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ABSTRACT

In this thesis, we study a general scheduling strategy for the downlink wireless channel

of a single cell of a cellular data network. A fixed number of users share the slotted

wireless channel using time division multiplexing. The user queues at the base station

are assumed to be saturated, i.e., the users always have data to send. The slotted wireless

channel is modelled as a random and time varying process (possibly due to multipath

fading). We assume that the channel state information (CSI) of every user is available

at the base station at the beginning of every slot, and, the base station uses the CSI to

determine a schedule in the slot. In this set up, the objective of the centralized scheduler

at the base station is to implement a network quality of service (QoS) or maximize a

network utility, both defined on the long time average user throughputs.

Popular scheduling strategies, like the gradient algorithm, use instantaneous channel

rates and estimates of few other channel parameters, to identify a schedule in a slot.

We propose a rate region based scheduler RRS that uses the entire available channel

history to decide upon a schedule. In every slot, the RRS uses the available channel

history to estimate the wireless channel statistics. The estimate is used to identify a rate

region and an optimal rate vector in the rate region (as a function of the network QoS

or the network utility). The scheduler, then, implements a schedule corresponding to

the optimal rate vector in the slot. We prove that RRS is asymptotically optimal for all

continuous network utilities, for some ergodic channels with discrete channel states. We

note that the channel history based scheduler requires a consistency in implementation

and also has poor convergence behaviour.

Then, we propose a simple channel allocation based scheduler, RRS-CA, which

uses both schedule history and channel history, and consequently, has better conver-

gence behaviour than RRS. We prove the asymptotic optimality of RRS-CA scheduler

as well. We also propose a practical variant of the rate region based schedulers, called

RRS-RA (RRS using allocated rates), which uses schedule history in the form allocated
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rates. The RRS-RA is a gradient scheduler that uses a dynamic, auxiliary network util-

ity to drive the average allocated rate (throughput) vector towards the estimated optimal

rate vector. RRS-RA has several practical advantages over RRS as it makes consistent

schedule decisions and has better convergence behaviour than RRS.

Using simulations, we show that the rate region based scheduling strategy provides

us a common framework to implement arbitrary notions of QoS and fairness defined on

the long time average user throughputs. We show that the rate region based schedulers

can implement QoS defined using arbitrary continuous and some non-continuous func-

tions, provide a parameter-less implementation and has better convergence behaviour

than network utility based gradient schedulers.

The rate region based schedulers are computationally expensive to implement; the

scheduler needs to compute the rate region, an optimal rate vector and a corresponding

schedule in every slot. In the last chapter of the thesis, we discuss simple implemen-

tations of rate region based schedulers for max-min fairness, for the two user case and

for N users. The schedulers make limited use of channel history and schedule history

information, and approximates optimal rate vector and the corresponding schedule to

minimize computation. Simulation results show that the performance of the proposed

schedulers (simple and approximate versions) are comparable to RRS-RA schedulers

and other known schedulers that implement max-min fairness. We also propose a sim-

ple technique that uses channel history information to increase the convergence rate of

some schedulers in literature.
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CHAPTER 1

Introduction

We consider the downlink wireless channel of a single cell of a cellular data network.

A fixed number of users share the slotted wireless channel using time division multi-

plexing. We assume that the user queues at the base station are saturated, i.e., the users

always have data to send. The slotted wireless channel is modeled as a random and time

varying process. The randomness in the channel is attributed to multipath fading and

other channel effects. We assume that the channel state information (CSI) of every user

is available at the base station at the beginning of every slot. Also, we assume that the

base station uses the CSI to identify a user to schedule, i.e., the base station is oppor-

tunistic. In this set up, our objective is to implement a network quality of service (QoS)

or maximize a network utility, both defined on the long time average user throughputs.

Data communication in a cellular setup is getting increasingly popular, especially

with the advent of 3G/4G wireless standards (see e.g., IEEE 802.16m (2011), 3GPP

(2011)). Key reasons to the success of such cellular data protocols are high data rates,

large coverage area and support for user mobility. A big challenge in optimizing net-

work performance in this setup involves handling wireless channel fading and inter-cell

interference through appropriate feedback and scheduling mechanisms. In this work,

we consider a single cell of a cellular data network. Hence, we do not study interfer-

ence and are concerned only with channel fading.

A popular scheduling strategy for a fading wireless channel in this setup is op-

portunistic scheduling. Opportunistic schedulers make use of multiuser diversity and

improves the overall network performance by scheduling users with favorable channel

conditions (see Liu et al. (2003a)). However, such schedulers are known to be unfair

to users with poorer channel distributions (see, e.g., Holtzman (2001)). Recently, a

number of papers have proposed to implement different notions of fairness and QoS

objectives among users, for example, proportional fairness (see Jalali et al. (2000)),

minimum and maximum rate guarantees (see Liu et al. (2003a), Andrews et al. (2005))

and temporal fairness (see Liu et al. (2003a), Liu et al. (2003b)), while opportunistically

enhancing the network performance.



Most implementations of fair schedulers on user throughputs attempt to maximize

a concave and continuously differentiable utility function (that defines fairness) on the

user throughputs. The scheduler in such cases is usually a gradient algorithm or is of

the stochastic approximation type, and the average allocated rate (throughput) vector

converges to a local optimum ( which is in fact, the global optimum for strictly concave

network utilities). There do not exist implementations of fairness based on non-concave

or non-continuous utility functions, even though there is no reason to assume that user

satisfaction metrics are concave functions of their average throughputs. Also, there has

been little focus on the optimal convergence rate of fair schedulers. In this work, we

study a general scheduling strategy that can implement fairness based on arbitrary con-

tinuous network utilities, including non-concave and non-differentiable functions. Us-

ing simulations, we show that the proposed scheduler has better convergence behaviour

than network utility based gradient schedulers.

Popular scheduling strategies, like the gradient algorithm, use instantaneous chan-

nel rates and estimates of only a few channel parameters, to identify a schedule in a

slot. In this work, we propose a rate region based scheduler, RRS, that uses the entire

available channel history to determine a schedule. In every slot, RRS uses the available

channel history to estimate the wireless channel statistics. The estimate of the wireless

channel is used to identify a rate region and an optimal rate vector in the rate region

(as a function of the QoS or the network utility). The scheduler, then, implements a

schedule corresponding to the optimal rate vector in that slot. We show that RRS is

asymptotically optimal for all continuous network utilities, for some ergodic channels

with discrete channel states. We note that the channel history based scheduler requires

a consistency in implementation and also has poor convergence behaviour.

Then, we propose a simple channel allocation based scheduler, RRS-CA, which

uses both schedule history and channel history, and consequently, has better conver-

gence behaviour than RRS. We prove the asymptotic optimality of RRS-CA scheduler

as well. We also propose a practical variant of RRS called RRS-RA (RRS using allo-

cated rate), which uses schedule history in the form of allocated rates. The RRS-RA

is a gradient scheduler that uses a dynamic, auxiliary network utility to drive the aver-

age allocated rate (throughput) vector towards the estimated, global optimal rate vector

in every slot (unlike network utility based gradient algorithms that seek local optima).

RRS-RA has several practical advantages over RRS as it makes consistent schedule
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decisions and has better convergence behaviour than RRS.

Using simulations, we show that the rate region based scheduling strategy provides

us a common framework to implement arbitrary notions of QoS and fairness defined on

the long time average user throughputs. We observe that the rate region based sched-

ulers can implement QoS defined using arbitrary continuous and some non-continuous

functions, provide a parameter-less implementation and has better convergence be-

haviour than network utility based gradient schedulers.

The rate region based schedulers are computationally expensive to implement; the

scheduler needs to compute the rate region, an optimal rate vector and a corresponding

schedule in every slot. In the last chapter of this thesis, we discuss simple and com-

putationally inexpensive implementations of rate region based schedulers for max-min

fairness. Simulation results show that the performance of the simple and approximate

versions are comparable to RRS-RA schedulers and other known schedulers that im-

plement max-min fairness. Finally, we propose a simple technique that uses channel

history information to improve the convergence rate of some popular schedulers for

max-min fairness.

1.1 Motivation

In this section, we provide a motivation (using an example) for the rate region based

scheduling strategy proposed in this work. Consider a wireless system with 4 users and

a strictly concave and continuously differentiable network utility U =
∑4

i=1 Ui, where

U1, U2, U3 and U4 are the user utility functions represented in Figure 1.1 (U2, U3, U4

are logarithm functions). U1 is a strictly concave function and has a continuous but

sharply varying gradient. The log utility of users 2,3 and 4 is a strictly concave and

continuously differentiable function in<4\04. The gradient scheduler (Stolyar (2005b))

is an asymptotically optimal scheduler for the given network utility U . However, since

the scheduler uses gradient of U in its scheduling decision, its convergence behaviour

is affected by the shape of the utility function. This effect is most pronounced when the

gradient of U has sharp variations near the optimal rate vector.

In Figure 1.2 we have plotted the performance of the gradient scheduler for the util-

ity U for the 4 users. We consider a user correlated, time independent channel model for
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the users, described in detail in Channel model A in Appendix E. (Please refer Section

2.4 for more information on the simulation setup). The optimal rates for the network

utility U and the channel model A are marked by an o (for user 1) and by a ∗ (for users

2, 3 and 4) in Figure 1.1. In Figure 1.2, we have plotted the time average rate vector of

the gradient scheduler for a realization of the wireless channel; the gradient scheduler

studied in Stolyar (2005b) is known to be asymptotically optimal for almost all real-

izations. We see from the figure that gradient scheduler exhibits slow convergence for

the wireless system. The reason for this behaviour is that the gradient scheduler im-

plements very different schedules in the neighborhood of the optimal rate vector (due

to the sharp variation in the utility of user 1). This results in sub-optimal scheduling

until the average rate vector R̄(t) settles sufficiently. Such sub-optimal performance

of gradient scheduler caused by the shape of the utility function was reported in An-

drews et al. (2005) in the context of implementing rate constraints using a modified

network utility. However, the concave network utility itself could possibly have such

gradient variations. Thus, gradient algorithms may not always be suitable even when

the network utility is strictly concave and continuously differentiable.

A scheduling algorithm which does not rely entirely on local gradient information

(and hence on the shape of the network utility) would be a better alternative in such a

scenario. Particularly, a scheduler with sufficient knowledge of the entire rate region

need not rely on local gradient information and can thus have a utility-independent

convergence behaviour. In Chapter 5, Section 5.6, we report that the rate region based

schedulers, in fact, can seek the global optimum without being affected by gradient

variations in U . The rate region based schedulers proposed in this thesis use an estimate

of the rate region of the wireless channel and seek the globally optimal rate vector

directly, unlike the network utility based gradient schedulers that depend on gradient

of U to implement the optimal rate vector. The above example, clearly illustrates the

importance of channel history information and the necessity to seek global optimal rate

vector in every slot.
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Figure 1.1: Plots of strictly concave and continuously differentiable user utility func-
tions U1 through U4 with respect to the average user throughput. Also plot-
ted in the figure is the gradient of utility function of user 1, U ′1. The optimal
rates for the network utility

∑4
i=1 Ui and for the channel model A (described

in Appendix E), are marked by an o (user 1) and * s (user 2,3 and 4) in the
figure.
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and the wireless channel model A described in Appendix E. The optimal
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figure.
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1.2 Related Literature

The asymptotic properties of opportunistic, fair and optimal resource sharing algo-

rithms, for cellular data networks, were first studied in Kushner and Whiting (2002) and

in Kushner and Whiting (2004) using a stochastic approximation framework. The lim-

iting behaviour of the user throughputs of algorithms like the proportional fair schedule

(see Jalali et al. (2000)), were shown to optimize a strictly concave and continuously

differentiable network utility over the rate region of the wireless channel. In Stolyar

(2005b), the transient dynamics of user throughputs for gradient (on a network utility)

schedulers was studied using fluid sample paths and their asymptotic optimality was

shown for general network scenarios. The schedulers discussed in Kushner and Whit-

ing (2004) and Stolyar (2005b), use local gradient information and their applicability

is restricted to concave and continuously differentiable utilities. We propose a general

rate region based scheduler that can optimize any continuous network utility over the

rate region. Also, our proof of the asymptotic optimality of schedulers uses techniques

different from those used in Kushner and Whiting (2004) and Stolyar (2005b).

The gradient scheduling algorithm was generalized in Andrews et al. (2005) and in

Stolyar (2005a) to optimize concave and continuously differentiable utility functions

subject to throughput constraints. A general and unified framework for opportunistic

scheduling that implements temporal fairness, utilitarian fairness and minimum perfor-

mance guarantees was proposed in Liu et al. (2003a). The stochastic approximation

based scheduler in Liu et al. (2003a) is restrictive in its implementation of utilitar-

ian fairness and minimum performance guarantees as it implements fixed ratio of user

throughputs and provides hard minimum rate guarantees only. The RRS schedulers

provides a general framework that can implement arbitrary QoS including utility max-

imization with multiple rate constraints (see Chapter 5 for interesting QoS examples).

Gains of multiuser diversity as a function of the quality of channel feedback is studied

in Agrawal and Subramanian (2002). We assume that the base station has perfect CSI,

but consider arbitrary definitions of QoS.

There is considerable interest and literature concerning stability of queueing net-

works and wireless systems. In Tassiulas and Ephremides (1992), the authors pro-

pose a maximum throughput policy for multihop radio networks, called the max-weight

scheduling policy, that stabilizes any random arrival process within the rate region. A
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throughput optimal dynamic power allocation and routing strategy was proposed in

Neely et al. (2005b) to stabilize wireless systems with time varying wireless channels

and random arrivals. In Neely et al. (2005a), the authors propose a dynamic strategy

to support all traffic whenever possible, and to make optimally fair decisions about the

data to serve when inputs exceed network capacity. For arrival rates outside the rate

region, fair rate vector is defined using a sum of concave utilities on user throughput. In

our work, we assume that the users are saturated and our objective is to implement the

prefered (arbitrary) QoS to the saturated users.

For systems with random arrivals, packet delay and buffer occupancy are other met-

rics of interest along with long time average user throughputs. In Stolyar and Ramanan

(2001), the authors propose largest weighted delay first schedule that maximizes the

asymptotic rate of decay of the tails of the stationary maximal weighted delay. In An-

drews et al. (2004), a throughput optimal scheduling policy, modified-largest weighted

delay first, is studied that provides minimum rate guarantees and probabilistic delay

bounds on arrivals. In Shakkotai and Stolyar (2000), an exponential scheduling rule in

conjunction with token based rate control for supporting a mixture of real-time and non-

real time data applications is proposed. The exponential scheduling rule can implement

minimum rate guarantees and provide probabilistic delay guarantees through appropri-

ate choice of parameters. In Wu and Negi (2005) and in Shakkottai (2008), effective

capacity of a wireless channel with a guaranteed QoS is studied, where QoS is based

on the buffer overflow probabilities and on queue delay violation probabilities. In our

work, the performance metric of our interest is the long time average user throughput

and we study fairness notions based only on the average throughput vector.

Early works on fair schedulers for wireless networks such as Ng et al. (1998), Lu

et al. (1999) and Nandagopal et al. (1999), were based on generalized processor sharing

(GPS) and packetized weighted fair queueing (WFQ) principles. In Ng et al. (1998),

the authors identify key properties for a packet fair queueing scheduler in a wireless en-

vironment and present an algorithm based on the properties. A wireless fair scheduler

based on fluid fair queueing is proposed in Lu et al. (1999) to handle location-dependent

error burst. The above schedulers based on GPS report bounded delay or fairness guar-

antees and their performances are essentially suboptimal. In Liu et al. (2003b), a wire-

less credit based fair queueing scheduler is proposed that achieves a tradeoff between

fairness of temporal access independent of channel conditions and pure opportunistic

7



scheduling. We note that the set of throughput objectives achievable with the approach

is limited.

A variety of mathematical tools are available for the development and analysis of

resource allocation algorithms for wireless networks. The stochastic approximation

method (see Kushner and Yin (1997)), is a popular class of iterative algorithms for

finding the zero of a random, unknown function. Stochastic approximation techniques

are widely used in scheduling algorithms for wireless networks (see e.g., Kushner and

Whiting (2002), Liu et al. (2003a)). The ODE method reported in Borkar and Meyn

(2000) is a popular technique used to study the asymptotic behaviour and stability of

stochastic approximation algorithms. The fluid-limit method proposed in Rybko and

Stolyar (1992), helps determine limiting behaviours of a random process by studying

the limiting behaviour of appropriate scaled versions of the process that are determin-

istic. In Stolyar (2005b), fluid sample paths were used to study the transient dynamics

of user throughputs for gradient schedulers. Lyapunov stability theory is used in many

works, including Tassiulas and Ephremides (1992), Tassiulas and Ephremides (1993)

and Neely et al. (2005b), to develop stable scheduling algorithms for wireless networks

with unsaturated traffic.

Sample average approximation (see Kleywegt et al. (2002)) is a useful technique for

solving discrete stochastic optimization problems of the type minx∈{x1,x2,...}E(f(x, Y )),

where f(·, Y ) is a random, unknown function. Sample path optimization techniques

(see Robinson (1996)) can optimize the steady-state or long-time averages of dynamic

systems by solving related optimization problems on finite length sample-averages. The

basic principle behind our work is in spirit with sample path optimization, namely, that

the optimizer(s) x of the almost sure limit, f∞, of certain computable sequence of ran-

dom functions {fn} can be estimated through deterministic optimization of fn for the

observed sample path. In our work, we identify the asymptotic optimal rate vector for

the wireless system through the deterministic optimization of the network utility over

the observed channel distribution sequence. Further, we develop control strategies that

implement the optimizing rate vector in the long time average sense.

8



1.3 Outline

In Chapter 2, we describe the system model and assumptions. We present the rate region

based scheduler RRS in Chapter 3. In Chapter 4, we propose schedule history and chan-

nel history based schedulers, RRS-CA and RRS-RA, and discuss their advantages. We

report simulation results and evaluate the performance of rate region based schedulers,

RRS and RRS-RA, in Chapter 5. In Chapter 6, we discuss simple implementations of

rate region based max-min fair schedulers for two users and for N users. We conclude

the thesis and discuss future work in Chapter 7. In Appendices A and B, we discuss the

proof of the asymptotic optimality of RRS and RRS-CA schedulers. In Appendix C we

discuss the rate region of ergodic channels with stationary distribution. In Appendix D,

we present a simple relation between the geometry of the rate region and an important

parameter of an RRS-RA scheduler. Finally, in Appendix E, we list the channel models

used in our simulations.
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CHAPTER 2

System Model and Assumptions

We consider the downlink wireless channel of a single cell of a cellular data network.

A fixed number (N) of users, share the slotted wireless channel using time division

multiplexing; a single user is scheduled in every slot and users time share the channel

over slots. We assume that the user queues at the base station are saturated. In this set

up, a centralized scheduler at the base station attempts to implement a network QoS or

a notion of fairness.

2.1 Channel Model

We consider a random and time varying wireless channel, {R(t)}∞t=1, where R(t) =

(r1(t), · · · , rN(t)) for all t. The vector (r1(t), · · · , rN(t)) corresponds to the set of

achievable rates in the slot t for any user, i.e., if user i is scheduled in the slot t, rate ri(t)

is achieved for the user i in the slot without any data error or data loss. The channel state

R(t) is assumed to be fixed in the slot t and may vary over slots; the channel process

{R(t)}∞t=1 may possibly be correlated over time and across users. We assume that

the channel process {R(t)}∞t=1 is an ergodic random process with a discrete stationary

distribution (e.g., an irreducible discrete time Markov chain). LetR(t) ∈ {R1,R2, · · · }
for all t, where Rj = (rj,1, · · · , rj,N), and, let {πj} be the stationary distribution of

{R(t)}∞t=1 for the sample space {Rj}. We will assume that rj,i < B <∞ for all j and

all i. In this work, we assume that the channel state information R(t) is available at the

base station at the beginning of every slot t, and, the base station uses R(t) to decide

upon a schedule in the slot.

2.2 Performance Metric

Our performance metric for the saturated network is the long time average user through-

put. Let {µ(t)} be any schedule, where µ(t) ∈ {1, 2, · · · , N} for all t, and µ(t′) = i′ in-



dicates that time-slot t′ is allocated to user i′ under schedule {µ(t)}. Then, we define the

long time average throughput R̄ for the schedule {µ(t)} as R̄(µ) = (r̄1(µ), · · · , r̄N(µ)),

where,

r̄i(µ) := lim inf
t→∞

r̄i(µ, t) = lim inf
t→∞

1

t

t∑

s=1

ri(s)I{µ(s)=i}

r̄i(µ, t) is the time average throughput of user i up to time t for the schedule {µ(t)}.
We define the rate region C of the wireless channel as the set of all long time average

throughput vectors feasible with probability 1. For an ergodic channel process, the

stationary distribution of the process characterizes C completely (see Liu et al. (2003a),

Kumar et al. (2008)). The rate region for an ergodic wireless channel with sample space

{Rj} and stationary probability distribution {πj} is given by (see Appendix C)

C =

{
(r̄1, · · · , r̄N) : r̄i =

∑

j

πj aj,i rj,i, aj,i ≥ 0,
∑

i

aj,i ≤ 1, i = 1, · · · , N
}

{aj,i}s represent a stationary schedule or an average channel allocation. For exam-

ple, the long time average throughput of
∑

j πjaj,irj,i is achievable for user i with a

stationary random schedule {aj,i}, i.e., when we allocate channel Rj randomly and

independently to users according to the probability distribution (aj,1, · · · , aj,N), when-

ever channel Rj occurs. The stationary random schedule {aj,i} achieves an average

channel allocation of {aj,i} in the long time average sense, i.e., a fraction aj,i of slots

that are Rj , is allocated to user i as time tends to infinity. The average channel alloca-

tion aj,i ensures the average rate
∑

j πjaj,irj,i for an ergodic channel with probability

distribution {πj}. We note that every rate vector R̄ = (r̄1, · · · , r̄N) in the rate region C
is achievable using a stationary random schedule. Also, we note that the rate region C
is a convex set (see Liu et al. (2003a)).

2.3 Network Objective

In this setup, our network objective is to implement a QoS or a notion of fairness or

maximize a network utility, defined on the rate region C. For example, let U : RN → R
be a continuous network utility defined on the rate region C. Then, the base station

would seek to achieve (almost surely) a long time average throughput vector R̄∗ such

11



that

R̄∗ ∈ arg max
R̄∈C

U(R̄)

C is a compact set (closed and bounded since rj,i < B < ∞ for all j and i). The

maximum of a continuous function is achievable in a compact set (see Rudin (1976)).

Remarks 2.3.1.

1. A number of fairness definitions can be implemented using network utilities
(e.g., sum of logarithms on the user throughput achieves proportional fairness,
see Kushner and Whiting (2002)). However, some network QoS such as mini-
mum rate constraints, notions of fairness such as max-min fairness are best im-
plemented without defining a network utility. In such cases, the scheduler would
seek a long time average rate vector, R̄∗, which is a preferred operating point in
the rate region C. Please refer to Chapter 5 for interesting definitions of QoS and
their implementations.

2. For strictly concave network utilities, the objective is to maximize the concave
function over a convex set. A unique maximum exists in such cases and gradient
algorithms can be used to achieve the optimal throughput vector (see Kushner
and Whiting (2004) and Stolyar (2005b)).

2.4 Simulation Setup

In Appendix E, we have listed the channel models used in our simulations. We have

considered two basic types of ergodic channels in our simulations, viz., (i) user-correlated

and time independent channel and (ii) time-correlated and user independent channel.

We have considered four channel models, A,B,C and D in this thesis. Channel models

A and C (user correlated and time independent) describe the sample space of {R(t)}
and the corresponding distribution directly; the sample space and the distribution were

chosen arbitrarily. Channel models B and D (time correlated and user independent)

model {R(t)} through an underlying fast-fading wireless channel generated using the

Jake’s model for Rayleigh fading. (All the relevant parameters are reported in the Ap-

pendix E). We do not model shadowing and related slow-fading effects. The parameters

of the Jake’s model, like mean SNR, Doppler shift, etc., have been chosen arbitrarily.

All the channel models have a finite state space and a well defined stationary distribu-

tion.

12



All the simulations reported in this thesis correspond to the performance of the

schedulers for a realization of the wireless channel. We expect that all the rate region

based schedulers are asymptotically optimal for almost all channel realizations (in Ap-

pendix A and in Appendix B, we have proved the almost sure optimality of RRS and

RRS-CA scheduler). Hence, we use the simulation plots only to illustrate the perfor-

mance of the schedulers for different network utilities and QoS. Plots that compare the

performance of different schedulers use the same channel realization for all the different

schedulers.

All the simulations were performed on MATLAB. Channel models B and D were

implemented using the Rayleigh-fading tool of MATLAB.

2.5 Notations

N Number of users

R(t) Vector channel rates (CSI) at time t

ri(t) channel rate of user i (CSI) at time t

{R(t)}∞t=1 Channel/Rate process

rj,i channel rate of user i, at channel state j

{R1,R2, . . .} Sample space of the wireless channel

{π1, π2, . . .} Stationary distribution of the wireless channel

C Rate region of the wireless channel

U Network utility function

Ui User utility function

π(t) Estimate of the vector channel distribution at time t

{πj(t)} Estimate of the channel vector distribution at time t

C(t) Estimated rate region at time t

{µ(t)} Arbitrary schedule sequence

{aj,i} Stationary schedule

{âj,i(t)} Channel allocation up to time t

R̄(t) Time average throughput (allocated rate) vector at time t

R̄(µ, t) Time average throughput (allocated rate) vector for schedule µ at time t

R̄ Long time average throughput vector

13



R̄(µ) Long time average throughput vector for schedule µ

r̄i(t) Time average throughput (allocated rate) of user i at time t

r̄i(µ, t) Time average throughput (allocated rate) of user i for schedule µ at time t

r̄i Long time average throughput of user i

r̄i(µ) Long time average throughput of user i for schedule µ

{a∗j,i} Optimal stationary schedule

R̄∗(t) Optimal time average rate vector at time t in C(t)
R̄∗ Optimal long time average rate vector in C
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CHAPTER 3

A Rate Region Based Scheduler

The rate region C of an ergodic channel {R(t)}∞t=1 with sample space {Rj} and station-

ary distribution {πj} is given by (see Chapter 2)

C =

{
(r̄1, · · · , r̄N) : r̄i =

∑

j

πj aj,i rj,i, aj,i ≥ 0,
∑

i

aj,i ≤ 1, i = 1, · · · , N
}

{aj,i}s represent a stationary schedule or an average channel allocation. We note that

every R̄ ∈ C is achievable using a stationary random schedule. Also, C is a convex and

compact subset ofRN .

Let U : RN → R1 be a continuous network utility defined on the rate region C. Our

network objective is to seek a long time average throughput vector R̄∗ such that

R̄∗ ∈ arg max
R̄∈C

U(R̄)

C is a compact set and the maximum of a continuous function is achievable in a compact

set (see Rudin (1976)). Hence, there exists an R̄∗ in C. In this work, we will assume

that there exists a unique R̄∗ that maximizes the network utility U over the rate region

C. (For a strictly concave network utility U , there exists a unique R̄∗ that maximizes U

in C). R̄∗ is the preferred operating point for the given network utility U and the channel

process with stationary distribution {πj}.

Suppose that the stationary distribution of the wireless channel {πj} is known apri-

ori. Then, we can identify the rate region C and the optimal rate vector R̄∗ ∈ C that

maximizes the network utility U . Let {a∗j,i} be a stationary schedule corresponding to

the optimal rate vector R̄∗, i.e.,

r̄∗i =
∑

j

πj a
∗
j,i rj,i

for all i. The time average throughput vector R̄∗ is now achievable (almost surely)

using the stationary random schedule {a∗j,i}; we allocate channel Rj randomly and in-



dependently to users according to the probability distribution (a∗j,1, · · · , a∗j,N) whenever

channel Rj occurs (see Stolyar (2005b) for a discussion on a similar schedule called

the static service split (SSS) schedule).

In general, the stationary distribution {πj} is unknown and hence, we would not

know the optimal rate vector R̄∗ or the optimal stationary schedule {a∗j,i}.

3.1 Finite-Time Rate Region

Suppose that the stationary distribution {πj} of the wireless channel {R(t)}∞t=1 is not

known. We will now estimate the vector channel distribution using the available channel

history {R(u) : 1 ≤ u ≤ t} as follows. At time t, define {πj(t)} as

πj(t) :=
1

t

t∑

s=1

I{R(s)=Rj} (3.1)

for all j. The random variable πj(t) is the observed fraction of channel slots that are Rj;

πj(t) ≥ 0 for all j and
∑

j πj(t) = 1 for all t. Note that, {πj(t)} is a valid probability

distribution on the channel space {Rj}. For an ergodic channel process {R(t)}∞t=1 with

stationary distribution {πj},
lim
t→∞

πj(t) = πj a.s.

for all j, i.e., the observed channel distribution converges to the stationary distribution

of the wireless channel almost surely (see Wolff (1989)).

Now for every time t, we define a finite-time estimated rate region C(t), evaluated

using the observed channel distribution {πj(t)} as,

C(t) :=

{
(r̄1, · · · , r̄N) : r̄j =

∑

j

πj(t) aj,i rj,i, aj,i ≥ 0,
∑

i

aj,i ≤ 1, i = 1, · · · , N
}

(3.2)

C(t) corresponds to the set of all time average rates, R̄, achievable over [1, t], for the

realization of the wireless channel ({R(u) : 1 ≤ u ≤ t}), possibly using non-causal

schedules (a schedule based on the complete knowledge of future channel states) and

fractional channel allocation (more than one user is scheduled in a slot and users time

share the slot). Observe that C(t) is defined using {πj(t)} exactly as C is defined using
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π; hence, C(t) is also the rate region for a wireless channel with stationary distribution

{πj(t)}. Unlike C, this finite-time rate-region C(t) is a random set and depends on the

sample-path (of the wireless channel) that is observed. When limt→∞ π(t) = π a.s., we

have,

lim
t→∞
C(t) = C a.s. (3.3)

i.e., the finite time estimated rate region of the wireless channel converges to the rate

region of the wireless channel almost surely1. Hence, we will use {πj(t)} as our esti-

mate of the channel distribution at time t and C(t) as our estimate of the rate region of

the wireless channel. We will now proceed with identifying an optimal rate vector and

a schedule for the network utility U in the estimated rate region C(t).

3.2 An Optimal Non-Causal Scheduler

We will now define an optimal (possibly) non-causal scheduler for the network utility

U and the wireless channel {R(t)}∞t=1, using the finite-time estimated rate-region C(t)
as follows. Let R̄∗(t) be an optimal rate vector for the network utility U in the finite

time rate region C(t), i.e.,

R̄∗(t) ∈ arg max
R̄∈C(t)

U(R̄) (3.4)

C(t) is a compact set inRN and the maximum is achievable for a continuous function U

in the compact set C(t). Hence, there exists a R̄∗(t) ∈ C(t)2. Let {a∗j,i(t)} be a channel

allocation (or a stationary schedule) that achieves R̄∗(t) over [1, t], i.e.,

r̄∗i (t) =
∑

j

πj(t) a
∗
j,i(t) rj,i =

∑

j

1

t

t∑

s=1

I{R(s)=Rj}a
∗
j,i(t) rj,i (3.5)

for all i. A time average throughput of R̄∗(t) is achievable over [1, t], if the actual

channel allocation up to time t matches {a∗j,i(t)}, i.e., the fraction of channel state Rj

that was scheduled to user i, up to time t, must equal a∗j,i(t). In general, R̄∗(t) is not

a feasible rate vector with causal schedulers (the sequence of schedules {{a∗j,i(s)} :

1 Define Cinf := lim inft→∞ C(t) := {R̄ ∈ RN : lim supt→∞ inf S̄∈C(t){‖ R̄ − S̄ ‖} = 0} and
Csup = lim supt→∞ C(t) := {R̄ ∈ RN : lim inft→∞ inf S̄∈C(t){‖ R̄ − S̄ ‖} = 0}. If π(t) → π
a.s., then Cinf = C = Csup a.s., i.e., the rate region C(t) converges to C in the Kuratowski sense, a.s.
(Kuratowski (1966)).

2We have assumed that there exists a unique R̄∗ ∈ C, but that does not restrict the possibility of
multiple optimal rate vectors in C(t).
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1 ≤ s ≤ t} is random, and the past allocations cannot be undone) and can be achieved

only using a non-causal scheduler and possibly with fractional allocation of channels.

Trivially, and by definition, the utility achieved by R̄∗(t) serves as an upper-bound

for any schedule, for all time t and for every realization of the wireless channel. We

formalize this in the following lemma.

Lemma 3.2.1. For every realization of the wireless channel, the utilityU(R̄∗(t)) achieved

through a (possibly) non-causal and fractional channel allocation, satisfying equations

(3.4) and (3.5), is the maximum achievable utility for the wireless channel, at the time

t, for the realization.

Remarks 3.2.1.

1. As mentioned earlier, R̄∗(t) may not be a feasible rate vector over [1, t] using
causal schedulers. However, R̄∗(t) is an upper-bound on the performance of all
schedulers (causal and non-causal) and the utility at R̄∗(t) provides us a bench-
mark to compare the performance of other schedulers.

2. The non-causal scheduler is optimal for all t and therefore it is asymptotically
optimal as well.

3. Any scheduler which can achieve R̄∗(t) asymptotically is an asymptotically opti-
mal scheduler.

3.3 An Asymptotically Optimal Causal Scheduler : RRS

We will now propose the rate region based scheduler, RRS, using the finite time rate

region C(t) and the optimal non-causal channel allocation {a∗j,i(t)} (that achieves R̄∗(t)

over [1, t]) .

1. In every slot t, estimate the channel distribution {πj(t)} as

πj(t) =
1

t

t∑

s=1

I{R(s)=Rj}

2. Compute the finite time rate region C(t) using {πj(t)} as

C(t) :=

{
(r̄1, · · · , r̄N) : r̄i =

∑

j

πj(t) aj,i rj,i, aj,i ≥ 0,
∑

i

aj,i ≤ 1, i = 1, · · · , N
}
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3. Identify an optimal rate vector, R̄∗(t), in the estimated rate region C(t), where

R̄∗(t) ∈ arg max
R̄∈C(t)

U(R̄)

4. Identify an optimal channel allocation/stationary schedule {a∗j,i(t)} for R̄∗(t),
such that

r̄∗i (t) =
∑

j

πj(t) a
∗
j,i(t) rj,i

5. In the slot t, implement the stationary random schedule {a∗j,i(t)}, i.e., schedule
channel R(t) randomly and independently to a user according to the probability
distribution (aR(t),1, · · · , aR(t),N), independent of the past schedules.

In every slot t, the RRS scheduler implements the schedule {a∗j,i(t)} (the allocation

that achieves R̄∗(t) over [1, t], described in equations (3.4) and (3.5)) only for the current

slot t and for the channel state R(t). The following theorem proves the asymptotic

optimality of RRS.

Theorem 3.3.1. Let U : RN → R1 be a continuous network utility. Let {R(t)}∞t=1 be

a bounded, discrete-time, irreducible, finite state, space Markov chain with stationary

distribution {πj} and rate region C. If the optimal rate vector R̄∗ = arg maxR̄∈C U(R̄)

and the optimal stationary schedule {a∗j,i} are unique, then the time average throughput

achieved using RRS converges to the optimal rate vector R̄∗ almost surely.

R̄(t)→ R̄∗ a.s.

i.e., RRS is asymptotically optimal.

Proof : See Appendix A.

Remarks 3.3.1.

1. To prove the asymptotic optimality of RRS, we require that the schedule process
{{a∗j,i(t)}}∞t=1 converge to an optimal schedule {a∗j,i}. We show in Appendix A
that the convergence occurs whenever the optimal stationary schedule {a∗j,i} is
unique. However, in general, the optimal schedule need not be unique, even
when the optimal rate vector R̄∗ is unique. We illustrate this using the following
example. Consider a wireless system with 2 users. Let {R(t)}∞t=1 be an i.i.d.
channel process with state space {(100, 200), (200, 400)} KBps and stationary
distribution {0.5, 0.5}. Let U =

√
r̄1 +
√
r̄2 be the continuous network utility that

we seek to maximize. The unique optimal rate vector for the wireless channel is
(50, 200) KBps. The rate vector is achievable using the stationary schedules

{a∗j,i} = {(1, 0), (0, 1)}
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as well as
{b∗j,i} = {(0, 1), (0.5, 0.5)}

In fact, any λ1{a∗j,i} + λ2{b∗j,i}, where λ1, λ2 ∈ [0, 1] and λ1 + λ2 = 1 is an
optimal stationary schedule for the system.

2. RRS requires consistency in the schedules implemented across time-slots: Imple-
menting any {a∗j,i(t)} that satisfies Equation 3.5 may not result in asymptotically
optimal performance. For instance, consider the previous example with multiple
optimal schedules. Let schedule {a∗j,i} be implemented whenever channel state
(100, 200) KBps occurs and let {b∗j,i} be implemented whenever channel state
(200, 400) KBps occurs. This will result in a long-time average throughput of
(150, 100) KBps which is not utility optimal.

3. While we have assumed an unique optimal schedule, {a∗j,i}, it can be seen from
the proof of Theorem 3.3.1, that the convergence of the schedule sequence used
under RRS, {{a∗j,i(t)}}, to an optimal schedule is sufficient to ensure asymptotic
optimality for the network utility. In the next Chapter 4, we propose a practical
variant of RRS called RRS-RA that achieves the optimal rate vector R̄∗ consis-
tently, without any restrictions such as the uniqueness of the optimal schedule
{a∗j,i} (used in the proof of Theorem 3.3.1).

4. The restriction on the uniqueness of the optimal schedule can easily be relaxed
and a network utility of U(R̄∗) − ε can be achieved with RRS, for any ε > 0.
The following scheduler is ε-optimal. Let {ãj,i(t)} be the stationary schedule
implemented in slot t and letR({ãj,i(t)}, π(t+1)) be the ergodic rate for schedule
{ãj,i(t)} and distribution π(t+ 1). Let {a∗j,i(t+ 1)} be any RRS schedule for slot
t+1. In slot t+1, implement {a∗j,i(t+1)} if | U(R̄∗(t+1))−U(R({ãj,i(t)}, π(t+
1))) |> ε. Else, continue to implement {ãj,i(t)}. Since R̄∗(t) → R̄∗ for any
sequence of RRS schedules, and consequently U(R̄∗(t))→ U(R̄∗), the described
scheduler will have a convergent schedule sequence and will be ε−optimal, for
all continuous U .

3.4 Simulations

In Theorem 3.3.1, we proved that the rate region based scheduler RRS is asymptotically

optimal for all continuous network utilities, for some ergodic channels with discrete

distribution. In this section, we will present the performance of RRS scheduler for two

popular notions of fairness, proportional fairness and max-min fairness. In Chapter 4

and in Chapter 5, we will present additional results and report comparison plots with

RRS-RA and other schedulers from the literature.

Proportional fair rates are achieved using the sum of logarithms on the time average

user throughput as the network utility; we note that the network utility is not continuous

at the origin. In Figure 3.1, we report the performance of the implementation of propor-
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tional fair scheduler using RRS for a system with 4 users and for the wireless channel

model A (described in Appendix E). The thin straight lines in Figure 3.1 mark the opti-

mal rate vector R̄∗ that achieves proportional fairness. From the figure, we observe that

R̄(t) converges to R̄∗ as t goes to infinity. The sum of logarithmic network utility is con-

tinuous in the positive quadrant (R+N\0N ) which ensures that RRS is asymptotically

optimal.

In Figure 3.2, we plot the performance of the implementation of max-min fair sched-

uler using RRS for 3 users and for the channel model B (described in Appendix E).

Max-min fairness is implemented by seeking a Pareto optimal R̄∗(t) ∈ C(t) such that

r̄∗1(t) = · · · = r̄∗N(t), without using a network utility. The thin straight line in the

Figure 3.2 marks the optimal rate for the channel distribution. Here again, we observe

from the plot that RRS achieves the optimal performance for max-min fairness asymp-

totically. For max-min fairness, there exists a unique R̄∗(t) in C(t), which converges

to R̄∗ (in C) almost surely (for the ergodic wireless channel). Hence, RRS achieves

the optimal rate vector for max-min fairness as well. Note that in literature, different

utilities/QoS require different forms of schedulers, whereas RRS provides us a common

framework to implement arbitrary QoS and network utilities.
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Figure 3.1: Plots of the time average user throughputs of RRS scheduler implementing
proportional fairness. We consider a wireless system with N = 4 users and
the channel corresponds to the channel model A described in Appendix E.
The thin straight lines correspond to the optimal rate vector R̄∗ for the wire-
less channel.
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Figure 3.2: Plots of the time average user throughputs of RRS scheduler implementing
max-min fairness. We consider a wireless system with N = 3 users and
the channel corresponds to the channel model B described in Appendix E.
The thin straight line corresponds to the optimal rate R̄∗ for the wireless
channel.

22



CHAPTER 4

Channel History and Allocation History based

Scheduling

The rate region based scheduler, RRS, presented in Chapter 3, uses the available chan-

nel history to identify a schedule, but does not make use of any available information

regarding schedule history and scheduled (allocated) rates. The RRS schedule at time

instant t, {a∗R(t),i(t)}, is a function only of the observed channel distribution {πj(t)} and

the network utility U ; the schedule {a∗R(t),i(t)} is chosen independent of the previous

schedules {{a∗R(s),i(s)} : 1 ≤ s ≤ t− 1}.

The RRS scheduler seeks to achieve the time average throughput R̄∗(t) (and even-

tually R̄∗) by using the schedule {a∗R(t),i(t)} in slot t. We note that the time average

throughput R̄∗(t) can be achieved over [1, t], only if the channel allocation up to time

t is {a∗j,i(t)} for all j and i. As the schedule {a∗R(t),i(t)} is chosen independent of the

previous schedules {{a∗R(s),i(s)} : 1 ≤ s ≤ t − 1}, the actual channel allocation up to

time t with the sequence of schedules {{a∗R(s),i(s)} : 1 ≤ s ≤ t} may be very different

from {a∗j,i(t)}. Hence, to ensure asymptotic optimality, RRS requires that the sched-

ules {a∗R(t),i(t)} be such that they form a consistent (convergent) sequence. In the proof

of Theorem 3.3.1, we showed that any sequence of optimal schedules {a∗j,i(t)} would

converge if there exists a unique optimal stationary schedule {a∗j,i}. The convergent

sequence of stationary schedules would then ensure that the allocated rate vector R̄(t)

converges to R̄∗.

In this chapter, we propose scheduling strategies that seek to achieve a time average

throughput of R̄∗(t) over [1, t] by using schedule history and scheduled rates as well. As

we focus on a causal implementation at every time t (also, we cannot alter the allocated

rates for time instants 1 ≤ s ≤ t−1), we might expect to improve upon the performance

of RRS by opting for a schedule that best implements the optimal rate vector R̄∗(t) over

[1, t] than {a∗R(t),i(t)}. Of course, we also require that such a schedule (with a myopic

objective of implementing R̄∗(t) better in every slot t) be asymptotically optimal as

well. Using simulations, we will show that RRS can have poor convergence behaviour,



and we can improve the performance of RRS by using schedule history and allocated

rate information.

In Section 4.1, we propose a simple channel history and schedule history based strat-

egy that seeks to achieve a time average throughput of R̄∗(t) over [1, t], by minimizing

a distance between the actual channel allocation and the optimal schedule {a∗j,i(t)}. In

Section 4.2, we propose a gradient algorithm based scheduling strategy that seeks to

maximize a dynamic, auxiliary network utility in every slot t. The dynamic, auxiliary

network utility is chosen such that the rate vector R̄∗(t) is the unique maximizer for

the auxiliary network utility in the rate region C(t). The gradient algorithm would then

drive the allocated rate vector R̄(t) towards the optimal rate vector R̄∗(t), and asymp-

totically to R̄∗, under appropriate conditions.

4.1 A Channel Allocation based Scheduler: RRS-CA

Let {µ(t)} be any schedule and let {âj,i(µ, t)} be the actual channel allocation, where

âj,i(µ, t) is the fraction of channel state Rj allocated to user i up to time t for the

schedule {µ(t)}, i.e.,

âj,i(µ, t) =

∑t
s=1 I{R(s)=Rj}I{µ(s)=i}∑t

s=1 I{R(s)=Rj}

We note that âj,i(µ, t) ≥ 0 and
∑

i âj,i(µ, t) ≤ 1 for all j, i, µ and t. Hence, the actual

channel allocation {âj,i(µ, t)} is a valid probability distribution on the schedule space

and there exists a stationary schedule {âj,i(µ, t)} with identical probabilities. Now, the

allocated rate vector, R̄(µ, t), for the schedule {µ(t)} is given by

r̄i(µ, t) =
1

t

t∑

s=1

∑

j

I{R(s)=Rj}I{µ(s)=i}rj,i

=
∑

j

1

t

t∑

s=1

I{R(s)=Rj}I{µ(s)=i}rj,i

=
∑

j

1

t

t∑

s=1

I{R(s)=Rj}I{µ(s)=i}

∑t
s=1 I{R(s)=Rj}∑t
s=1 I{R(s)=Rj}

rj,i
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=
∑

j

1

t

t∑

s=1

I{R(s)=Rj}

∑t
s=1 I{R(s)=Rj}I{µ(s)=i}∑t

s=1 I{R(s)=Rj}
rj,i

=
∑

j

πj(t)âj,i(µ, t)rj,i

From the above expression, we observe that the allocated rate vector over [1, t] , for

the schedule {µ(t)} and channel probabilities {πj(t)} is equal to the long time aver-

age throughput achievable with a stationary random schedule {âj,i(µ, t)} for an ergodic

channel with distribution {πj(t)}. Hence, a naive strategy to drive the allocated rate

vector R̄(µ, t) towards the optimal rate vector R̄∗(t) would be to drive the actual chan-

nel allocation {âj,i(µ, t)} towards the optimal schedule {a∗j,i(t)}. We will now define

the simple channel history and schedule history based RRS-CA scheduler (RRS using

channel allocation) that minimizes the Euclidean distance between the actual channel

allocation {âj,i(t)} and the optimal schedule {a∗j,i(t)} in every slot t.

1. In every slot t, estimate the channel distribution {πj(t)} as

πj(t) =
1

t

t∑

s=1

I{R(s)=Rj}

2. Compute the finite time rate region C(t) using {πj(t)} as

C(t) :=

{
(r̄1, · · · , r̄N) : r̄i =

∑

j

πj(t) aj,i rj,i, aj,i ≥ 0,
∑

i

aj,i ≤ 1, i = 1, · · · , N
}

3. Identify an optimal rate vector, R̄∗(t), in C(t), where

R̄∗(t) ∈ arg max
R̄∈C(t)

U(R̄)

4. Compute an optimal schedule {a∗j,i(t)} such that

r̄∗i (t) =
∑

j

πj(t)a
∗
j,i(t)rj,i for all i

5. Define the actual channel allocation up to time t−1, {âj,i(µ, t−1)}, for all j and
i as

âj,i(µ, t− 1) =

∑t−1
s=1 I{R(s)=Rj}I{µ(s)=i}∑t−1

s=1 I{R(s)=Rj}

6. In every slot t, identify and implement the schedule µ(t) ∈ {1, · · · , N} that seeks
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to minimize the Euclidean distance between {a∗j,i(t)} and {âj,i(µ, t)} :

µ(t) = arg max
i
{a∗R(t),i(t)− âR(t),i(t− 1)}

Remarks 4.1.1.

1. If {a∗j,i(t)} converges to {a∗j,i} as t → ∞, then, we can show that {âj,i(t)} →
{a∗j,i} as well. Then, the allocated rate vector R̄(t) would also converge to the
optimal rate vector R̄∗, i.e., the RRS-CA scheduler would be asymptotically op-
timal.

2. For the wireless system described in Theorem 3.3.1, when {a∗j,i} is unique, we
have proved that the channel allocation based scheduler RRS-CA is asymptoti-
cally optimal as well (see Appendix B).

In Figure 4.1, we plot the time average user throughput of the channel allocation

based scheduler RRS-CA implementing proportional fairness. We consider a wireless

system with 4 users and the channel model A described in Appendix E. Also plotted

in the figure are throughput curves of the proportional fair implementation using RRS

scheduler. From the figure, we observe that the RRS-CA is asymptotically optimal

and it performs similar to the RRS scheduler for proportional fairness, for the channel

considered.

In Figure 4.2, we plot the time average user throughput of channel allocation based

scheduler RRS-CA implementing max-min fairness. Also plotted in the figure are

throughput curves of a max-min fair implementation using RRS scheduler. We con-

sider a wireless system with 3 users and the wireless channel model B described in

Appendix E. From the figure, we observe that the proposed channel allocation based

scheduler is asymptotically optimal and it has better convergence behaviour including

reduced oscillations as compared to RRS. The rate region based scheduler RRS imple-

ments a schedule independent of the schedule history and allocated rates. Hence, the

randomness introduced by the channel allocation (random schedules) and the channel

evolution will settle only after large t. The channel allocation based scheduler RRS-CA,

however, attempts to minimize the drift between the actual allocation and the optimal

allocation in every slot t, and tends to stabilize faster. To illustrate this, we consider a

lag metric similar to the one we use in Appendix B to prove the asymptotic optimality

of RRS-CA. In each slot we define Lag(t), as

Lag(t) =
∑

j

∑

i

(
a∗j,i(t)− âj,i(t)

)+
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Figure 4.1: Plots of the time average user throughputs of RRS-CA and RRS, imple-
menting proportional fairness. We consider a wireless system with 4 users
and a wireless channel model A described in Appendix E. The thin straight
lines correspond to the optimal rate vector R̄∗ for the wireless channel.
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Figure 4.2: Plots of the time average user throughputs of RRS-CA and RRS, imple-
menting max-min fairness. We consider a wireless system with 3 users and
a wireless channel model B described in Appendix E. The thin straight lines
correspond to the optimal rate vector R̄∗ for the wireless channel.
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Figure 4.3: Plots of Lag(t) for RRS-CA and RRS for a max-min fair implementation.
We consider a wireless system with 3 users and a wireless channel model B
described in Appendix E.

where (x)+ = max(x, 0). Lag(t) is a measure of the deviation of the actual channel

allocation at t, âj,i(t), from the optimal allocation at t, a∗j,i(t). Note that, Lag(t) = 0

implies R̄(t) = R̄∗(t). Figure 4.3 plots Lag(t) for RRS and RRS-CA for a max-min

fairness implementation. We find that Lag(t) for RRS-CA approaches 0 faster than in

the the case of RRS. This behaviour follows directly from the form of RRS-CA and is

the reason for the better convergence of RRS-CA as compared to RRS.

4.2 RRS-RA schedulers

In Section 4.1, we presented a simple channel history and schedule history based RRS-

CA scheduler that would seek the time average rate vector R̄∗(t) by attempting to min-

imize the Euclidean distance between the actual channel allocation {âj,i(t)} and the

optimal schedule {a∗j,i(t)}. In this section, we will seek the optimal time average rate

vector R̄∗(t) by minimizing a distance between the optimal rate vector R̄∗(t) and the

allocated rate vector R̄(t). We present a gradient scheduler that would seek the optimal

rate vector R̄∗(t) by seeking to maximize a dynamic, auxiliary network utility in every
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slot t.

We consider a dynamic, auxiliary network utility function V (R̄, t) : C(t) → R1,

where V (R̄, t) is a strictly concave and continuously differentiable function on the user

throughputs R̄, for all t. The dynamic utility function V (R̄, t) is defined such that

R̄∗(t) = arg max
R̄∈C(t)

V (R̄, t)

in every slot t. A gradient schedule to maximize the auxiliary network utility function is

used in every slot t, i.e., the schedule in every slot is arg maxi
{
ri(t)∇iV (R̄(t− 1), t)

}
.

If V (R̄, t) → V (R̄) (where, V is a strictly concave and continuously differentiable

function such that R̄∗ = arg maxR̄∈C V (R̄)) as t → ∞ (when π(t) → π), then, we

would expect that the gradient scheduler would be asymptotically optimal as well, i.e.,

the allocated rate vector R̄(t) would converge to the optimal rate vector R̄∗.

4.2.1 Gradient on the network utility

Suppose that the network utility U is a strictly concave and continuously differentiable

function. Then V (R̄, t) = U(R̄) is a valid auxiliary network utility function, and the

RRS-RA scheduler would reduce to the popular gradient scheduling algorithm. Ob-

viously, the auxiliary function U is independent of the observed channel distribution

{πj(t)} and does not change with t. In Chapter 5, Section 5.6, we report a scenario

where a dynamic, auxiliary network utility provides a significant improvement in per-

formance as compared to a network utility based gradient scheduler.

4.2.2 Gradient on a Euclidean distance: RRS-RA-Euclid

We consider an auxiliary network utility V (R̄, t) = V
(
R̄, π(t)

)
=
∑N

i=1 Vi
(
R̄, π(t)

)

where

Vi
(
R̄, π(t)

)
= −(r̄i − r̄∗i (t))2

The auxiliary network utility is the negative of the square of the Euclidean distance

between the rate vector R̄ and the optimal rate vector R̄∗(t). RRS-RA-Euclid im-

plements a gradient schedule in every slot for the modified network utility function

V
(
R̄(t− 1), π(t)

)
, i.e., the schedule in every slot is arg maxi {−2(r̄i(t− 1)− r̄∗i (t))ri(t)}.
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We will now summarize the RRS-RA-Euclid scheduler below.

1. In every slot t, estimate the channel distribution {πj(t)} as

πj(t) =
1

t

t∑

s=1

I{R(s)=Rj}

2. Compute the finite time rate region C(t) using {πj(t)} as

C(t) :=

{
(r̄1, · · · , r̄N) : r̄i =

∑

j

πj(t) aj,i rj,i, aj,i ≥ 0,
∑

i

aj,i ≤ 1, i = 1, · · · , N
}

3. Identify an optimal rate vector, R̄∗(t), in C(t), where

R̄∗(t) ∈ arg max
R̄∈C(t)

U(R̄)

4. In every slot, implement the schedule µ(t), where,

µ(t) = arg max
i
{−2(r̄i(t− 1)− r̄∗i (t))ri(t)}

In Figure 4.6, we plot the time average user throughput of RRS-RA-Euclid sched-

uler implementing proportional fairness. The figure also plots the performance of RRS

and RRS-CA in comparison with the RRS-RA-Euclid scheduler. We consider a wireless

system with 4 users and the channel model A described in Appendix E. In Figure 4.7,

we plot the time average user throughput of RRS-RA-Euclid implementing max-min

fairness. We consider a wireless system with 3 users and the channel model B de-

scribed in Appendix E. The figure also plots the performance of RRS and the channel

allocation based RRS-CA scheduler implementing max-min fairness. From the simula-

tions, we observe that the RRS-RA-Euclid scheduler is asymptotically optimal and the

performance shows reduced oscillations in comparison with RRS.

Remarks 4.2.1.

1. The RRS-RA-Euclid does not compute the optimal stationary schedule {a∗j,i(t)}
and instead seeks the optimal rate vector R̄∗(t) directly. Thus, the RRS-RA-
Euclid scheduler only requires that the optimal rate vector R̄∗ be unique and does
not impose restrictions on the uniqueness of the optimal stationary schedule {a∗j,i}
or on the consistency in the schedule sequence.

2. The convergence behaviour of RRS-RA-Euclid near R̄∗ is seen to become slow;
in Figure 4.4 and in Figure 4.5, we note the additional delay in convergence near
R̄∗. This behaviour is a well-known feature of gradient algorithms near the opti-
mum where the actual gradient becomes zero.
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Figure 4.4: Plots of the time average user throughputs of RRS-RA-Euclid, RRS and
RRS-CA implementing proportional fairness. We consider a wireless sys-
tem with 4 users and a wireless channel model A described in Appendix E.
The thin straight lines correspond to the optimal rate vector R̄∗ for the wire-
less channel.
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4.2.3 Gradient on a Sum of Weighted Logarithms: RRS-RA-WLog

In this section, we will propose weighted logarithmic utility as the dynamic, auxiliary

network utility, where the weights are adjusted such that R̄∗(t) is the maximizer for the

auxiliary utility function in the estimated rate region C(t).

We consider an auxiliary network utility V
(
R̄, t
)

= V
(
R̄, π(t)

)
=
∑N

i=1 Vi
(
R̄, π(t)

)

where

Vi
(
R̄, π(t)

)
= w∗i (π(t)) log (r̄i)

RRS-RA-Wlog implements a gradient schedule in every slot t for the modified network

utility function V
(
R̄(t− 1), π(t)

)
, i.e., the schedule in every slot is arg maxi

{
w∗i (π(t)) ri(t)

r̄i(t−1)

}
.

The weights W ∗ (π(t)) = (w∗1 (π(t)) , · · · , w∗N (π(t))) are chosen such that

R̄∗(t) = arg max
R̄∈C(t)

N∑

i=1

w∗i (π(t)) log (r̄i)

i.e., the optimal rate vector for a network utility
∑

iw
∗
i (π(t)) log(r̄i) and an ergodic

channel with distribution π(t) and rate region C(t) is R̄∗(t). The weights are not unique,

however, any optimal weight W ∗ (π(t)) could be used to identify a schedule. When

π(t) → π, we expect that the weights would converge appropriately, and the gradient

scheduler would then seek the optimal rate vector R̄∗ asymptotically.

We will now summarize the RRS-RA-Wlog scheduler in detail.

1. In every slot t, estimate the channel distribution {πj(t)} as

πj(t) =
1

t

t∑

s=1

I{R(s)=Rj}

2. Compute the finite time rate region C(t) using {πj(t)} as

C(t) :=

{
(r̄1, · · · , r̄N) : r̄i =

∑

j

πj(t) aj,i rj,i, aj,i ≥ 0,
∑

i

aj,i ≤ 1, i = 1, · · · , N
}

3. Identify an optimal rate vector, R̄∗(t), in the rate region C(t), where

R̄∗(t) ∈ arg max
R̄∈C(t)

U(R̄)

32



4. Compute weights W ∗(t) such that

R̄∗(t) = arg max
R̄∈C(t)

∑

i

w∗i (t) log(r̄i)

5. In every slot, implement the schedule µ(t), where,

µ(t) = arg max
i

{
w∗i (t)

ri(t)

r̄i(t− 1)

}

In Figure 4.6, we plot the time average user throughput of RRS-RA-Wlog imple-

menting proportional fairness. We consider a wireless system with 4 users and a wire-

less channel model A described in Appendix E. The figure also plots the performance of

RRS and RRS-RA-Euclid scheduler in comparison with the RRS-RA-Wlog scheduler.

In Figure 4.7, we plot the time average user throughput of RRS-RA-Wlog implementing

max-min fairness. We consider a wireless system with 3 users and the wireless channel

model B described in Appendix E. The figure also plots the performance of RRS and

the RRS-RA-Euclid scheduler for max-min fairness. From the simulations, we note that

the RRS-RA-Wlog scheduler is asymptotically optimal and the performance of sched-

ule history based schedulers, RRS-RA-Euclid and RRS-RA-Wlog (and RRS-CA), show

reduced oscillations in comparison with the rate region based scheduler RRS.

Unlike RRS-RA-Euclid scheduler, for the RRS-RA-Wlog scheduler, the gradient at

the optimal rate vector does not become zero and hence, it reports better convergence

near the optimal rate vector. Of course, this limits the applicability of RRS-RA-Wlog

scheduler to Pareto optimal rate vectors in the ergodic rate region. In this thesis (es-

pecially in Chapter 5), we restrict to RRS-RA-Wlog scheduler and evaluate its perfor-

mance for a variety of network scenarios.

4.2.4 Comments on RRS-RA

The channel history and schedule history based scheduler RRS-RA is a practical and

useful scheduler for a variety of network QoS. From simulations (reported here in Chap-

ter 4 and in Chapter 5), we observe that the RRS-RA schedulers have better convergence

behaviour than channel history based RRS scheduler. Further, RRS-RA does not com-

pute an optimal schedule {a∗j,i} in every slot and hence, does not require that the optimal

schedule be unique; In contrast, RRS and the channel allocation based RRS-CA require
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Figure 4.6: Plots of the time average user throughputs of RRS-RA-Wlog, RRS and
RRS-RA-Euclid scheduler implementing proportional fairness. We con-
sider a wireless system with 4 users and the wireless channel model A de-
scribed in Appendix E. The thin straight lines correspond to the optimal rate
vector R̄∗ for the wireless channel.
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Figure 4.7: Plots of the time average user throughputs of RRS-RA-Wlog, RRS and
RRS-RA-Euclid scheduler implementing max-min fairness. We consider
a wireless system with 3 users and the wireless channel model B described
in Appendix E. The thin straight line correspond to the optimal rate vector
R̄∗ for the wireless channel.
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that the optimal schedule {a∗j,i} be unique (or, at least, we choose a consistent sequence

of convergent schedules {a∗j,i(t)}).

We use a strictly concave and continuously differentiable, dynamic, auxiliary utility

V for the gradient algorithm. A gradient on the network utility U itself would only seek

local optima (and hence is restricted to concave network utilities). Also, as reported in

Chapter 5, Section 5.6, it may be useful to use an auxiliary utility V even for concave

network utilities. The Euclidean and the logarithmic utility considered in RRS-RA-

Euclid and RRS-RA-Wlog is appropriate but arbitrary, and we need to study optimal

implementations of RRS-RA in the future.

35



CHAPTER 5

Performance Evaluation of Rate Region based

Schedulers

The rate region based scheduling strategy provides us with a common framework to

implement arbitrary definitions of network QoS and notions of fairness on the long

time average user throughputs. In this chapter, we report the performance of RRS and

RRS-RA, for a number of popular and interesting QoS scenarios, like, proportional

fairness with minimum and maximum rate constraints, max-min fairness, maximizing

a composite network utility and a non-continuous network utility. We show that the

rate region based schedulers have several advantages, e.g., it provides a parameter-

less implementation of the network QoS, has a convergence behaviour independent

of the network utility and can adapt well with dynamic channel conditions. We have

also discussed and compared the performance of the rate region based schedulers with

implementations from the literature (whenever they are available).

5.1 Proportional Fairness with Rate Constraints

In Figure 5.1, we plot the time average user throughputs for proportional fair imple-

mentations with minimum and maximum rate constraints. Proportional fair rates are

achieved by maximizing the sum of the logarithm of the average user throughputs sub-

ject to minimum (20 KBps) and maximum (40 KBps) rate constraints. We consider

a wireless system with N = 4 users and the wireless channel model A described in

Appendix E. In Figure 5.1, we report the performance of RRS and RRS-RA-Wlog

schedulers, and compare it with an implementation from Andrews et al. (2005) for

the network QoS. From the figure, we observe that the rate region based schedulers are

asymptotically optimal and the performance (especially, RRS-RA-Wlog) is comparable

with that of the GMR algorithm from Andrews et al. (2005).



0 2000 4000 6000 8000 10000
10

20

30

40

50

60

T
im

e-
a
v
er
a
g
e
th
ro
u
g
h
p
u
t
R̄
(t
)
(K

B
p
s)

Time (t) (Slots)

RRS-RA-Wlog
GMR (ai = .001)
RRS

Figure 5.1: Plots of the time average user throughputs of RRS, RRS-RA-Wlog and
GMR scheduler (from Andrews et al. (2005)) implementing proportional
fairness subject to minimum (20 KBps) and maximum (40 KBps) rate con-
straints. We consider a wireless system with 4 users and the wireless chan-
nel model A described in Appendix E. The thin straight lines correspond to
the optimal rate vector R̄∗ for the wireless system.

5.2 Max-min Fairness

In Figure 5.2, we plot the time average user throughputs for max-min fair implemen-

tations, for a wireless system with N = 3 users and the wireless channel model B de-

scribed in Appendix E. Max-min fair rates are achieved by seeking a Pareto optimal rate

vector R̄∗(t) ∈ C(t) such that r̄∗i (t) = r̄∗j (t) for all i, j = 1, 2, 3. In Figure 5.2, we report

the performance of RRS and RRS-RA-Wlog scheduler implementing max-min fairness

and compare it with an implementation from Liu et al. (2003a) for the same network

QoS. The QoS parameter δ, used in Liu et al. (2003a), is set to 0.00008 to optimize

the performance of the max-min implementation proposed in Liu et al. (2003a) for the

wireless system. The plots clearly show that the rate region based schedulers achieve

optimal performance and the performances (especially, RRS-RA-Wlog) are compara-

ble with the implementation reported in Liu et al. (2003a). In Section 5.5, we will insist

that the rate region based schedulers are parameterless and are extremely useful under

dynamic network and channel conditions.
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Figure 5.2: Plots of the time average user throughputs of RRS-RA-Wlog, RRS and a
scheduler from Liu et al. (2003a) implementing max-min fairness. We con-
sider a wireless system with 3 users and the wireless channel model B de-
scribed in Appendix E. The thin straight line correspond to the optimal rate
vector R̄∗ for the wireless channel.

5.3 Composite Network Utility

In this section, we report the performance of the RRS-RA-Wlog scheduler implement-

ing a composite network utility represented in Figure 5.3. We consider a wireless sys-

tem with N = 4 users and the wireless channel model C described in Appendix E.

The scheduler seeks to implement proportional fair rates if the achievable rate for every

user is above the threshold (here, 16 KBps), or else, it seeks a max-min fair rate vector.

The network objective is to achieve minimum performance for all users before oppor-

tunistically sharing the resources with a proportional fair utility. In Figure 5.4, we plot

exponentially smoothed time average of the user throughputs for RRS-RA-Wlog sched-

uler, for a dynamic wireless channel. We assume that the channel distribution changes

abruptly at time t = 2000 slots, as described in the channel model C in Appendix E.

We track the dynamic channel distribution using an exponentially smoothed average as

πβj (t) = (1− β)πβj (t) + βI{R(t)=Rj}
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Figure 5.4: Plots of the exponentially smoothed average of user throughputs for RRS-
RA-Wlog implementing the composite network utility shown in Figure 5.3.
We consider a wireless system with N = 4 users and the wireless chan-
nel model C described in Appendix E. The channel distribution changes
abruptly at t = 2000 slots (as described in Appendix E). The ergodic opti-
mal rate vectors for the two channel distributions are marked by thin straight
lines along the time axis. We have initialized the time average rate vector
to the optimal rate vector of the wireless channel (of channel distribution
before t < 2000 slots) at t = 0.
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where {πβj (t)} is the channel estimate at time t, and β is the averaging parameter,

0 < β � 1. We use an exponentially smoothed average for the allocated rate vector

as well. The thin straight lines in the Figure 5.4 correspond to the optimal rate vectors

for the composite network utility for the two channel distributions. From the figure,

we observe that the RRS-RA-Wlog scheduler achieves optimal performance for the

composite network utility under dynamic channel conditions as well.

Remarks 5.3.1. The gradient algorithm is a popular class of scheduler for concave

network utilities. For general network utilities and QoS, we note that there only ex-

ists different forms (implementations) of schedulers, that estimate and seek channel and

system parameters differently. In this thesis, we propose a general framework that im-

plements arbitrary QoS including composite network utilities.

5.4 Non-continuous Network Utility

In Figure 5.6, we report the implementation of RRS-RA-Wlog scheduler maximizing

a non-continuous network utility shown in Figure 5.5. The network utility reported in

Figure 5.5 is the sum of the logarithm of the user throughputs defined only in certain re-

gions ofR2. We consider a wireless network withN = 2 users and the wireless channel

model C described in Appendix E. In Figure 5.6, we plot the exponentially smoothed

average of the throughputs of the two users with RRS-RA-Wlog, for a dynamic channel

scenario. The channel distribution changes abruptly at time t = 2000 slots as described

in the channel model C in Appendix E, and, we track the dynamic channel distribution

using an exponentially smoothed average (πβj (t) = (1 − β)πβj (t) + βI{R(t)=Rj}). We

use an exponentially smoothed average for tracking the allocated rate vector as well.

The optimal rate vector for the two distributions (before and after t = 2000 units) are

marked by a ∗ and o in Figure 5.5 and by thin straight lines in Figure 5.6. From Fig-

ure 5.6, we clearly see that the RRS-RA-Wlog can achieve optimal performance even

for a non-concave and non-continuous utility function and under dynamic channel con-

ditions.
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Figure 5.5: Plot of a non-concave and non-continuous network utility with respect to the
average rates of the two users. The network utility is

∑
i log(r̄i) restricted

to certain regions of <2. The optimal rate vectors for the two channel dis-
tributions are marked on the network utility by a ∗ (for t < 2000 slots) and
by an o (for t ≥ 2000 slots).

Remarks 5.4.1. The gradient schedulers seek local optima and hence they are re-

stricted to concave network utilities. The rate region based schedulers, however, use

the entire available channel history to estimate and seek the global optimal rate vector.

Hence, they can implement arbitrary network QoS and support dynamic channel con-

ditions as well. Most internet service providers (ISP) support discrete rates only for the

DSL subscribers. Further, the user satisfaction metrics need not be concave functions

of the average rates. Hence, there is hardly any reason to restrict to concave network

utilities in such cases. We believe that the rate region based schedulers provides us with

a powerful tool to implement a variety of such useful QoS.
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Figure 5.6: Plots of the exponentially smoothed time average user throughput of the
two users for RRS-RA-Wlog scheduler implementing the network utility
reported in Figure 5.5. We consider a wireless system with N = 2 users
and the wireless channel model C described in Appendix E. The channel
distribution (see Appendix E) changes abruptly at t = 2000 slots. The
optimal rate vectors for the two channel distributions are marked by thin
straight lines along the time axis. We have initialized the time average rate
vector to the optimal rate vector of the wireless channel (of the channel
distribution before t < 2000 slots) at t = 0.

5.5 A Parameter-less Implementation

In Figure 5.7, we plot the time average user throughputs of max-min fair implementa-

tion of RRS-RA-Wlog scheduler and compare it with an implementation from Liu et al.

(2003a). We consider a wireless system with N = 4 users and the wireless channel

model B described in Appendix E. We consider three different values for the step-size

parameter δ (δ = 0.01, 0.001 and 0.0001), for the implementation reported in Liu et al.

(2003a). The parameter δ provides the tradeoff between convergence accuracy and con-

vergence time. From Figure 5.7, we see that for δ = 0.01, the convergence is fast but is

suboptimal and for δ = 0.0001, the convergence tends to be accurate but is slow. The

value δ = 0.001 achieves a good tradeoff between the convergence time and accuracy.

The plots clearly illustrate that a wrong choice of parameters in algorithms like those in

Liu et al. (2003a) could lead to poor system performance. The RRS-RA-Wlog imple-
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mentation in Figure 5.7, however, achieves a performance similar to that of δ = 0.001

without any input parameter; the performance of the RRS-RA-Wlog scheduler is tuned

to the channel distribution in all scenarios. Another scheduler from literature with such

a step-size parameter is the Gradient algorithm with Minimum/Maximum Rate con-

straints (GMR) proposed in Andrews et al. (2005). In Figure 5.8 we plot the perfor-

mance of GMR for different values of the parameter ai(.0001, .001, .01). The objective

is to maximize the utility
∑

i log(r̄i) subject to r̄i > 25 KBps for all i. Also plotted in

the same figure is the performance of RRS-RA-Wlog for the same objective. We find

that RRS-RA has good convergence rate to the optimal rate vector, without the need of

any parameter, whereas a poor choice of parameter in GMR could lead to either slow

convergence or sub-optimal performance. Thus, we see that RRS-RA-Wlog scheduler

can provide a parameter-less implementation most appropriate for dynamic network

scenarios.
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Figure 5.7: Plots of the time average user throughputs of RRS-RA-Wlog scheduler and
an implementation from Liu et al. (2003a) for max-min fairness for a wire-
less system with N = 4 users and the wireless channel model A described
in Appendix E. We report the performance of Liu et al. (2003a) for three
different values of the step-size δ(δ = .01, .001, .0001). The thin straight
line corresponds to the optimal rates for the wireless channel.
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Figure 5.8: Plots of the time average user throughputs of RRS-RA-Wlog scheduler and
GMR from Andrews et al. (2005) for maximizing

∑
i log(r̄i) subject to

r̄i > 25 KBps ∀i. The wireless system has N = 4 users and the wireless
channel model A described in Appendix E. We report the performance of
Andrews et al. (2005) for three different values of the step-size ai(ai =
.01, .001, .0001). The thin straight lines correspond to the optimal rates for
the wireless channel.

5.6 Utility Independent Convergence

In this section, we will report the applicability of RRS-RA-Wlog scheduler for a strictly

concave and continuously differentiable network utility in comparison with the gradient

scheduler on the network utility.

Consider a wireless system with 4 users and a strictly concave and continuously

differentiable network utility U =
∑4

i=1 Ui, where U1, U2, U3 and U4 are the user utility

functions represented in Figure 5.9 (U2, U3, U4 are logarithm functions). U1 is a strictly

concave function and has a continuous but sharply varying gradient. The log utility of

users 2,3 and 4 is a strictly concave and continuously differentiable function in<+4\04.

The gradient scheduler (Stolyar (2005b)) is an asymptotically optimal scheduler for

the given network utility U . However, since the scheduler uses gradient of U in its

scheduling decision, its convergence behaviour is affected by the shape of the utility

function. This effect is most pronounced when the gradient of U has sharp variations

near the optimal rate vector. In such cases, the gradient algorithm may implement very

44



different schedules in the neighborhood of the optimal rate vector. Such behaviour

was reported in Andrews et al. (2005) in the context of enforcing rate constraints by

modifying the network utility. However, the utility function given to the scheduler itself

could possibly have such sharp gradient variations (as in this case).

Since RRS-RA uses U only to calculate R̄∗(t) and does not use U directly in the

scheduling decision, we expect it to have a utility-independent convergence behaviour.

By this, we mean that the performance of the scheduler will depend on the network

utility only to the extent that U determines R̄∗(t); given R̄∗(t), the specific shape and

gradient variations of U will not affect the performance of RRS-RA. In Figure 5.10

we have plotted the performance of RRS-RA-Wlog scheduler for the network utility

U . Also plotted in the same figure is the performance of the gradient scheduler for the

same utility. We consider a wireless system with N = 4 users and the channel model

A (described in Appendix E). From the figure, we find that gradient algorithm exhibits

poor convergence rate as compared to RRS-RA-Wlog. This example supports the claim

that rate-region based schedulers exhibit utility-independent convergence unlike gradi-

ent schedulers. The example further shows that, even in cases of strictly concave and

continuously differentiable network utility, utilizing the channel history information in

scheduling, may significantly improve the performance of the users.
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Figure 5.9: Plots of strictly concave and continuously differentiable user utility func-
tions U1 through U4 with respect to the average user throughput. Also plot-
ted in the figure is the gradient of utility function of user 1, U ′1. The optimal
rates for the network utility

∑4
i=1 Ui and for the channel model A (described

in Appendix E), are marked by an o (user 1) and * s (user 2,3 and 4) in the
figure.
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Figure 5.10: Plots of time average user throughputs for the gradient scheduler Stol-
yar (2005b) and the RRS-RA-Wlog scheduler for network utility U =∑4

i=1 Ui (reported in Figure 5.9) and the channel model A (described in
Appendix E). The optimal rate vector for the system is marked by thin
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5.7 A Non-Stationary Wireless Channel

In Theorem 3.3.1 and in all other simulations, we have considered an ergodic channel

process with a discrete stationary distribution. We believe that the ergodicity of the

channel process is a sufficient condition for the asymptotic optimality of RRS sched-

ulers and may not be necessary. We conjecture that the convergence of the rate region

C(t) (to some C) is sufficient to design an asymptotically optimal scheduler.

Consider a simple wireless system with 2 users and a channel process {R(t)}∞t=1

given by R(t) = (1− 1
t+1
, 1) MBps. Note that the channel process is not stationary and

{R(t)}∞t=1 does not have a stationary distribution. However, as shown in Figure 5.11, the

estimated rate region of the wireless channel converges to the rate region of a constant

wireless channel process with channel state (1, 1) MBps.

In Figure 5.12, we compare the user performances of max-min fair implementations

of RRS and RRS-RA-Wlog for the wireless system. We note that RRS-RA-Wlog is

asymptotically optimal while RRS fails to achieve the desired time average rate vector.

RRS fails to seek the optimal rate vector as the sequence of schedules {{a∗R(t),i(t)}}∞t=1
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fails to implement the optimal schedule {a∗j,i(t)}. The RRS-RA implementation seeks

to drive the allocated rate vector towards the optimal rate vector R̄∗(t) in every slot t,

and hence, adapts well with the channel evolution than RRS.
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CHAPTER 6

Simple Implementations of Max-Min Fairness

The rate region based schedulers, RRS, RRS-CA and RRS-RA, are computationally

expensive to implement online. The scheduler needs to compute the rate region C(t),

identify an optimal rate vector R̄∗(t) and a corresponding schedule in every slot t. The

complexity of the optimization problem arg maxR̄∈C(t) U(R̄) greatly depends on the

nature of the network utility function U . If the network utility U is not concave, or,

if the utility function supports multiple maxima1, then, there may not exist simple and

fast algorithms to identify the optimal rate vector R̄∗(t). Further, schedulers like RRS

and RRS-CA requires to identify a consistent convergent sequence of schedules for

asymptotic optimality. And, the RRS-RA schedulers need to solve another non-linear

optimization problem to identify a schedule.

The state space of the problem and the memory requirement increases exponentially

with the number of users. If we suppose that there are M channel states per user, then,

for independent channels of users, we have a wireless system with MN channel states.

In Chapters 3, 4 and 5, we have restricted ourselves to simple examples with fewer users

and channel states for the same reason. Our objective in this thesis is to illustrate the

importance and advantages of using channel history and allocation history in scheduling

and we did not concern ourselves with the complexity of the implementation.

In future, we expect to develop simple, fast and asymptotically optimal versions of

the rate region based schedulers for online implementations. We list below some of the

techniques useful in this regard.

1. Approximate the rate region C(t) of the wireless channel (e.g., discretization,
channel grouping).

2. Approximate the optimal rate vector R̄∗(t) or the schedule (discrete search on the
rate vector and schedule space)

3. Compute the network parameters at a slower rate (e.g., solve the optimization
problem over multiple slots).

1In Theorem 3.3.1, and in this thesis, we have assumed that there exists an unique optimal rate vector
R̄∗ in the rate region of the wireless channel C; this, however, does not imply or guarantee that there will
exist a unique R̄∗(t) in C(t) for all t.



4. Independent channels across the users may help reduce computation and memory
requirements.

In this chapter, we discuss two different techniques to implement max-min fairness

using the estimated rate region and the allocated rates. We believe that it is more appro-

priate to develop simple and computationally inexpensive algorithms specific to a given

network QoS than for a general scenario. In Section 6.1, we propose an asymptotically

optimal scheduler for max-min fairness using a step-by-step search on the boundary of

the rate region. In Section 6.2, we propose a suboptimal scheduler that approximates the

optimal rate vector R̄∗(t) and the optimal weights W ∗(t) to minimize computation. In

both the cases, we use RRS-RA-Wlog as our scheduler framework. Finally, we propose

a simple technique that uses channel history information to increase the convergence

rate of some existing schedulers for max-min fairness.

6.1 A Max-min Fair Scheduler for Two Users

The RRS-RA-Wlog scheduler schedules arg maxi

{
w∗i (t)

ri(t)
r̄i(t−1)

}
in every slot t, where

W ∗(t) is chosen such that R̄∗(t) = arg maxR̄∈C(t)
∑

iw
∗
i (t) log(r̄i).

Let
∑N

i=1m
∗
i (t)r̄i = d, be a hyperplane in <N , tangential to C(t) at R̄∗(t). Then,

maxR̄∈C(t)
∑
m∗i (t)r̄

∗
i (t) log r̄i = R̄∗(t). That is, [m∗1(t)r̄∗1(t),m∗2(t)r̄∗2(t), . . .m∗N(t)r̄∗N(t)]

is an optimal weight that can be used in RRS-RA-Wlog (see Appendix D). In the case

of max-min fairness, since r̄∗1(t) = r̄∗2(t) = . . . = r̄∗N(t), ∀t, [m∗1(t),m∗2(t), . . . ,m∗N(t)]

is an optimal weight.

Thus, to identify optimal weights W ∗(t), it is sufficient to identify the slope M∗(t)

of a face of the finite time rate-region C(t) that contains R̄∗(t). The RRS-RA-Wlog

scheduler computes the optimal weightsW ∗(t) (equivalently, the slopesM∗(t)) in every

slot t before identifying an schedule. In Figure 6.1, we illustrate evolution of the finite

time rate region C(t) and identify the face of the rate region C(t) that contains the max-

min fair rate vector.

We will now propose a simple scheduler based on RRS-RA-Wlog that uses an ap-

proximate weight W (t) to identify a schedule, and achieves an asymptotically optimal

performance as W (t) converges to the set optimal weights at t.
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Figure 6.1: Illustration of the evolution of the finite time rate region C(t) and the face
(slope) that contains the max-min fair rate vector.

Approximate RRS-RA-WLog algorithm for 2 users

Without loss of generality, we will assume that the channel states {R1,R2, . . .Rm}
are ordered in the decreasing order of rj,1

rj,2
. Let K be an allocation index such that

K ∈ {1, · · · ,M}, where channel states (R1, · · · ,RK) are allocated to user 1 and

channel states (RK+1, · · · ,RM) are allocated to user 2. The ergodic rate vector achiev-

able with the allocation K and a channel distribution π(t) is now given by R̄K(π(t)) :=

(
∑K

j=1 πj(t)rj,1,
∑M

j=K+1 πj(t)rj,2). The RRS-RA-Wlog scheduler seeks an optimal al-

location index K∗(t) in every slot t such that
∑K∗(t)−1

j=1 πj(t)rj,1 <
∑M

j=K∗(t) πj(t)rj,2

and
∑K∗(t)

j=1 πj(t)rj,1 >=
∑M

j=K∗(t)+1 πj(t)rj,2. The optimal weights W ∗(t) corre-

sponding to the optimal allocation index K∗(t) would be W ∗(t) = ( 1
rK∗(t),1

, 1
rK∗(t),2

).

We propose a simple, asymptotically optimal max-min fair scheduler for the 2 users,

which adapts K(t) in steps to seek K∗(t).
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Algorithm 1 RRS-RA-WLog Scheduler for N = 2 users

K(0) ∈ {1, 2 . . .m}.
R̄K(0)(π(t)) := (

∑K(0)
j=1 πj(t)rj,1,

∑M
j=K(0)+1 πj(t)rj,2)

for t = 1 to∞ do
K(t)← K(t− 1)

while
∑K(t)−1

j=1 πj(t)rj,1 >
∑M

j=K(t) πj(t)rj,2 do
K(t)← K(t)− 1

end while
while

∑K(t)
j=1 πj(t)rj,1 <

∑M
j=K(t)+1 πj(t)rj,2 do

K(t)← K(t) + 1
end while
µ(t)← arg maxi

ri(t)
rK(t),ir̄i(t−1)

end for

The algorithm uses the weights W (t) = ( 1
rK(t),1

, 1
rK(t),2

) in every slot t. As the

rate region converges, the optimal allocation index K(t) → K∗(t) and the weights

W (t) converges to the set of optimal weights at t. If we choose to identify the optimal

K∗(t) in every slot t instead of +/− 1 step size, we would implement RRS-RA-Wlog

scheduler for the wireless system.

In Figure 6.2, we plot the slope corresponding to the channel allocationK(t)
(

rK(t),2

rK(t),1

)

for the approximate RRS-RA-Wlog scheduler. We consider a wireless system with

N = 2 users and a wireless channel model D described in Appendix E. From the fig-

ure, we see that the slope (equivalently, the weights W (t) or the allocation index K(t))

converges to the optimal slope (equivalently, the weights W ∗(t) or the allocation index

K∗(t)) as t tends to infinity. In Figure 6.3, we report the time average user throughput

of the two users for the system. The thin straight line in the figure corresponds to the

optimal rate vector for the wireless system. In Figure 6.3, we also compare the per-

formance of the approximate RRS-RA-Wlog scheduler with a max-min fair scheduler

reported in Borst and Whiting (2001). The step-size parameter for the algorithm in

Borst and Whiting (2001) is tuned for the wireless system. From the figure, we see that

the approximate RRS-RA-Wlog scheduler reports a performance comparable to that of

Borst and Whiting (2001). The ergodic rate vector for the allocation index K(t) and the

allocated rate vectors R̄(t) permit an iterative calculation and can be computed in few

steps. Thus, the complexity of the approximate RRS-RA-Wlog scheduler is similar to

that of the implementation from Borst and Whiting (2001).

The above implementation clearly illustrates that we can develop simple implemen-

tations of schedulers based on the estimated rate region. We believe that the search
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Figure 6.3: Plots of time average user throughput of the approximate RRS-RA-Wlog
scheduler and a max-min fair implementation from Borst and Whiting
(2001). We consider a wireless system with N = 2 users and the chan-
nel model D described in Appendix E. The thin straight line corresponds to
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algorithm on the face of the rate region can be extended to N > 2 users, if a suitable

ordering of channel-states (based on their slopes) can be found.

6.2 A Max-min Fair Scheduler for N Users

In this section, we propose a sub-optimal and an approximate implementation for max-

min fairness based on the channel history and the allocated rates. We use RRS-RA-

Wlog as our framework to develop the suboptimal scheduler. The proposed scheduler

approximates the weights W (t) in every slot t and adapts the weights in an ad hoc

manner to achieve the network QoS. In every slot t,

1. The scheduler computes an estimate of the ergodic rate, Re(W (t− 1), π(t)), for
the weights W (t− 1) and the channel distribution π(t), where,

Re(W (t− 1), π(t)) ≈ arg max
R̄∈C(t)

∑

i

wi(t− 1) log(r̄i)

2. The weights W (·) are then adapted based on the estimate Re(W (t−1), π(t)) and
the fairness requirement (the time average rates need to be equal for all users).

3. Schedule arg maxi
wi(t)ri(t)
r̄i(t−1)

in every slot t.

We will now elaborate the above steps in detail and present the suboptimal and

approximate max-min fair scheduler for N users.

Estimate of the ergodic rate vector, Re(W (t− 1), π(t))

The ergodic rate vector for the channel π(t) and the weights W (t − 1) can be com-

puted by solving the optimization problem arg maxR̄∈C(t)
∑

iwi(t − 1) log(r̄i). We

propose a simple and a useful strategy to compute the optimizer for the strictly con-

cave network utility using sample path optimization technique. Consider a (deter-

ministic or a random) channel sequence with a time average channel distribution of

π(t). Then, a gradient algorithm on the channel sequence would converge to the op-

timizer arg maxR̄∈C(t)
∑

iwi(t − 1) log(r̄i). Of course, we require infinite steps to

compute the exact optimizer, however, we can approximate the optimizer and obtain

a Re(W (t− 1), π(t)) in fewer steps. Also, a good initial point can ensure faster conver-

gence to the optimal rate vector.

53



Weight adaptation W (t)

We use an ad-hoc weight adaptation method, similar to the ones used in the stochastic

approximation algorithms of Liu et al. (2003a),

wk(t+ 1) = wk(t) + δk(t)

(
1

N

∑

i

re,i(W (t), π(t))− re,k(W (t), π(t))

)
(6.1)

where δk(t) are small positive parameters. The weight adaptation is such that any dif-

ference in the ergodic rates would drive the weights of the different users appropriately

to seek the max-min fair rate vector.

Even though the weight adaptation technique is similar to the one used in Liu et al.

(2003a), we use Re(W (t), π(t)) (an estimate based on the observed channel distribu-

tion) to adapt instead of the allocated rate vector R̄(t) used in Liu et al. (2003a).

Simulation Results

We will now present simulation results based on the suboptimal and approximate max-

min fair scheduler and compare it with an implementation from Liu et al. (2003a). The

estimate Re(W (t− 1), π(t)) is computed using the sample path optimization technique

with 10 and 20 sample sizes in every slot t. In Figure 6.4, we plot the time average

user throughputs of the approximate max-min fair scheduler and compare it with an

implementation from Liu et al. (2003a). We consider a wireless system with N = 4

users and the channel model D described in Appendix E. In Figure 6.5, we plot the

time average user throughputs of the approximate max-min fair scheduler and Liu et al.

(2003a), for wireless system with N = 10 users and the channel model D described

in Appendix E. We observe from the simulations that our approximate RRS-RA-Wlog

algorithm performs comparably with the scheduler in Liu et al. (2003a).
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Figure 6.4: Plots of time average user throughputs of a suboptimal and approximate
RRS-RA-Wlog scheduler implementing max-min fairness, and an imple-
mentation from Liu et al. (2003a). We consider a wireless system with
N = 4 users and channel model D described in Appendix E. The thin
straight line corresponds to the optimal rate vector for the wireless system.
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6.3 Increasing the Convergence Rate of Schedulers us-

ing Channel history

In Section 5.5 we described the parameter-less feature of RRS-RA. A Max-min fair

scheduler implementation using the utilitarian fair scheduler described in Liu et al.

(2003a) is given by,

µ(t) = arg max
i

(1 + v∗i −
1

N

∑

j

v∗j )ri(t) (6.2)

where v∗i are channel attributes estimated through the following stochastic approxima-

tion.

vi(t+ 1) = vi(t) + δ(
1

N
rµ(t)(t)− I{µ(t)=i}ri(t)) (6.3)

The scheduler is asymptotically optimal for small values of the step-size parameter

δ. However, as shown in figures 5.7 and 5.8, small values of δ could result in slow

convergence of the scheduler. Another popular scheduler which has a similar parameter

which influences convergence rate in a similar manner, is the GMR scheduler described

in Andrews et al. (2005). The step-size parameter is a common feature of schedulers

which estimate channel quantities using stochastic approximation.

Increasing the step-size, increases the rate at which the schedulers converge to their

final throughputs. However, this may result in unacceptable suboptimal performance,

which is again shown in Figures 5.7 and 5.8 in Section 5.5. We discussed the parameter-

less RRS-RA scheduler as a better alternative in such scenarios. In this section, we

present a simple method to increase the convergence rate of parameter-based schedulers,

without sacrificing the optimality of the long-time average throughputs achieved. The

method consists of using channel history to estimate the channel attributes used in these

schedulers.

The algorithm is as follows.

1. In each slot t, simulate the channel multiple times(slots) independently and iden-
tically, with probability π(t).

2. Calculate estimates of the channel attributes used in the parameter-based sched-
uler using the simulated channel instances, using sample path optimization. The
parameter-based scheduler itself can be used for this estimation by fixing the step-
size parameter at a small value. For instance, for the max-min fair scheduler of
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Liu et al. (2003a), this step would calculate estimates ve,i(t) of v∗i using equations
6.2 and 6.3, with a small δ.

3. Schedule slot t using the parameter-based scheduler, using the estimates obtained
in the previous step.

The above algorithm uses channel history to estimate the requisite channel quanti-

ties using sample path optimization and uses it in the parameter-based scheduler. Such

estimates can be calculated by using the parameter-based scheduler itself as suggested

in the algorithm. The estimates can be improved by simulating the channel infinite

number of times in each slot and by using a very small step-size parameter value.

We observed that, by initializing the various channel attribute estimates used in the

parameter-based scheduler, to the values of those estimates obtained in the previous

slot, we can decrease the sample size that has to be simulated in each slot.

Simulation results

We now present simulation results on our strategy to speed-up the convergence rate of

parameter-based schedulers using channel history. The estimates of the channel quanti-

ties used in the schedulers are computed using the sample path optimization technique

with sample size 25 in every slot t. In Figure 6.6, we plot the time average user through-

puts of the max-min fair scheduler from Liu et al. (2003a) and compare it with a version

of the same scheduler sped-up using channel history. We consider a wireless system

with N = 4 users and the channel model A described in Appendix E.

In Figure 6.7, we plot the time average user throughputs of the GMR scheduler from

Andrews et al. (2005) and compare it with a version of the same scheduler sped-up us-

ing channel history. The wireless system has N = 4 users and the channel model A

described in Appendix E. We observe from the simulations that the proposed channel

history-based strategy increases the convergence rates of the schedulers without sacri-

ficing the optimality of the long-time average throughputs.
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Figure 6.6: Plots of time average user throughputs of a Max-min fair scheduler from Liu
et al. (2003a) and a sped-up version of the same scheduler. We consider
a wireless system with N = 4 users and channel model A described in
Appendix E. The thin straight line corresponds to the optimal rate vector
for the wireless system.
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CHAPTER 7

Conclusion

In this thesis, we have studied three general scheduling strategies for cellular downlink

wireless channel, RRS, RRS-CA and RRS-RA, based on an estimate of the rate region

of the wireless channel. The schedulers use channel history to estimate the wireless

channel statistics and the rate region of the wireless channel. The schedulers then at-

tempt to implement a network quality of service or maximize a network utility on the

estimated rate region. The schedulers seek and attempt to implement the global optimal

rate vector in every slot (instead of the seeking the local optima, like in network util-

ity based gradient schedulers), and hence, can implement non-concave network utilities

and arbitrary network QoS as well.

There was a lack of general viewpoint on the design of wireless schedulers, re-

quiring different frameworks for different network objectives. Stochastic gradient type

algorithms were popular for continuous and concave network utilities. Schedulers of

other simple QoS used ad hoc, adaptive learning strategies. We have studied a general

scheduling methodology using an estimate of the rate region that can implement arbi-

trary notions of QoS and fairness defined on the long time average user throughputs.

The rate region based scheduler, RRS, uses the entire available channel history to

estimate the wireless channel statistics. The estimate of the wireless channel is then

used to identify a rate region and an optimal rate vector in the rate region. The optimal

rate vector is obtained by maximizing the network utility in the estimated rate region.

The utility at the optimal rate vector thus identified usually serves an upper bound on the

network performance for the sample path and is achievable asymptotically for ergodic

channels. The RRS scheduler implements the schedule corresponding to the identified

optimal rate vector in every slot. We have proved that the rate region based scheduler

RRS is asymptotically optimal for all continuous network utilities, for some ergodic

channels with discrete channel states. We note that the channel history based scheduler

requires a consistency in implementation and also has poor convergence behaviour.

Then, we proposed a simple channel-allocation based scheduler, RRS-CA, that uses



schedule history in addition to channel history. We have proved the asymptotic optimal-

ity of RRS-CA as well, for all continuous network utilities, for some ergodic channels

with discrete channel states. While RRS-CA has better convergence behaviour than

RRS, we note that both RRS and RRS-CA requires consistency in the schedules imple-

mented across time slots.

We then proposed a practical variant of RRS, called RRS-RA, that uses channel

history and schedule history in the form of allocated rates, to identify a user to schedule.

RRS-RA is a gradient based scheduler that uses a dynamic, auxiliary network utility to

drive the allocated rate vector towards the optimal rate vector. RRS-RA has several

practical advantages as it makes consistent schedule decisions and handles sample path

variations better than RRS. We have discussed two implementations of RRS-RA, using

a weighted logarithmic utility and a Euclidean utility, suited for non-Pareto optimal rate

vectors as well.

We have studied the performance of the rate region based schedulers, RRS and

RRS-RA, using simulations, for a variety of network scenarios. We observe that the

rate region based strategy provides us with a general framework to implement arbi-

trary continuous and some non-continuous utilities, provides us a parameter-less im-

plementation of the network QoS and has better convergence behaviour than network

utility based gradient schedulers. The RRS schedulers permit implementation using an

exponentially smoothed time averages and are extremely useful for dynamic channel

and network scenarios. Also, we observed that the schedule history and channel his-

tory based schedulers, RRS-CA and RRS-RA, reported better convergence than channel

history based scheduler RRS.

Then, we discussed simple implementations of rate region based max-min fair sched-

uler, for two user case and for N users. The RRS based schedulers are computationally

expensive to implement, as we need to estimate the rate region, identify the optimal rate

vector and the corresponding schedule in every slot. Hence, we discuss two techniques

to minimize the computation needed to implement rate region based schedulers. For the

two user case, we propose to search on the boundary of the rate region in steps defined

by the slopes of the boundary. For the N user case, we approximate the ergodic rate

vector and the ergodic schedule to minimize computation. In either case, the global

optimal rate vector is estimated using the channel statistics (obtained from the channel
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history) and the scheduler seeks to drive the average allocated rate vector towards the

global optimal rate vector. Finally, we presented a simple method, that uses channel

history to increase the convergence rate of some popular schedulers in literature.

7.1 Future work

In this thesis, we have developed a powerful class of schedulers that use channel history

and schedule history to implement general notions of QoS and fairness on long time

average user throughputs. We have proposed the rate region based schedulers for a

fixed number of saturated users and for ideal channel conditions (perfect CSI, no data

error, etc). We believe that the rate region based scheduling strategy is appropriate for

a number of other useful and interesting network scenarios. We list a few problems of

interest here.

1) Develop simple and computationally inexpensive implementations of rate region

based based schedulers for important and useful network utilities and QoS.

2) Develop channel history and schedule history based schedulers for unsaturated

traffic models and for other performance metrics.

3) Use of channel history and schedule history to implement user admission control

and to implement non-Pareto optimal rate vectors efficiently.

4) Develop advanced rate region based schedulers specific to the channel models

and network conditions (e.g., for Markovian channels and for structured traffic)

5) RRS-RA schedulers propose one strategy to use the channel history and the

schedule history information. An interesting problem would be to identify optimal use

of channel history and schedule history.

6) There is very little interest or literature on scheduling strategies for non-ergodic

channels. We believe that these class of problems are useful for mobile data users and

for web browsing, and rate region based schedulers can be a useful tool in this scenario.
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APPENDIX A

Proof of Asymptotic Optimality of RRS

Let the channel process {R(t)}∞t=1 be an irreducible, discrete time Markov chain with a

finite state space {R1,R2, . . .Rm}. Let π = {π1, π2, · · · , πm} be the stationary distri-

bution on the state space and let C be the rate region of the wireless channel. We assume

that the network utility U : RN → R1, defined on the rate region C, is a continuous

function and that there exists a unique optimal stationary schedule {a∗j,i} such that,

r̄∗i =
m∑

j=1

πj a
∗
j,i rj,i

where R̄∗ = arg maxR̄∈C U(R̄).

Let π(t) = {πj(t)} be the observed channel distribution at time t and let C(t) be

the finite time rate region of the wireless channel. An irreducible, discrete time Markov

chain with a finite state space is positive (see Wolff (1989), Chapter 3). Hence, π(t)→
π a.s. and C(t)→ C a.s. as well (see Chapter 3). Let R̄∗(t) be an optimal rate vector in

the finite time rate region C(t) for the network utilityU(·), and let {a∗j,i(t)} be an optimal

channel allocation (or stationary schedule) that achieves R̄∗(t). RRS implements the

stationary schedule {a∗j,i(t)} in slot t, i.e., allocates channel R(t) to a user based on the

probabilities {a∗R(t),1, a
∗
R(t),2, · · · , a∗R(t),N}, independent of the previous schedules.

For convenience, we will denote the rate corresponding to a stationary distribution

π and a stationary schedule {aj,i} by R̄(π, {aj,i}). For example, R̄(π, {a∗j,i}) = R̄∗ and

R̄(π(t), {a∗j,i(t)}) = R̄∗(t). Then, U(R̄(π, {aj,i})) will denote the utility achieved with

the rate vector R̄(π, {aj,i}). The maximum utility achievable for the wireless channel

is U(R̄(π, {a∗j,i})).

Lemma A.0.1. Let {R(t)}∞t=1 be an irreducible, discrete time Markov chain with a finite

state space. Let U : RN → R1 be a continuous network utility, and let the optimal

stationary schedule {a∗j,i} for the channel and the network utility be unique. Then,

the sequence of schedules {{a∗j,i(t)}}∞t=1 of RRS converges to the optimal stationary



schedule {a∗j,i} almost surely, i.e.,

{a∗j,i(t)} → {a∗j,i} a.s.

Proof. An irreducible, discrete time Markov chain with a finite state space is pos-

itive (see Wolff (1989), Chapter 3). Hence, π(t) → π (i.e., πj(t) → πj for all

j = 1, 2, · · · ,m) almost surely. Consider a realization ω (sample path) with channel

sequence {R(t, ω)} such that π(t, ω)→ π (i.e., πj(t, ω)→ πj for all j = 1, 2, · · · ,m).

Consider a sequence of channel schedules {{a∗j,i(t, ω)}}∞t=1, for RRS, for the sam-

ple path. For any ω and for all t, 0 ≤ a∗j,i(t, ω) ≤ 1, for all j = 1, 2, · · · ,m and

i = 1, 2, · · · , N . Hence, {a∗j,i(t, ω)} ∈ [0, 1]m×N for all t, i.e., the sequence of sta-

tionary schedules {{a∗j,i(t, ω)}}∞t=1 lie in [0, 1]m×N . Hence, there exists limit points of

{{a∗j,i(t, ω)}}∞t=1, all in [0, 1]m×N (see Rudin (1976)). Let {a′j,i(ω)} be a limit point of

the channel schedule sequence {{a∗j,i(t, ω)}}∞t=1. We will now prove that {a′j,i(ω)} is in

fact {a∗j,i}.

Suppose that {a′j,i(ω)} 6= {a∗j,i}. Consider a subsequence of channel schedules

{{a∗j,i(tk, ω)}}tk , {tk} ⊂ {1, 2, · · · } such that {a∗j,i(tk, ω)} → {a′j,i(ω)} as tk → ∞.

Clearly, π(tk, ω)→ π as tk →∞. We now have,

U(R̄(π(tk, ω), a∗j,i(tk, ω))) ≥ U(R̄(π(tk, ω), a∗j,i)) (by the definition of RRS)

Taking limit tk →∞, we have,

lim
tk→∞

U(R̄(π(tk, ω), a∗j,i(tk, ω))) ≥ lim
tk→∞

U(R̄(π(tk, ω), a∗j,i))

⇒ U(R̄(π, a′j,i(ω))) ≥ U(R̄(π, a∗j,i)) ( since U, R̄ are continuous)

This is a contradiction, since {a∗j,i} is the unique stationary schedule that maximizes the

network utility U over the rate region C (corresponding to the distribution π). Hence,

{a′j,i(ω)} = {a∗j,i}, or, the sequence of channel schedules of RRS converges to the

optimal schedule {a∗j,i} (whenever π(t, ω) → π). Since Pr ({ω : π(t, ω)→ π}) = 1, it

follows that {{a∗j,i(t)}}∞t=1 → {a∗j,i} almost surely.
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Now, we state and prove the main theorem concerning the asymptotic optimality of

RRS.

Theorem A.0.1. Let {R(t)}∞t=1 be an irreducible, finite state space, discrete time Markov

chain with a stationary distribution {πj}. Let U : RN → R1 be a continuous network

utility. Let C be the rate region of the wireless channel and let R̄∗ be the optimal rate

vector such that R̄∗ = arg maxR̄∈C U(R̄). Let the optimal stationary schedule {a∗j,i}
that achieves the optimal rate vector R̄∗ be unique. Then, the time average throughput

achieved using RRS converges to the optimal rate vector R̄∗ almost surely,

R̄(t)→ R̄∗ a.s.

i.e., RRS is asymptotically optimal.

Proof. We will prove the optimality of RRS using an implementation of the algorithm.

RRS implements the stationary schedule {a∗j,i(t)} in slot t by allocating channel

R(t) to a user based on the probabilities {a∗R(t),1(t), a∗R(t),2(t), · · · , a∗R(t),N(t)}, inde-

pendent of the previous schedules. For example, let I(t) be a Uniform random variable

in [0, 1) chosen independently, then, RRS will schedule user i if,

I(t) ∈
[∑i−1

k=1 a
∗
R(t),k(t),

∑i
k=1 a

∗
R(t),k(t)

)
.

Let {Ij(t)}∞t=1 be a sequence of i.i.d. random variables with a Uniform distribution

in [0, 1), for all j = 1, 2, · · · ,m. Let Mj(t) :=
∑t

s=1 1{R(s)=Rj} be the count of the

number of occurrences of channel Rj up to time t. We will assume that RRS schedules

user i at time t (i.e., allocates channel R(t) at time t to user i) if
∑i−1

k=1 a
∗
R(t),k(t) ≤

IR(t)(MR(t)(t)) <
∑i

k=1 a
∗
R(t),k(t) (i.e., we assume that the sequence of i.i.d. Uniform

random variables {Ij(t)}∞t=1 is used to identify an user to schedule whenever channel

Rj occurs).

Consider {Ij(t)}∞t=1. For any rational q, q ∈ Q ∩ [0, 1], from the strong law of large

numbers, we have,

Pr

({
ω :

1

t

t∑

s=1

1{Ij(s,ω)<q} → q

})
= 1

Taking a countable intersection of probability one sets, for every q ∈ Q ∩ [0, 1], we
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have,

Pr

({
ω :

1

t

t∑

s=1

1{Ij(s,ω)<q} → q, q ∈ Q ∩ [0, 1]

})
= 1

Using a continuity argument, we get,

Pr

({
ω :

1

t

t∑

s=1

1{Ij(s,ω)<q} → q, q ∈ [0, 1]

})
= 1

Taking a finite intersection of the above (probability one) sets, for all channel states j,

we have,

Pr

({
ω :

1

t

t∑

s=1

1{Ij(s,ω)<q} → q, q ∈ [0, 1], j = 1, 2, · · · ,m
})

= 1 (A.1)

From LemmaA.0.1, we have

Pr
(
{ω : π(t, ω)→ π, {a∗j,i(t, ω)} → {a∗j,i}}

)
= 1 (A.2)

Combining the results from equations (A.1) and (A.2), we have,

Pr

({
ω : π(t, ω)→ π, {a∗j,i(t, ω)} → {a∗j,i},

1

t

t∑

s=1

1{Ij(s,ω)<q} → q, q ∈ [0, 1],∀j
})

= 1

(A.3)

Now, consider a realization ω (sample path) from the above set, such that, π(t, ω)→
π, {a∗j,i(t, ω)} → {a∗j,i} and 1

t

∑t
s=1 1{Ij(s,ω)<q} → q for all q ∈ [0, 1] and for all j =

1, 2, · · · ,m. For such an ω, we will now show that the time average rate R̄(t, ω)→ R̄∗.

Without loss of generality, consider user 1. For a channel sequence {R(t)}∞t=1,

user 1 is scheduled in slot t if 0 ≤ IR(t)(MR(t)(t)) < a∗R(t),1(t), where MR(t) :=
∑t

s=1 I{R(s)=R(t)} is the number of occurrences of the channel state “R(t)” up to time

t. We note again that the sequence of random variables used to schedule user 1, in any

channel state j, is an i.i.d. sequence. The time average rate of user 1 for the realization

ω is now given by,

r̄1(t, ω) =
1

t

t∑

s=1

m∑

j=1

1{R(s,ω)=Rj}1{µ(s,ω)=1}rj,1
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Rearranging terms, we get,

r̄1(t, ω) =
m∑

j=1

(
1

t

t∑

s=1

1{R(s,ω)=Rj}1{µ(s,ω)=1}

)
rj,1

Rewriting the schedule µ(s, ω) in terms of the uniform random variables, we get,

r̄1(t, ω) =
m∑

j=1

(
1

t

t∑

s=1

1{R(s,ω)=Rj}1{Ij(Mj(s,ω),ω)<a∗j,1(s,ω)}

)
rj,1

Multiplying and dividing each term (inside the parenthesis) by
∑t

s=1 1{R(s,ω)=Rj}, we

get,

r̄1(t, ω) =
m∑

j=1

(
1

t

t∑

s=1

1{R(s,ω)=Rj}1{Ij(Mj(s,ω),ω)<a∗j,1(s,ω)}

∑t
s=1 1{R(s,ω)=Rj}∑t
s=1 1{R(s,ω)=Rj}

)
rj,1

Rearranging terms within the parenthesis, we have,

r̄1(t, ω) =
m∑

j=1

(
1

t

∑t
s=1 1{R(s,ω)=Rj}1{Ij(Mj(s,ω),ω)<a∗j,1(s,ω)}∑t

s=1 1{R(s,ω)=Rj}

t∑

s=1

1{R(s,ω)=Rj}

)
rj,1

=
m∑

j=1

(
1

t

t∑

s=1

1{R(s,ω)=Rj}

∑t
s=1 1{R(s,ω)=Rj}1{Ij(Mj(s,ω),ω)<a∗j,1(s,ω)}∑t

s=1 1{R(s,ω)=Rj}

)
rj,1

Taking limit t→∞, we have,

lim
t→∞

r̄1(t, ω) = lim
t→∞

m∑

j=1

(
1

t

t∑

s=1

1{R(s,ω)=Rj}

∑t
s=1 1{R(s,ω)=Rj}1{Ij(Mj(s,ω),ω)<a∗j,1(s,ω)}∑t

s=1 1{R(s,ω)=Rj}

)
rj,1

=
m∑

j=1

lim
t→∞

(
1

t

t∑

s=1

1{R(s,ω)=Rj}

∑t
s=1 1{R(s,ω)=Rj}1{Ij(Mj(s,ω),ω)<a∗j,1(s,ω)}∑t

s=1 1{R(s,ω)=Rj}

)
rj,1

(A.4)

We will now evaluate the limit of the expression inside the paranthesis in equation (A.4).

Since π(t, ω)→ π (by hypothesis), we have, for all j,

lim
t→∞

1

t

t∑

s=1

1{R(s,ω)=Rj} = πj (A.5)
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Now, we will compute the limit of the other term in the above expression,

lim
t→∞

∑t
s=1 1{R(s,ω)=Rj}1{Ij(Mj(s,ω),ω)<a∗j,1(s,ω)}∑t

s=1 1{R(s,ω)=Rj}

Fix an ε > 0. By hypothesis, {a∗j,i(t, ω)} → {a∗j,i}, hence, there exists a Tε(ω) ∈
{1, 2, · · · }, Tε(ω) < ∞ such that |a∗j,i(t, ω) − a∗j,i| < ε for all t > Tε(ω). We will now

rewrite the above limit in two terms (for large t) as,

lim
t→∞

(∑Tε(ω)
s=1 1{R(s,ω)=Rj}1{Ij(Mj(s,ω),ω)<a∗j,1(s,ω)}∑t

s=1 1{R(s,ω)=Rj}

+

∑t
s=Tε(ω)+1 1{R(s,ω)=Rj}1{Ij(Mj(s,ω),ω)<a∗j,1(s,ω)}∑t

s=1 1{R(s,ω)=Rj}

)
(A.6)

The denominator term in the above expression,
∑t

s=1 1{R(s,ω)=Rj} isMj(t, ω), the count

of the number of occurrences of channel state Rj up to time t in the sample path. By

hypothesis, limt→∞
1
t

∑t
s=1 1{R(s,ω)=Rj} = πj and for a positive DTMC, πj > 0 for

all j (see Wolff (1989), Chapter 3). Then, limt→∞
Mj(t,ω)

t
= πj > 0 implies that

Mj(t, ω) → ∞ as t → ∞. Mj(t, ω) → ∞ means that the channel state Rj occurs

infinitely often.

The limit of the first term in the expression (A.6) evaluates as

lim
t→∞

∑Tε(ω)
s=1 1{R(s,ω)=Rj}1{Ij(Mj(s,ω),ω)<a∗j,1(s,ω)}∑t

s=1 1{R(s,ω)=Rj}
= 0

since
∑t

s=1 1{R(s,ω)=Rj} → ∞ and the numerator is bounded above by Tε(ω). Now,

consider the second term in the expression (A.6),

∑t
s=Tε(ω)+1 1{R(s,ω)=Rj}1{Ij(Mj(s,ω),ω)<a∗j,1(s,ω)}∑t

s=1 1{R(s,ω)=Rj}

For s > Tε(ω), a∗j,1(s, ω) ≥ a∗j,1 − ε (by assumption). Hence, the above term is lower

bounded by,

∑t
s=Tε(ω)+1 1{R(s,ω)=Rj}1{Ij(Mj(s,ω),ω)<a∗j,1−ε}∑t

s=1 1{R(s,ω)=Rj}
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Rewriting the above expression in terms of Mj(t, ω), and simplifying it, we have,

∑Mj(t,ω)

s=Mj(Tε(ω)+1,ω) 1{Ij(s,ω)<a∗j,1−ε}

Mj(t, ω)

Taking limit t → ∞, hence, Mj(t, ω) → ∞ and by the hypothesis (in equations (A.1)

and (A.3)), we have,

lim
t→∞

∑Mj(t,ω)

s=Mj(Tε(ω)+1,ω) 1{Ij(s,ω)<a∗j,1−ε}

Mj(t, ω)
= a∗j,1 − ε

Hence,

lim
t→∞

∑t
s=1 1{R(s,ω)=Rj}1{Ij(Mj(s,ω),ω)<a∗j,1(s,ω)}∑t

s=1 1{R(s,ω)=Rj}
≥ a∗j,1 − ε (A.7)

Substituting (A.5) and (A.7) in (A.4), we get,

lim
t→∞

r̄1(t, ω) ≥
∑

j

πj (a∗j,1 − ε) rj,1

Similarly, we can show that

lim
t→∞

r̄1(t, ω) ≤
∑

j

πj (a∗j,1 + ε) rj,1

Since, ε is arbitrary and rj,1 is bounded (for all j), we have,

lim
t→∞

r̄1(t, ω) =
∑

j

πj a
∗
j,1 rj,1 = r̄∗1

Thus, for every ω measured in equation (A.3), we have r̄1(t, ω) → r̄∗1, i.e., r̄1(t) → r̄∗1

almost surely. User 1 was an arbitrary choice, and hence, we have R̄(t) → R̄∗ almost

surely, or, RRS is asymptotically optimal.
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APPENDIX B

Proof of Asymptotic Optimality of RRS-CA

Let the channel process {R(t)}∞t=1 be an irreducible, discrete time Markov chain with a

finite state space {R1,R2, . . .Rm}. Let π = {π1, π2, · · · , πm} be the stationary distri-

bution on the state space and let C be the rate region of the wireless channel. We assume

that the network utility U : RN → R1, defined on the rate region C, is a continuous

function and that there exists a unique optimal stationary schedule {a∗j,i} such that,

r̄∗i =
m∑

j=1

πj a
∗
j,i rj,i

where R̄∗ = arg maxR̄∈C U(R̄).

Let π(t) = {πj(t)} be the observed channel distribution at time t and let C(t) be

the finite time rate region of the wireless channel. An irreducible, discrete time Markov

chain with a finite state space is positive (see Wolff (1989), Chapter 3). Hence, π(t)→
π a.s. and C(t) → C a.s. as well (see Chapter 3). Let R̄∗(t) be an optimal rate vector

in the finite time rate region C(t) for the network utility U(·), and let {a∗j,i(t)} be an

optimal channel allocation (or stationary schedule) that achieves R̄∗(t). Let {âj,i(t)} be

the actual channel allocation up to time t. Then, the scheduling strategy of the channel

allocation based RRS-CA scheduler is given by,

µ(t) = arg max
i

{
a∗R(t),i(t)− âR(t),i(t− 1)

}
(B.1)

The following theorem proves the asymptotic optimality of the channel allocation based

RRS-CA scheduler.

Theorem B.0.2. Let {R(t)}∞t=1 be an irreducible, finite state space, discrete time Markov

chain with a stationary distribution {πj}. Let U : RN → R1 be a continuous network

utility. Let C be the rate region of the wireless channel and let R̄∗ be the optimal rate

vector such that R̄∗ = arg maxR̄∈C U(R̄). Let the optimal stationary schedule {a∗j,i}
that achieves the optimal rate vector R̄∗ be unique. Then, the time average throughput



achieved using RRS-CA converges to the optimal rate vector R̄∗ almost surely,

R̄(t)→ R̄∗ a.s.

i.e., RRS-CA is asymptotically optimal.

Proof. Consider a realization ω (sample path) such that π(t, ω)→ π and {a∗j,i(t, ω)} →
{a∗j,i}. From Appendix A, Lemma A.0.1, we know that

Pr
({
ω : π(t, ω)→ π, {a∗j,i(t, ω)} → {a∗j,i}

})
= 1 (B.2)

Define lj(t, ω) as,

lj(t, ω) :=
N∑

i=1

(
a∗j,i − âj,i(t, ω)

)+

where âj,i(t, ω) =
∑t
s=1 1{R(s,ω)=Rj}1{µ(s,ω)=i}∑t

s=1 1{R(s,ω)=Rj}
is the fraction of channel Rj allocated to

user i up to time t in the realization ω and (x)+ = max(x, 0). Define Lj(t, ω) := {i :

a∗j,i − âj,i(t, ω) ≥ 0}. Then, lj(t, ω) =
∑

i∈Lj(t,ω)(a
∗
j,i − âj,i(t, ω)). lj(t, ω) measures

a certain “lag” in the service provided to the users for the channel state j, at time t.

lj(t, ω) ≥ 0 for all t and for all ω. Further, lj(t, ω) = 0 only if the actual channel

allocation {âj,i(t, ω)} matches the optimal channel allocation {a∗j,i(t, ω)} for channel j

(at time t and realization ω).

The optimal rate vector R̄∗ and the actual allocated time average rate vector R̄(t)

are defined as r̄∗i =
∑

j πj a
∗
j,i rj,i and r̄i(t) =

∑
j πj(t) âj,i(t) rj,i (see Chapter 4,

Section 4.1), hence, to prove the asymptotic optimality of RRS-CA, it is sufficient to

show that {âj,i(t)} → {a∗j,i} almost surely, i.e., {âj,i(t, ω)} → {a∗j,i} for all ω measured

in (B.2). We will now show that {âj,i(t, ω)} → {a∗j,i} by showing that
∑

j lj(t, ω)→ 0.

A finite state space, irreducible, discrete time Markov chain is positive (see Wolff

(1989), Chapter 3). Hence, πj > 0 for all j. Hence, for all ω measured in equation

(B.2), every channel j occurs infinitely often (since πj(t, ω) → πj > 0). Without loss

of generality, consider the channel state R1. Let {t1, t2, · · · } ⊂ {1, 2, · · · } correspond

to the subsequence of the natural numbers such that R(tk, ω) = R1; tk marks the kth

occurrence of channel state R1 in the sequence {R(t, ω)}∞t=1. Note that l1(t, ω) changes

only at channel instants such that R(t, ω) = R1 and remains unchanged otherwise (i.e.,
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l1(t, ω) = l1(tk, ω) for all tk < t < tk+1).

Fix an ε > 0. If {a∗j,i(t, ω)} → {a∗j,i}, then there exists a Tε(ω) < ∞ such that

|a∗j,i(t, ω)− a∗j,i| < ε for all t > Tε(ω), for all j and i. Hence, |a∗1,i(t, ω)− a∗1,i| < ε for

all t > Tε(ω).

Consider an integer K such that 1
K
< ε, tK > Tε(ω) and l1(tK , ω) > 3Nε, where N

is the number of users in the system. tK corresponds to the time of the Kth occurrence

of the channel state R1 in ω. l1(tK , ω) > 3Nε implies that the lag in the service for

channel state R1 at time tK (at the Kth occurrence of the channel R1) is greater than

3Nε. Trivially, if there does not exist such a K, then l1(t, ω) ≤ 3Nε for all large t, and

since ε is arbitrary, this implies that l1(t, ω)→ 0 (i.e., {a∗1,i(t, ω)} → {a∗1,i} or RRS-CA

is asymptotically optimal).

Let i′ = arg maxi
{
a∗1,i − â1,i(tK , ω)

}
. Since l1(tK , ω) > 3Nε, we have,

a∗1,i′ − â1,i′(tK , ω) > 3ε (B.3)

Since | a∗1,i − a∗1,i(t, ω) |< ε for all t ≥ tK > Tε(ω) and for all i, we have, | a∗1,i′ −
a∗1,i′(tK+1, ω) |< ε. Using this in equation (B.3), we get,

a∗1,i′(tK+1, ω)− â1,i′(tK , ω) > 2ε

Hence,

max
i

{
a∗1,i(tK+1, ω)− â1,i(tK , ω)

}
> 2ε

Let µ(tK+1, ω) be the user scheduled by RRS-CA (see equation (B.1)), then,

µ(tK+1, ω) = arg max
i

{
a∗1,i(tK+1, ω)− â1,i(tK , ω)

}

Since, | a∗1,µ(tK+1,ω) − a∗1,µ(tK+1,ω)(tK+1, ω) |< ε, we have,

a∗1,µ(tK+1,ω) − â1,µ(tK+1,ω)(tK , ω) > ε

Hence, the “lag”, at time tK , of the user scheduled at time tK+1 is at least ε. We will
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now compute the lag of the same user at time tK+1 (after channel allocation).

a∗1,µ(tK+1,ω) − â1,µ(tK+1,ω)(tK+1, ω) = a∗1,µ(tK+1) −
(
â1,µ(tK+1)(tK , ω)

K

K + 1
+

1

K + 1

)

Since a∗1,µ(tK+1,ω) − â1,µ(tK+1,ω)(tK , ω) > ε and 1
K+1

< ε (by assumption), we have,

a∗1,µ(tK+1,ω) − â1,µ(tK+1,ω)(tK+1, ω) > 0

i.e., the lag in service, at time tK+1, for the user scheduled at time tK+1 remains positive.

Hence,

µ(tK+1, ω) ∈ L1(tK+1, ω) (B.4)

Now we will expand l1(tK+1, ω) in terms of l1(tK , ω). Expanding â1,i(tK+1, ω) in

terms of â1,i(tK , ω) and simplifying it, we get,

l1(tK+1, ω) =
∑

i∈L1(tK+1,ω)

(
a∗1,i − â1,i(tK+1, ω)

)

=
∑

i∈L1(tK+1,ω)

(
a∗1,i −

(
â1,i(tK , ω)

K

K + 1
+

1

K + 1
1{µ(tK+1,ω)=i}

))

=
∑

i∈L1(tK+1,ω)

(
a∗1,i − â1,i(tK , ω) +

â1,i(tK , ω)− 1{µ(tK+1,ω)=i}

K + 1

)

=
∑

i∈L1(tK+1,ω)

(
a∗1,i − â1,i(tK , ω)

)
+

∑

i∈L1(tK+1,ω)

(
â1,i(tK , ω)− 1{µ(tK+1,ω)=i}

K + 1

)

Since µ(tK+1, ω) ∈ L1(tK+1, ω) (from equation (B.4)), we have,
∑

i∈L1(tK+1,ω) 1{µ(tK+1,ω)=i} =

1. Substituting in the above equation, we get,

l1(tK+1, ω) =
∑

i∈L1(tK+1,ω)

(
a∗1,i − â1,i(tK , ω)

)
+

(∑
i∈L1(tK+1,ω) â1,i(tK , ω)− 1

K + 1

)

(B.5)

By definition, we have, L1(tK , ω) = {i : a∗1,i− â1,i(tK , ω) ≥ 0} and a∗1,i− â1,i(tK , ω) <

0 for all i /∈ L1(tK , ω). Therefore,

∑

i∈L1(tK+1,ω)

(
a∗1,i − â1,i(tK , ω)

)
≤

∑

i∈L1(tK ,ω)

(
a∗1,i − â1,i(tK , ω)

)

= l1(tK , ω) (B.6)
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. Substituting (B.6) in (B.5), we get,

l1(tK+1, ω) ≤ l1(tK , ω) +

(∑
i∈L1(tK+1,ω) â1,i(tK , ω)− 1

K + 1

)

⇒ l1(tK , ω)− l1(tK+1, ω) ≥
1−∑i∈L1(tK+1,ω) â1,i(tK , ω)

K + 1
(B.7)

Consider the user i′ such that i′ = arg mini
{
a∗1,i − â1,i(tK , ω)

}
. Since l1(tK , ω) >

3Nε, we require â1,i′(tK , ω) − a∗1,i′ > 3ε and â1,i′(tK , ω) − a∗1,i′(tK+1, ω) > 2ε. User

i′ is not scheduled at tK+1, hence, â1,i′(tK+1, ω) = â1,i′(tK , ω) K
K+1

. Since 1
K
< ε, we

have, â1,i′(tK+1, ω)−a∗1,i′ > 2ε . Therefore i′ /∈ L1(tK+1, ω) and also â1,i′(tK , ω) > 3ε,

which implies that,

1−
∑

i∈L1(tK+1,ω)

â1,i(tK , ω) =
∑

i/∈L1(tT+1,ω)

â1,i(tK , ω) > 3ε (B.8)

Using B.8 in B.7, we get,

l1(tK , ω)− l1(tK+1, ω) >
3ε

K + 1
(B.9)

i.e., the lag in service, measured for channel state R1, decreases by, at least, 3ε
K+1

if

the lag, to begin with, is greater than 3Nε. Since
∑∞

t=K
1
t

= ∞ for all K, and since

channel state R1 occurs infinitely often (in all ω measured in equation (B.2)), it follows

from equation (B.9), that l1(t, ω) cannot remain greater than 3Nε for all t > tK ; there

exists a K ′ > K (with tK′ > tK) such that l1(tK′ , ω) ≤ 3Nε. Also, since |l1(ts, ω) −
l1(ts+1, ω)| ≤ 1

s+1
, we have, |l1(t, ω) − l1(t + 1, ω)| < ε for all t > tK . Combining

the above arguments, we have, l1(t, ω) ≤ 3Nε + ε for all t > tK′ . Since ε(> 0) can be

arbitrarily small, we have limt→∞ l1(t, ω) = 0, i.e., {â1,i(t, ω)} → {a∗1,i}. Generalizing

the above argument to arbitrary channel states, we have, {âj,i(t, ω)} → {a∗j,i}, and

hence, R̄(t, ω)→ R̄∗ (for all ω measured in equation (B.2)). Hence, R̄(t)→ R̄∗ almost

surely, i.e., RRS-CA is asymptotically optimal.

73



APPENDIX C

Rate Region for Ergodic channels with Stationary

distribution

We define the rate region C of the wireless channel as the set of all long time average

throughput vectors feasible with probability 1. For an ergodic channel process, the

stationary distribution of the process characterizes C completely (see Liu et al. (2003a),

Kumar et al. (2008)). We will show now that the rate region for an ergodic wireless

channel with sample space {Rj} and stationary probability distribution {πj} is given

by

C =

{
(r̄1, · · · , r̄N) : r̄i =

∑

j

πj aj,i rj,i, aj,i ≥ 0,
∑

i

aj,i ≤ 1, i = 1, · · · , N
}

(C.1)

{aj,i}s represent a stationary schedule or an average channel allocation. We will

show that for an ergodic channel process, for any µ, R̄(µ) is dominated by some R̄′,

where r̄′i =
∑

j πj aj,i rj,i, aj,i ≥ 0,
∑

i aj,i ≤ 1, i = 1, · · · , N .

Consider a sample path ω such that π(t, ω)→ π.

We have each rj,i ≤ B ∀i, j.

∴ R̄(µ, t, ω) has limit points.

Let R̄′ be a limit point of R̄(µ, t, ω).

Let R̄(µ, k1, ω)→ R̄′ along k1 ∈ K1, where K1 is a sub-sequence of N.

Further, let {âj,i(µ, k2, ω)} → {â′i,j} along k2 ∈ K2, where K2 is a sub-sequence of

K1. We have,

lim
k2→∞,k2∈K2

M∑

j=1

âj,i(µ, k2, ω)πi(k2, ω)rj,i =
∑

â′j,iπjrj,i

= r̄′i

We have â′j,i ≥ 0 ∀i, j, ∑j â
′
j,i = 1. Thus the allocation {â′j,i} is a valid stationary



schedule as well. Consider the long time average throughput vector corresponding to

the stationary schedule {â′j,i}.

r̄i({â′j,i}) = lim
t→∞

1

t

t∑

s=1

∑

j

I{R(s)=Rj}I{µ(s)=i}rj,i

=
∑

j

lim
t→∞

1

t

t∑

s=1

I{R(s)=Rj}I{µ(s)=i}rj,i

=
∑

j

lim
t→∞

1

t

t∑

s=1

I{R(s)=Rj}I{µ(s)=i}

∑t
s=1 I{R(s)=Rj}∑t
s=1 I{R(s)=Rj}

rj,i

=
∑

j

(
lim
t→∞

1

t

t∑

s=1

I{R(s)=Rj}

)(
lim
t→∞

∑t
s=1 I{R(s)=Rj}I{µ(s)=i}∑t

s=1 I{R(s)=Rj}

)
rj,i

=
∑

j

πj â
′
j,irj,i a.s (by strong law of large numbers Wolff (1989))

= r̄′i

That is, the rate vector R̄′ is feasible almost surely, with a stationary schedule {â′j,i}.
Thus for any limit point R̄′ of R̄(µ, t, ω), there exists atleast one corresponding station-

ary schedule {â′j,i}. Now, for any limit point R̄′ of R̄(µ, t, ω), lim inf r̄i(µ, t, ω) ≤ r̄′i.

Thus for any µ, there exists atleast one stationary schedule, {â′j,i}, such that r̄i(µ, t, ω) ≤
r̄i({â′j,i}), ∀i , where R̄({â′j,i}) can be achieved almost surely with the schedule. Thus

we have proved equation C.1
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APPENDIX D

Determination of Optimal Weight W ∗(t) for

RRS-RA-Wlog

Let surface H , given by
∑N

i=1m
∗
i r̄i = d, be a hyperplane in <N , tangential to C at R̄∗.

We will show that maxR̄∈C
∑
m∗i r̄

∗
i log r̄i = R̄∗. That is, [m∗1r̄

∗
1,m

∗
2r̄
∗
2, . . .m

∗
N r̄
∗
N ] is an

optimal weight that can be used in RRS-RA-Wlog.

By property of the proportional fair point, we have,

N∑

i=1

w∗i (r̄i − r̄∗i )
r̄∗i

≤ 0 (D.1)

for any R̄ ∈ C. This property is necessary and sufficient for a point to be the unique

maximum of
∑
w∗i log r̄i in C (see Kelly (1997)).

Let R̄ be any point in C. Since C is convex, R̄ lies in
∑

im
∗
i ri <= d. Also, since

R̄∗ lies on H , we have
∑

im
∗
i r̄
∗
i = d. Therefore,

∑

i

m∗i (r̄i − r̄∗i ) ≤ 0 (D.2)

⇒
∑

i

m∗i r̄
∗
i (r̄i − r̄∗i )
r̄∗i

≤ 0 (D.3)

Comparing with condition D.1, we get the required result. In general, there can be more

than one hyperplane tangential to C at R̄∗. Therefore the weight W ∗ need not unique

upto a scaling factor.



APPENDIX E

Channel Models used in Simulations

E.1 Channel Model A: Correlated Users, Time Inde-

pendent

We consider a 10 state user correlated sample space forR(t) with a uniform distribution

on the sample space. The sample space of the process R(t), for all t is (in KBps),

ΩR(t) = {(108, 60, 180, 84), (96, 68, 171, 77), (66, 68, 135, 133), (114, 52, 108, 77),

(66, 44, 162, 133), (108, 48, 153, 140), (66, 80, 99, 105), (78, 80, 171, 112), (96, 64, 144, 98),

(114, 48, 153, 140)}
The vector channel {R(t)} is assumed to be i.i.d. over the slots. The sample space of

the channel was generated arbitrarily.

E.2 Channel Model B: Independent Users, Time Corre-

lated

We consider independent Rayleigh-fading channels for 3 users, with the following pa-

rameters: Mean gain (in dB) = (5, 3, 2), Doppler shift (in Hz) = (50, 90, 40) and Slot

duration (in msec) = 1.5. The mapping from minimum SNR to maximum supportable

transmission rate is described in Table E.1.

The SNR to transmission rate mapping is based on a sub-set of the one used in

CDMA/HDR Bender et al. (2000).



SNR range (dB) Transmission Rate (KBps)

< −8.5 0

−8.5 to −1 102

−1 to 9.5 614

≥ 9.5 2457

Table E.1: Channel model B: Minimum SNR to maximum supportable transmission
rate

E.3 Channel Model C: Correlated Users, Time Inde-

pendent

We consider a 10 state user correlated sample space forR(t) with a uniform distribution

on the sample space. The sample space of the process R(t) (in KBps) is ΩR(t) =

{(95, 17, 44, 23), (16, 6, 70, 81), (40, 88, 26, 36), (100, 33, 8, 88), (19, 66, 29, 19),

(43, 56, 96, 59), (27, 92, 86, 7), (33, 42, 3, 69), (11, 44, 45, 78), (9, 76, 13, 100)}.

The vector channel {R(t)} is assumed to be i.i.d. over slots. The sample space of

the channel was generated arbitrarily.

In the simulation discussed in Section 5.3, the sample space of R(t) for t < 2000

slots is ΩR(t) = {(95, 17, 44, 23), (16, 6, 70, 81), (40, 88, 26, 36), (100, 33, 8, 88),

(19, 66, 29, 19), (43, 56, 96, 59), (27, 92, 86, 7), (33, 42, 3, 69), (11, 44, 45, 78),

(9, 76, 13, 100)} and the sample space of R(t) for t >= 2000 slots is

ΩR(t) = {(95, 17, 44, 23), (16, 6, 70, 81), (40, 88, 26, 36), (100, 33, 8, 88), (19, 66, 29, 19),

(43, 56, 96, 59), (27, 92, 86, 7)}.
We assume a uniform distribution on the sample space for all t. The vector channel

{R(t)} is assumed to be independent over slots. The sample space of the channel was

generated arbitrarily.

In the simulation discussed in Section 5.4, only the first two users (and their corre-

sponding channel states) are considered. The sample space of R(t) for t < 2000 slots
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is ΩR(t) = {(95, 17), (16, 6), (40, 88), (100, 33), (19, 66), (43, 56), (27, 92), (33, 42),

(11, 44), (9, 76)} and the sample space ofR(t) for t >= 2000 slots is ΩR(t) = {(95, 17),

(16, 6), (40, 88), (100, 33), (19, 66)}. We assume a uniform distribution on the sample

space for all t. The vector channel {R(t)} is assumed to be independent over slots. The

sample space of the channel was generated arbitrarily.

E.4 Channel Model D: Independent Users, Time Cor-

related

We consider independent Rayleigh-fading channels for 10 users with the following pa-

rameters: Mean gain (in dB) = (2, 5, 1, 1, 5, 5, 10,−5,−5, 5), Doppler shift (in Hz)

= (50, 90, 50, 90, 60, 100, 50, 70, 50, 90) and Slot duration (in msec) = 1.5. The map-

ping from minimum SNR to maximum supportable transmission rate is described in Ta-

ble E.2. The SNR to transmission rate mapping is based on the one used in CDMA/HDR

Bender et al. (2000).

In the simulation discussed in Section 6.1, only the first two users are considered.

In the simulation discussed in Section 6.2, in Figure 6.4, only the first 4 users are

considered.
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SNR range (dB) Transmission Rate (KBps)

< −12.5 0

−12.5 to −9.5 38

−9.5 to −8.5 76

−8.5 to −6.5 102

−6.5 to −5.7 153

−5.7 to −4 204

−4 to −1 307

−1 to 1.3 614

1.3 to 3.0 921

3.0 to 7.2 1228

7.2 to 9.5 1843

≥ 9.5 2457

Table E.2: Channel model D: Minimum SNR to maximum supportable transmission
rate
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