Quantum Algorithms for Leader Election Problem in Distributed Systems

Pradeep Sarvepalli
pradeep@cs.tamu.edu

Department of Computer Science, Texas A\&M University

- Introduction to distributed systems
$■$ Model of distributed systems
- Leader election in distributed systems
- Quantum distributed systems

■ Quantum resources

- Model of quantum distributed systems

■ Quantum leader election (QLE) algorithms

- 2-party leader election
$\square n$-party leader election
■ QLE - Necessary and sufficient quantum resources

Outline- cont'd

- QLE due to Tani et al.
- 2-party leader election
n-party leader election
- Open Issues \& Conclusions

Introduction

- Distributed Systems
- Processors connected by a communication network
$■$ Processors are loosely coupled more or less independent
- In our case we assume no shared memory, clock
- Anonymous networks
- Processors do not have unique identifiers
- Synchronous networks
- Processors send and receive messages
- Followed by a local computation
- Bounds on timing delays known
- A leader in a distributed system
- coordinates the activities
- reduces complexity of tasks
- helps in fault tolerance
- Leader Election in a distributed system of n processors
- Each processor has a local variable Elected initialized to 0
- Each processor runs the exact same algorithm A
- On termination exactly one processor should have the variable Elected set to 1
- Anonymous networks
- Processors do not have unique identifiers
- In anonymous networks there is no deterministic algorithm for electing a leader
\square The main reason is that the processors are indistinguishable and this symmetry prevents leader election
$■$ One solution to break the symmetry is to assume that the processors are provided with a fair coin
- 2-party
- Each party flips a coin and communicates the outcome to the other party
- The party which obtained heads is elected leader
\square If only one processor gets a head then there is no problem
- If both get heads or tails then they repeat until there is only one head
- In practice quite efficient, expected running time is 2 rounds
- However, this algorithm will not always terminate

Quantum Distributed Systems

- The primary difference between quantum and classical distributed systems is the use of entangled qubits and/or quantum channels
- Quantum networks have at least three models depending on how they communicate and the presence or absence of entangled data
- Processors communicate qubits
- Processors do not share entangled pairs, communicate bits
- Processors share entangled pairs, communicate qubits
- Maximally entangled states

$$
G H Z_{3}=|000\rangle+|111\rangle
$$

- If we measured one qubit say the first one, we would get $|000\rangle$ or $|111\rangle$
- The resulting states are not entangled at all!!
- The entanglement is destroyed by one measurement
- In general the $G H Z_{n}$ state is

$$
G H Z_{n}=\left|0^{\otimes^{n}}\right\rangle+\left|1^{\otimes^{n}}\right\rangle
$$

- Alternatively consider

$$
W_{3}=|100\rangle+|010\rangle+|001\rangle
$$

- If we measure this state then with probability $2 / 3$ we would get $|010\rangle+|001\rangle=|0\rangle(|10\rangle+|01\rangle)$ and with probability $1 / 3$ get $|100\rangle$
$\square|010\rangle+|001\rangle$ is still entangled
- W_{3} state needs two measurements before we get a separable state
- In general the W_{n} state is

$$
W_{n}=|100 \ldots 0\rangle+|01 \ldots 0\rangle+\cdots+|0 \ldots 01\rangle
$$

Quantum Distributed Systems

- Processors connected by a communication network (classical/quantum)
- No shared memory
- No common clock
- Entangled qubits available (sometimes)
- Anonymity implies that the intial quantum state is invariant under permutation of processors

2-party Leader Election

- Let A, B share the state
$\left|0_{A} 1_{B}\right\rangle+\left|1_{A} 0_{B}\right\rangle=|01\rangle+|10\rangle$
- Algorithm
- Perform measurement on i th qubit
- If 1 , then elect itself as leader
- Illustration
- The resulting state is $|01\rangle$ or $|10\rangle$
- The complementary measurements of A, B ensure that there is no conflict and a leader is elected after the first round

n-party Leader Election

- Let the processors share the state

$$
\begin{gathered}
W_{n}=|10 \ldots 0\rangle+|010 \ldots 0\rangle+\cdots+|0 \ldots 01\rangle \\
W_{n}=\left|2^{n-1}\right\rangle+\left|2^{n-2}\right\rangle+\cdots+|2\rangle+|1\rangle
\end{gathered}
$$

- Algorithm
- Let each processors measure its qubit
- If measurement is 1 , then elect itself as leader

Quantum Leader Election Algorithm - D'Hondt et. al

Data: Entangled state W_{n}
Result: If elected leader then elected is set to 1
elected:=0;
$\mathrm{m}:=$ Measure i th qubit;
if $m=1$ then
| elected=1;
end
Algorithm 1: QLE Algorithm

■ Is the algorithm fair?

- Does every processor get elected with the same probability?
- Are there any other entangled states that we can use for QLE?
- Are these quantum networks truly anonymous?
- Does the use of W_{n} remove anonymity somehow?
- Can we elect a leader without entanglement?
- How does one share the entangled state W_{n} ?

QLE- Some Questions

- Is the algorithm fair? Yes. Any processor is elected with probability $1 / n$
- Are there any other entangled states that we can use for QLE? No
- Are these quantum networks truly anonymous? Yes. The initial shared quantum state is invariant under permutation
- Can we elect a leader without entanglement? No
- How does one share the entangled state W_{n} ?

QLE - Tani et. al

- There was an alternate approach proposed by Tani et. al, which is more complete in the sense it addresses how to share the entanglement and other details
- Basic idea is same
- Use entangled states which on measurement create asymmetry among the processors
- We will illustrate the algorithm with 2-party as it is easier to understand the key ideas

2-party QLE due to Tani et al.

- Each party prepares the state $R=(|0\rangle+|1\rangle) / \sqrt{2}$
\square System state is
$R_{x} R_{y}=|\psi\rangle=|00\rangle+|01\rangle+|10\rangle+|11\rangle$
- In a separate register each processor computes if both the bits are same
- Now the global state is

$$
R_{x} R_{y} S_{x} S_{y}=(|00\rangle+|11\rangle)|11\rangle+(|01\rangle+|10\rangle)|00\rangle
$$

- Note that the registers S_{x} and S_{y} are entangled

2-party QLE - cont'd

\square Each processor measures its S register

- The state will collapse to either $(|00\rangle+|11\rangle)|11\rangle$ or $(|01\rangle+|10\rangle)|00\rangle$
- It does not matter who measures first
- If we get $(|01\rangle+|10\rangle)|00\rangle$, then we are done.
- Let each processor measure its register R
- We will get either $|01\rangle$ or $|10\rangle$ and an unique leader
■ If we get $(|00\rangle+|11\rangle)|11\rangle$, then somehow we have to transform it to W_{2} state i.e., $(|01\rangle+|10\rangle)$

2-party QLE - cont'd

- Each processor applies the unitary operation

$$
U_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -i \\
-i & 1
\end{array}\right)
$$

- Now the state $|00\rangle+|11\rangle$ gets transformed to

$$
\begin{gathered}
(|0\rangle-i|1\rangle) \otimes(|0\rangle-i|1\rangle)+(-i|0\rangle+|1\rangle) \otimes(-i|0\rangle+|1\rangle) \\
|00\rangle-i|01\rangle-i|10\rangle+i^{2}|11\rangle+i^{2}|00\rangle-i|01\rangle-i|10\rangle+|11\rangle \\
=-i|01\rangle-i|10\rangle
\end{gathered}
$$

2-party QLE - cont'd

- With the W_{2} state in hand we can proceed to elect a leader as before
- Let each processor measure its register R
- We will get either $|01\rangle$ or $|10\rangle$ and an unique leader
- The generalization is essentially the same idea but complicated
- A string $x=x_{1} x_{2} \ldots x_{n}$ of length $b n$ is consistent if all substrings x_{i} are same
- Let each processor create the state $R_{i}=|0\rangle+|1\rangle$
- This gives the global state

$$
R_{1} \cdots R_{n}=\sum_{i=0}^{2^{n}-1}|i\rangle
$$

- Let each processor locally store in S_{i} the consistency of the global state

n-party QLE - cont'd

- We can partition the global state as

$$
\begin{aligned}
R_{1} \cdots R_{n} S_{1} \cdots S_{n} & =\left(\left|0^{\otimes^{n}}\right\rangle+\left|1^{\otimes^{n}}\right\rangle\right)\left|1^{\otimes^{n}}\right\rangle \\
& +\sum_{i=1}^{2^{n}-2}|i\rangle\left|0^{\otimes^{n}}\right\rangle
\end{aligned}
$$

- Again note that S_{i} are entangled
- Now let each processor measure its S register. We will get either

$$
\left(\left|0^{\otimes^{n}}\right\rangle+\left|1^{\otimes^{n}}\right\rangle\right)\left|1^{\otimes^{n}}\right\rangle \text { or } \sum_{i=1}^{2^{n}-2}|i\rangle\left|0^{\otimes^{n}}\right\rangle
$$

n-party QLE - cont'd

- If we get $\sum_{i=1}^{2^{n}-2}|i\rangle\left|0^{\otimes^{n}}\right\rangle$, then each processor can measure its qubit R_{i}
- Because the states are inconsistent atleast one processor will measure 0 and the rest 1 or 0
- Promote those which have measured 1 to the next phase for leader election and discard the ones which have measured 0
- Thus we have reduced it to smaller leader election problem
- Worst case we will need $n-1$ phases

n-party QLE - cont'd

- If we get the $G H Z_{n}$

$$
\left(\left|0^{\otimes^{n}}\right\rangle+\left|1^{\otimes^{n}}\right\rangle\right)\left|1^{\otimes^{n}}\right\rangle
$$

we have to transform it to an inconsistent state so that there is asymmetry in the global state

- If the number of parties k, initially n
- even, then we apply the operator

$$
U_{k}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & e^{-i \pi / k} \\
-e^{i \pi / k} & 1
\end{array}\right)
$$

n-party QLE - cont'd

- odd
- We need an additional register T_{i} initialized to |0〉

■ Consider the global state $R_{1} \ldots R_{k} T_{1} \ldots T_{k}$
$■ T_{i} \mapsto R_{i} \oplus T_{i}$ and then apply V_{k} to $R_{i} T_{i}$

$$
\left(\begin{array}{cccc}
\frac{1}{\sqrt{2}} & 0 & \sqrt{R_{k}} & e^{i \pi / k} / \sqrt{2} \\
\frac{1}{\sqrt{2}} & 0 & -\sqrt{R_{k}} e^{-i \pi / k} & e^{-i \pi / k} / \sqrt{2} \\
\sqrt{R_{k}} & 0 & \frac{e^{-i \pi / 2 k} I_{k}}{i \sqrt{2} R_{2 k}} & -\sqrt{R_{k}} \\
0 & \sqrt{R_{k}+1} & 0 & 0
\end{array}\right)
$$

n-party QLE - cont'd

- The previous step always leads to an inconsistent state
$■$ Once again each processor measures its qubits $R_{i} T_{i}$
- This time we select only those processors which have the maximum value in $R_{i} T_{i}$
- Because the states are inconsistent we are guaranteed that atleast some processor is discarded from the election
- Repeat this algorithm with the newer set

QLE 2 - (Sketch)

Result: If elected leader then Elected is set to 1
Elected $:=0$, Eligible $:=1, S:=0$;
for $k \leftarrow n$ to 2 do
if Eligible $=1$ then Prepare $R=|0\rangle+|1\rangle$;
Compute consistency of global state in S
Measure S;
if $S=1$ then
Transform into an inconsistent state;
end
Measure R;
Discard if $R=0$, Eligible: $=0$;
end
end

Complexity of QLE 2

- Running time $O\left(n^{3}\right)$
- Communication complexity $O\left(n^{4}\right)$
- Quantum communication complexity $O\left(n^{4}\right)$
- Quantum round $\theta\left(n^{2}\right)$
\square A modified algorithm exists with increased running time

Open Issues \& Conclusions

- Quantum computing seems to be beneficial for some distributed tasks
- Can we show some equivalence between the two algorithms?
- How does one share the entangled state W_{n} for the D'Hondt algorithm?
- What is the complexity of this algorithm taking into account the implementation details?
- Can the algorithm due to Tani et al. be simplified?
- Are there some good quantum algorithms for
- Mutual exclusion

■ Fault tolerant consensus (Crash and Byzantine)

References

- References

■ "Leader Election and Distributed Consensus with Quantum Resources" by E. D'Hondt and P. Panangaden

- "Exact Quantum Algorithms for the Leader Election Problem" by S. Tani, H. Kobyashi and K. Matsumoto

Questions ?

Questions ?

Thank You !

