 implies it has only one vector in its basis. This is possible only if the vector does not change on rearrangement. One such vector is (1,1,1,1).
- (c) Consider a non-zero vector (x_1, x_2, x_3, x_4) such that $x_1 + x_2 + x_3 + x_4 = 0$, i.e., its dot product with (1,1,1,1) is 0. This vector along with its permutations will span a 3-dimensional subspace that is perpendicular to the line through (1,1,1,1) and origin.
- (d) Take the standard basis for \mathbb{R}^4 , i.e., (1,0,0,0) and its permutations since any vector space is a subspace of itself.
- 4. Find the basis for the following subspaces of \mathbb{R}^5
 - (a) $W_1 = \{(a_1, a_2, a_3, a_4, a_5) \in \mathbb{R}^5 : a_1 a_3 a_4 = 0\}$
 - (b) $W_2 = \{(a_1, a_2, a_3, a_4, a_5) \in \mathbb{R}^5 : a_2 = a_3 = a_4, a_1 + a_5 = 0\}$

Solution:

- (a) $\{(0,1,0,0,0),(1,0,1,0,0),(1,0,0,1,0),(0,0,0,0,1)\}$
- (b) $\{(0,1,1,1,0),(-1,0,0,0,1)\}$
- 5. Do the polynomials $x^3 2x^2 + 1$, $4x^2 x + 3$, 3x 2 generate $P_3(\mathbb{R})$? where $P_3(\mathbb{R})$ is the set of all polynomials having degree ≤ 3

Solution: None of the linear combinations of the given the polynomials produce $x \in P_3(\mathbb{R})$: they can't generate $P_3(\mathbb{R})$

6. Prove that any rank 1 matrix has the form $\mathbf{A} = \mathbf{u}\mathbf{v}^T = \text{column times row.}$

Solution: In rank 1 matrix, every row is a multiple of the first row, so the row space is one-dimensional. In fact, we can write as the whole matrix as *the product of a column vector* and *a row vector*.

Example:
$$\begin{bmatrix} 2 & 1 & 1 \\ 4 & 2 & 2 \\ 8 & 4 & 4 \\ -2 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 4 \\ -1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \end{bmatrix}$$

7. Let V be a finite dimensional vector space and let S be a spanning subset of V. Prove that there exists a subset of S that is the basis for V.

Solution:

Here, we also provide a procedure to construct the basis \mathcal{B} from \mathcal{S} . The procedure is as follows:

- (a) Let $\mathcal{B} = \emptyset$ initially.
- (b) If an element $\mathbf{u} \in \mathcal{S}$ is s.t $\{\mathbf{u}\} \cup \mathcal{B}$ is linearly independent, then add \mathbf{u} into \mathcal{B} .
- (c) Repeat (b) till linear independence of \mathcal{B} fails.

Hence, by construction \mathcal{B} is a linearly independent subset of \mathcal{S} . Now it suffices to show that \mathcal{B} spans V, i.e., span(\mathcal{B}) = V. It is given that span(\mathcal{S}) = V.

Let
$$S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$$
 and $B = \{\mathbf{v}_1, ..., \mathbf{v}_m\}$ $(m \le n)$. This implies $\mathbf{v}_j = \sum_{i=1}^m a_i^{(j)} \mathbf{v}_i$, $\forall j = m+1, ..., n$ and for some constants $a_1^{(j)}, ..., a_m^{(j)}$. By construction of B , $\mathrm{span}(B) \subset \mathrm{span}(S)$. Now let $\mathbf{w} \in \mathrm{span}(S) \Rightarrow \mathbf{w} = \sum_{k=1}^n b_k \mathbf{v}_k = \sum_{k=1}^m b_k \mathbf{v}_k + \sum_{k=m+1}^n b_k \left(\sum_{i=1}^m a_i^{(k)} \mathbf{v}_i\right) \Rightarrow \mathbf{w} \in \mathrm{span}(B)$. Thus, $\mathrm{span}(B) = \mathrm{span}(S) = V$. Hence, proved.

8. Prove that number of basis vectors of a vector space is unique.

Solution: Let $\mathbf{v}_1, ..., \mathbf{v}_m$ and $\mathbf{w}_1, ..., \mathbf{w}_n$ are both bases for the same vector space. Suppose there are more \mathbf{w}_j 's than \mathbf{v}_i 's (n > m). Since \mathbf{v}_i 's form a basis, they must span the space. Every \mathbf{w}_j can be written as a combination of the \mathbf{v}_i 's: If $\mathbf{w}_j = a_{1j}\mathbf{v}_1 + ... + a_{mj}\mathbf{v}_m$.

We know the shape of **A** is m by n. since n > m, There is a nonzero solution to $\mathbf{A}\mathbf{x} = \mathbf{0}$. Then $\mathbf{V}\mathbf{A}\mathbf{x} = \mathbf{0} \Rightarrow \mathbf{W}\mathbf{x} = \mathbf{0}$. A combination of the \mathbf{w}_j 's gives zero! The \mathbf{w}_j 's could not be a basis, which is a contradiction. Similarly, (m > n) also will fail. Hence, number of basis vectors of a vector space is unique (m = n).

9. Let **A** be an $m \times n$ matrix. Prove that the sum of dimensions of the column space and null space of **A** equals n.

Solution:

Note that **A** transforms vectors from \mathbb{R}^n to vectors in \mathbb{R}^m . Null space of $\mathbf{A} = \{\mathbf{x} \in \mathbb{R}^n | \mathbf{A}\mathbf{x} = \mathbf{0}_m\}$ ($\mathbf{0}_m$ is an $m \times 1$ all zero vector). Clearly, null space of $\mathbf{A} \subset \mathbb{R}^n$. Also, it is also a subspace of \mathbb{R}^n . Let $\{\mathbf{v}_1, ..., \mathbf{v}_k\}$ ($k \le n$) be the basis for null space of \mathbf{A} . Then, it can be extended to the basis of \mathbb{R}^n as $\{\mathbf{v}_1, ..., \mathbf{v}_k, \mathbf{v}_{k+1}, ..., \mathbf{v}_n\}$. If we prove that

 $\{\mathbf{A}\mathbf{v}_{k+1},...,\mathbf{A}\mathbf{v}_n\}$, which are all $m \times 1$ vectors, is the basis for column space of \mathbf{A} , then the final result follows as,

 $\dim(\text{column space of } \mathbf{A}) + \dim(\text{null space of } \mathbf{A}) = n - k + k = n.$

To prove: $S = \{Av_{k+1}, ..., Av_n\}$ *is the basis of the column space of* **A**.

(i) Linear Independence:

Let \mathcal{S} be linearly dependent. Then, there exists constants $a_1,...,a_{n-k}$ such that $\sum\limits_{i=1}^{n-k}a_i\mathbf{A}\mathbf{v}_{k+i}=\mathbf{0}_m$ with not all a_i 's equal to zero. Now, $\mathbf{A}\left(\sum\limits_{i=1}^{n-k}a_i\mathbf{v}_{k+i}\right)=\mathbf{0}_m\Rightarrow\sum\limits_{i=1}^{n-k}a_i\mathbf{v}_{k+i}\in \text{null space of }\mathbf{A}.$ Then, $\exists b_1,...,b_k \text{ s.t, }\sum\limits_{i=1}^{n-k}a_i\mathbf{v}_{k+i}=\sum\limits_{j=1}^kb_j\mathbf{v}_j.$ This contradicts the fact that $\{\mathbf{v}_1,...,\mathbf{v}_n\}$ are linearly independent. Thus, the assumption that \mathcal{S} is linearly dependent is incorrect $\Rightarrow \mathcal{S}$ is linearly independent.

(b) S spans column space of "A":

Let $\mathbf{x} \in \text{column space of } \mathbf{A}$. Then, $\exists \mathbf{y} \in \mathbb{R}^n \text{ s.t. } \mathbf{A}\mathbf{y} = \mathbf{x}$. But $\mathbf{y} = \sum_{i=1}^n c_i \mathbf{v}_i$, for some constants c_i 's (basis expansion in \mathbb{R}^n). So, $\mathbf{x} = \mathbf{A}\mathbf{y} = \mathbf{A}\left(\sum_{i=1}^n c_i \mathbf{v}_i\right) = \mathbf{A}\left(\sum_{i=1}^k c_i \mathbf{v}_i\right) + \mathbf{A}\left(\sum_{i=k+1}^n c_i \mathbf{v}_i\right) = \mathbf{0}_m + \mathbf{A}\left(\sum_{i=k+1}^n c_i \mathbf{v}_i\right) = \mathbf{A}\left(\sum_{i=k+1}^n c_i \mathbf{v}_i\right) \Rightarrow \mathbf{x} \in \text{span}(\mathcal{S}) \Rightarrow \text{column space of } \mathbf{A} \subset \text{span}(\mathcal{S})$. But $\text{span}(\mathcal{S}) \subset \text{column space of } \mathbf{A}$. So \mathcal{S} spans the column space of \mathbf{A} .

From above discussions, we proved the desired result.

- 10. Let **A** be an $n \times n$ invertible conjugate symmetric matrix, i.e., $\mathbf{A}^H = (\mathbf{A}^*)^T = \mathbf{A}$ (* -denotes conjugation) and **x** be an $n \times 1$ vector. The following procedure guides you to find the inverse of $\mathbf{A} + \mathbf{x}\mathbf{x}^H$.
 - (a) For an arbitrary y, consider the equation,

$$(\mathbf{A} + \mathbf{x}\mathbf{x}^H)\mathbf{z} = \mathbf{y}. (1)$$

Now finding inverse of $\mathbf{A} + \mathbf{x}\mathbf{x}^H$ is equivalent to finding a **B** such that $\mathbf{z} = \mathbf{B}\mathbf{y}$. Premultiply both sides of equation (1) by \mathbf{A}^{-1} and obtain

$$\mathbf{z} = \mathbf{A}^{-1}\mathbf{y} - \mathbf{A}^{-1}\mathbf{x}\mathbf{x}^{H}\mathbf{z}.$$
 (2)

- (b) Pre-multiply both sides of equation (2) by \mathbf{x}^H and then solve for $\mathbf{x}^H\mathbf{z}$ in terms of \mathbf{x} , \mathbf{A} , \mathbf{y} .
- (c) Substitute into equation (1) and manipulate to bring into the desired form $\mathbf{z} = \mathbf{B}\mathbf{y}$. Observe what \mathbf{B} is.

Solution: Consider equation (2). Now, on pre-multiply both sides of this equation by \mathbf{x}^H , we get, $\mathbf{x}^H\mathbf{z} = \mathbf{x}^H\mathbf{A}^{-1}\mathbf{y} - \mathbf{x}^H\mathbf{A}^{-1}\mathbf{x}\mathbf{x}^H\mathbf{z} \Rightarrow \mathbf{x}^H\mathbf{z} = \mathbf{x}^H\mathbf{A}^{-1}\mathbf{y}/(1+\mathbf{x}^H\mathbf{A}^{-1}\mathbf{x})$. Let $\tilde{\mathbf{x}} = \mathbf{A}^{-1}\mathbf{x}$. Substitute this in equation (1). We get,

$$\begin{aligned} \mathbf{A}\mathbf{z} + \mathbf{x}\mathbf{x}^{H}\mathbf{z} &= \mathbf{y} \\ \Rightarrow \mathbf{A}\mathbf{z} + \mathbf{x}\tilde{\mathbf{x}}^{H}\mathbf{y}/(1 + \mathbf{x}^{H}\tilde{\mathbf{x}}) &= \mathbf{y} \\ \Rightarrow \mathbf{A}\mathbf{z} &= \left(\mathbf{I} - \frac{\mathbf{x}\tilde{\mathbf{x}}^{H}}{1 + \mathbf{x}^{H}\tilde{\mathbf{x}}}\right)\mathbf{y} \\ \Rightarrow \mathbf{z} &= \left(\mathbf{A}^{-1} - \frac{\tilde{\mathbf{x}}\tilde{\mathbf{x}}^{H}}{1 + \mathbf{x}^{H}\tilde{\mathbf{x}}}\right)\mathbf{y}. \end{aligned}$$

Thus, inverse of $\mathbf{A} + \mathbf{x}\mathbf{x}^H$ is $\mathbf{A}^{-1} - \frac{\tilde{\mathbf{x}}\tilde{\mathbf{x}}^H}{1+\mathbf{x}^H\tilde{\mathbf{x}}}$, with $\tilde{\mathbf{x}} = \mathbf{A}^{-1}\mathbf{x}$.