Enceladus' Brilliant Surface: RADAR Modeling

U. K. Khankhoje¹, K. L. Mitchell², J. C. Castillo-Rogez², M. Janssen²

USC

1: Electrical Engineering, University of Southern California email: uday@alumni.caltech.edu 2: Jet Propulsion Laboratory, California Institute of Technology

INTRODUCTION

Icy satellites of the outer Solar system display unusually bright Radar albedo [1,2,3]. In November 2011, the Cassini spacecraft was able to image the surface of Enceladus with its synthetic aperture radar at high resolution [4]. It found that most of the satellite showed a very high radar backscattering cross-section. Further, this backscatter was only weakly dependent on incident angle.

RESULTS

angle for a given

Surface 1:

Surface 2:

incident radar beam.

h = 0.25 cm, c = h

h = 0.25 cm, c = 5 h

h: mean surface height

Where does the ice come from?

(Left) False color mosaic of Enceladus taken by the Cassini-Huygens probe in July 2005, showing the "Tiger stripes" in the South pole.

We investigate geologically plausible scattering configurations of the icy surface using a rigorous, fullycoherent electromagnetic scattering tool based on the finite element method (FEM) [5].

Past work on this subject has involved the use of "exotic" scatterers embedded inside an icy substrate to explain high backscatter [6,7]. In our analysis, the only material we use is ice and demonstrate that high backscatter is possible under this constraint.

METHODOLOGY

The Finite Element Method is a general purpose tool for the solution of differential equations. A geometry of interest is specified, from which the radar scattering cross-section is calculated.

Vacuum

Wavelength $\lambda = 2.17$ cm

[Surface modeled as a Gaussian random process.]

c: surface correlation length

-60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 Scattering angle (degrees)

Surface statistics determine the nature of scattered radar power when the substrate is homogeneous.

• ROUGH SURFACES: HOMOGENEOUS SUBSTRATES

(qB)

R

. -1 ^

Variation of radar backscatter (in dB) as a function of incidence angle for the two types of surfaces considered above:

Incidence angle	Surface 1		Surface 2	
	H-pol	V-pol	H-pol	V-pol
50	-13.0	-13.3	-24.9	-22.5
40	-13.7	-12.8	-19.9	-17.8
30	-13.4	-14.8	-13.3	-13.3

Clearly, the backscatter is very sensitive to surface statistics.

• ROUGH SURFACES WITH CIRCULAR PEBBLES ATOP

For the same two surfaces as above, circular ice pebbles of random radius (between 0.75λ and 1.25λ), and random spacing (between 5λ and 7λ) are sprinkled on the surface.

(Right) View from Cassini spacecraft of plumes seen emerging from Enceladus' South pole.

[Images courtesy of NASA/JPL/Space Science Institute]

ROUGH SURFACES WITH POROUS SUBSTRATES

For the same two surfaces, the substrate is now made porous by randomly introducing pores. A pore is modeled by the vacuum region formed by placing three equally sized circular ice pebbles in contact. For the results below, porosity = 50% and minimum pore size is 10 mm.

Incidence	Surf	Surface 1		Surface 2	
angle	H-pol	V-pol	H-pol	V-pol	
50	0.9	0.6	0.4	-1.2	
40	2.0	2.5	1.4	2.0	
30	3.6	2.1	2.5	2.2	

As in the earlier case, the dependence of radar backscatter on incidence angle and surface statistics is gone, i.e. regardless of the surface statistics, a high backscatter is observed. Further increase of 1-3 dB is observed by combining pebbles with porous substrates.

- Tessellated 2D computational domain.
- Incident radar wave at specified angle. Incident wave is "tapered" in amplitude to reduce numerical edge diffraction effects [8].
- One "realization" of a rough surface. To get a convergent ensemble average, many (50–100) realizations must be considered [9,10].
- Absorbing boundary layer to terminate computational domain [11,12].
- **Important Caveat**: 2D simulations, i.e. third dimension is homogeneous and physics invariant in that direction. But, big computational advantage gained.

Incidence angle	Surface 1		Surface 2	
	H-pol	V-pol	H-pol	V-pol
50	1.3	1.9	0.1	0.8
40	2.3	0.9	1.1	2.0
30	2.4	1.0	3.1	2.8

Radar backscatter has now increased, and is weakly dependent on incidence angle due to retro-reflection by pebbles. Making the pebbles elliptical weakens this effect.

DISCUSSION

• The presence of coherent scattering mechanisms in addition to just rough surfaces is essential in order to get high radar reflectivity from icy substrates.

• These mechanisms give a relative increase of 10-20 dB in backscatter as compared to homogeneous rough surfaces. •No strong geological justification for pebbled surface, but it is the preferred explanation for radar-bright channels on Titan. • Geological justification for a porous substrate is the presence of fine ice-ejecta deposited onto the surface by the cryovolcainc eruptions. It is conceivable that the substrate is formed by the deposition of many such layers. Space weathering and sintering may play a dominant role in the creation of multiple subwavelength pores within the substrate [4].

[1] S. J. Ostro et al., J. Geophys. Res., 97 (E11), 18227–18244, 1992.

[2] G. Black et al., *Icarus*, 151(2), 167–180, 2001. [3] S. J. Ostro et al., *Icarus*, 206(2), 498–506, 2010. [4] K. L. Mitchell et al., *44th LPSC* #2902, 2013. [5] U. K. Khankhoje et al., *IEEE Trans. Geosci*. & Rem. Sens., 51(6), 2012.

[6] B. Hapke, *Icarus*, 88(2), 407-414, 1990 [7] J. Baron et al., *Icarus*, 164(2), 407-414, 2003. [8] E. I. Thorsos, Acoust. Soc. of Am. J., 83, 78–92, 1988. [9] S. H. Lou et al., *Waves in Random Media*, 1(4), 287–307, 1991 [10] U. K. Khankhoje et al., Comp. Phys. Comm., in-press, 2013. [11] A. Bayliss et al, *Comm. Pure Appl. Math.*, 33(6), 707–725, 1980. [12] A. F. Oskooi et al., *Optics Express*, 16, 11376–11392, 2008.

ACKNOWLEDGMENTS

This research was carried out at the California Institute of Technology, Jet Propulsion Laboratory under a contract from NASA. It was supported by the Cassini project, and a JPL R&TD Innovative Spontaneous Concept grant. We thank members of the Cassini Radar team, Steve Wall, Jakob van Zyl, and Mahta Moghaddam for discussions and support.