Hallgren's Quantum Algorithm for Pell's Equation

Pradeep Sarvepalli

pradeep@cs.tamu.edu

Department of Computer Science,
Texas A\&M University

Outline

- Pell's equation
- Classical method for solving Pell's equation
- Reformulating the Pell's equation in number theoretic terms
- Overview of Hallgren's quantum algorithm
- Hallgren's algorithm
- Algebraic background
- Quantum period finding algorithm
- Classical post processing
- Putting all the pieces together

Outline - cont'd

- Applications
- Class group of a quadratic field
- Principal ideal problem
- Generalizations
- Unit group of a finite extension of \mathbb{Q}
- Class group of a finite extension of \mathbb{Q}
- Principal ideal problem
- References
- "Notes on Hallgren's efficient quantum algorithm for solving Pell's equation" by Richard Jozsa
- "Polynomial time quantum algorithms for Pell's equation and principal ideal problem" by Sean Hallgren

Pell's Equation

- Goal is to find finding integral and positive solutions to the following equation

$$
x^{2}-d y^{2}=1
$$

- $x^{2}-2 y^{2}=1$, Solutions $(3,2) ;(17,12) ; \ldots$
- Has infinite number of solutions
- Harder than factoring

Classical Method for Pell's equation

- Based on continued fractions
- Approximations of the continued fraction of \sqrt{d} give the solution
- Example

$$
\begin{aligned}
x^{2}-2 y^{2} & =1, \\
\sqrt{2} & =1+\frac{1}{2+\frac{1}{2+\frac{1}{2+\ldots}}} \\
\sqrt{2} & \approx 1+\frac{1}{2}=\frac{3}{2}=\frac{x}{y}
\end{aligned}
$$

- Observe that $3^{2}-2 \cdot 2^{2}=9-8=1$

Continued Fraction Method

- Why does this work?
- Is every approximation a solution?
- What is the complexity of the algorithm?

Continued Fraction Method - cont'd

- Example - cont'd

$$
\begin{aligned}
\sqrt{2} & \approx 1+\frac{1}{2+\frac{1}{2}}=1+\frac{2}{5}=\frac{7}{5}=\frac{x}{y} \\
\sqrt{2} & \approx 1+\frac{1}{2+\frac{1}{2+\frac{1}{2}}}=1+\frac{1}{2+\frac{2}{5}} \\
& =1+\frac{5}{12}=\frac{17}{12}=\frac{x}{y}
\end{aligned}
$$

- $7^{2}-2 \cdot 5^{2}=49-50=-1 \neq 1$
- $17^{2}-2 \cdot 12^{2}=289-288=1$

Continued Fraction Method - cont'd

- Not every approximation gives a solution to the Pell's equation
- We might have to take many terms in the continued fraction before we get the solution
- Typically if we use the input size as $\log d$, size of the solution will be $O(\sqrt{d}) \approx O\left(e^{\log d}\right)$

A Close Look at the Solutions

- Every solution can be uniquely identified with $x+y \sqrt{d}$, $x, y>0$
- Smallest solution with $x+y \sqrt{d}$ is called the Fundamental solution

$$
x_{1}+y_{1} \sqrt{d}
$$

- Every other solution can be obtained as power of the fundamental solution

$$
x+y \sqrt{d}=\left(x_{1}+y_{1} \sqrt{d}\right)^{n}
$$

- It suffices to compute the fundamental solution

A Closer Look at the Solutions

d	x
10	19
13	649
29	9801
53	66249
61	1766319049
109	2469645423824185801
181	159150073798980475849
277	838721786045180184649
397	25052977273092427986049
409	3879474045914926879468217167061449

Regulator

- $O\left(x_{1}+y_{1} \sqrt{d}\right)=O\left(e^{\sqrt{d}}\right)$
- Just to write down the solution will take exponential amount of write operations
- We will rather compute a representation of the solution
- Regulator $R_{d}=\ln \left(x_{1}+y_{1} \sqrt{d}\right)$, and $x_{1}+y_{1} \sqrt{d}$ is the smallest in magnitude of all solutions
- R_{d} being irrational is computed to n digit accuracy
- Even for this reduced problem the best classical algorithm has a running time $O\left(e^{\sqrt{\log d}} \operatorname{poly}(n)\right)$

Overview of Hallgren's Algorithm

- Reformulate the Pell's equation as a period finding problem
- Form a function $h(x)$ with period R_{d}
- Modify the quantum period finding algorithm to find irrational period
- The quantum part of the algorithm
- Computes only the integral part of R_{d}
- Perform classical post processing given the integral part of R_{d}
- Compute the fractional part of R_{d} making use of the integral part of R_{d} provided by the previous step

Some Algebraic Number Theory

- Let $\mathbb{Q}(\sqrt{d})=\{a+b \sqrt{d} \mid a, b \in \mathbb{Q}\}$
- The solutions of Pell's equation are elements in $\mathbb{Q}(\sqrt{d})$
- \mathcal{O} is called the ring of algebraic integers

$$
\mathcal{O}=\{a \in \mathbb{Q}(\sqrt{d}) \mid f(a)=0, f(x) \in \mathbb{Z}[x]\}
$$

- $\mathbb{Z}[x]$ consists of polynomials with integral coefficients
- Units of \mathcal{O} are elements in \mathcal{O} that they have multiplicative inverses

$$
\mathcal{O}^{\times}=\{\text {Units of } \mathcal{O}\}=\left\{u \in \mathcal{O} \mid u^{-1} \text { exists }\right\}
$$

Algebraic Number Theory - cont'd

- $x+y \sqrt{d}$ is a solution of $x^{2}-d y^{2}=1$ if and only if $x+y \sqrt{d}$ is a unit of \mathcal{O}
- ϵ_{o} smallest unit in \mathcal{O}^{\times}, with $\epsilon_{o}>1$
- $\mathcal{O}^{\times}=\left\{ \pm \epsilon_{o}^{k} \mid k \in \mathbb{Z}\right\}$
- $R_{d}=\ln \epsilon_{o}$
- All the solutions of $x^{2}-d y^{2}$ can be obtained from the fundamental unit ϵ_{o}

Algebraic Number Theory - cont'd

- Product of sets $A, B \subseteq \mathbb{Q}(\sqrt{d})$, then

$$
A \cdot B=\left\{\sum_{i=1}^{n} a_{i} b_{i} \mid n>0, a_{i} \in A, b_{i} \in B\right\}
$$

- Ideal $I \subseteq \mathbb{Q}(\sqrt{d})$ such that $I \cdot \mathcal{O}=I$
- Integral Ideal $I \subseteq \mathcal{O}$
- Fractional Ideal $I \subseteq \mathbb{Q}(\sqrt{d})$
- Principal Ideal $I=\gamma \mathcal{O}$
- If $\epsilon \in \mathcal{O}$, then $\epsilon \mathcal{O}=\mathcal{O}$
- Equality of ideals $\alpha \mathcal{O}=\beta \mathcal{O}$ if and only if $\alpha=\beta \epsilon$, where ϵ is a unit in \mathcal{O}

Reformulating Pell's equation

- Let $\mathcal{P}=\{\gamma \mathcal{O} \mid \gamma \in \mathbb{Q}(\sqrt{d})\}$
- Consider $g: \mathbb{R} \rightarrow \mathcal{P}$

$$
g(x)=e^{x} \mathcal{O}=I_{x}
$$

- $g(x)$ is periodic with R_{d}

$$
\begin{aligned}
g\left(x+k R_{d}\right) & =e^{x+k R_{d}} \mathcal{O}, \\
& =e^{x} \epsilon_{o}^{k} \mathcal{O}=e^{x} \mathcal{O} \\
& =g(x)
\end{aligned}
$$

Using a periodic function to find R_{d}

- Naive algorithm to compute R_{d}
- Find $g(x)=I_{x}$
- Find $y>x$ such that $g(y)=I_{x}$
- $y-x=k R_{d}$
- Another naive algorithm
- Assume that the ideals could be ordered somehow
- Given I_{x} find $g^{-1}\left(I_{x}\right)$
- Find an ideal I_{y} next to I_{x} such that $I_{y}=I_{x}$
- $g^{-1}\left(I_{y}\right)-g^{-1}\left(I_{x}\right)=k R_{d}$

Problems with the Naive Algorithms

- $y>e^{R_{d}}$ is exponentially large in $\log d$
- I_{x} is an infinite set, comparing two ideals poses problem
- There are infinitely many ideals between $x, x+\delta$ for which $I_{x}=I_{x+\delta}, \mathbb{Q}(\sqrt{d})$ and \mathcal{P} are both dense
- We need to somehow order the ideals
- We need to move from one ideal to another
- Finite precision arithmetic

More Algebraic Number Theory

- \mathcal{O} is a \mathbb{Z}-module, so it behaves like a vector space

$$
\begin{aligned}
\mathcal{O} & =m+n \frac{D+\sqrt{D}}{2}, D=\left\{\begin{array}{rl}
d, & d \equiv 1 \quad \bmod 4 \\
4 d, & d \equiv 2,3 \quad \bmod 4
\end{array},\right. \\
\mathcal{O} & =\mathbb{Z}+\frac{D+\sqrt{D}}{2} \mathbb{Z}
\end{aligned}
$$

- For any principal ideal $I=\gamma \mathcal{O}$

$$
I=\gamma \mathbb{Z}+\gamma \frac{D+\sqrt{D}}{2} \mathbb{Z}
$$

Comparing Principal Ideals

- The basis is not unique, we can rewrite I as

$$
\begin{gathered}
I=k\left(a \mathbb{Z}+\frac{b+\sqrt{D}}{2} \mathbb{Z}\right) \\
-a<b \leq a, \quad a>\sqrt{D} \\
\sqrt{D}-a<b \leq \sqrt{D}, \quad a<\sqrt{D}
\end{gathered}
$$

- Presentation of an ideal is the triplet (a, b, k) which is computable in polynomial time given γ.
- Addresses the problem of comparing infinite sets. Equality of ideals is equivalent to having the same presentation

Discretizing Ideals

- Reduced principal ideals have the form

$$
I=\mathbb{Z}+\frac{b+\sqrt{D}}{2} \mathbb{Z}
$$

- Reduced principal ideals are finite in number
- Addresses the problem of density of sets $\mathbb{Q}(\sqrt{d})$ and \mathcal{P}
- Cycle of Reduced Principal Ideals

$$
J=\left\{\mathcal{O}=J_{0}, J_{1}, \ldots, J_{m-1}\right\}
$$

Moving Among Ideals

- $I=\mathbb{Z}+\gamma \mathbb{Z}$, then define

$$
\rho(I)=\frac{1}{\gamma} I
$$

- Gives another principal ideal
- If $I \in J$ then $\rho(I) \in J$
- If repeated then finally it gives a reduced principal ideal
- If I was reduced principal ideal $\rho(I)$ is another reduced principal ideal
- Since there are a finite number of reduced principal ideals it cycles

Moving Among Ideals - cont'd

- $\sigma(I): \sqrt{d} \mapsto-\sqrt{d}$
- Inverse operation of moving back is given by $\rho^{-1}=\sigma \rho \sigma$
- This addresses the problem of moving between the ideals back and forth

Ordering Ideals

- Let $I_{y}=\gamma I_{x}$. Then the distance between I_{y} and I_{x} is

$$
\delta\left(I_{x}, I_{y}\right)=\ln \gamma
$$

- Distance from $\mathcal{O}: \delta\left(e^{x} \mathcal{O}\right)=\delta\left(\mathcal{O}, e^{x} \mathcal{O}\right)=\ln e^{x}=x$
- Distance allows us to order the ideals along the number line in the same form as the input x
- Addresses the problems of invertibility and ordering
- If $I_{x}=I_{y}$, then $\delta\left(I_{x}, I_{y}\right)=y-x=k R_{d}$
- $\delta(I, \rho(I))$ can be computed in polynomial time

Spacing of Ideals

- $\delta\left(J_{i}, J_{i+1}\right) \geq \frac{3}{32 D}$
- $\delta\left(J_{i}, J_{i+2}\right) \geq \ln 2$
- $\delta\left(J_{i}, J_{i+1}\right) \leq \frac{1}{2} \ln D$
- If we succesively apply ρ to a non reduced ideal I, until we just get a reduced principal ideal $I_{\text {red }}$, then

$$
\left|\delta\left(I, I_{r e d}\right)\right| \leq \ln D
$$

and $I_{r e d} \in\left\{J_{k-1}, J_{k}, J_{k+1}\right\}$

Jumping Across Ideals

- We note that the ideals are exponential in number so moving across efficiently requires more than use of reduction operator ρ
- Use the product of ideals to move faster than ρ
- $I_{1} \cdot I_{2}$ is much farther from \mathcal{O} than either of I_{1}, I_{2}
- $\delta\left(I_{1} \cdot I_{2}\right)=\delta\left(I_{1}\right)+\delta\left(I_{2}\right)$
- Product of ideals is not necessarily reduced so we reduce it to bring it back to the principal cycle of reduced ideals
- We denote this operation by *

Review

- We need positive, intgeral solutions for $x^{2}-d y^{2}=1$
- Each solution can be encoded as $x+y \sqrt{d}$ an element in $\mathbb{Q}(\sqrt{d})$
- All solutions can be obtained from the smallest solution $x_{1}+y_{1} \sqrt{d}$
- We introduced the Regulator $R_{d}=\ln \left(x_{1}+y_{1} \sqrt{d}\right)$

Review - cont'd

- Every solution is an element of $\mathbb{Q}(\sqrt{d})$
- More specifically every solution is also an element of the ring of algebraic integers in $\mathbb{Q}(\sqrt{d})$
- A solution of Pell's equation is precisely the set elements in \mathcal{O} which have multiplicative inverses
- Our goal is to compute the generator of this subgroup which is precisely the regulator R_{d}

Quadratic Number Field

Review - cont'd

Quadratic Number Field

Review - cont'd

Review - cont'd

Review - cont'd

- We then defined the ideals as special sets in $\mathbb{Q}(\sqrt{d})$ which are loosely speaking closed under addition and multiplication
- A special type of ideals are the principal ideals which take the form $I=\gamma \mathcal{O}$
- We defined a periodic function that is periodic with R_{d} from \mathbb{R} to the set of principal reduced ideals
- They can all be ordered with respect to their distance from \mathcal{O}
- We can move among the ideals using ρ and ρ^{-1}
- We have a means of moving from one ideal to another exponentially large steps

Review - cont'd

Review - cont'd

Hallgren's Periodic Function

- $h(x)=(g(x), x-\delta(g(x)))=\left(I_{x}, x-\delta\left(I_{x}\right)\right)$
- I_{x} is the nearest reduced principal ideal to the left of x i.e, $\delta\left(I_{x}\right)<x$
- $h(x)$ is periodic with R_{d}
- $h(x)$ is one to one

Hallgren's Periodic Function

- $h(x)=(g(x), x-\delta(g(x)))=\left(I_{x}, x-\delta\left(I_{x}\right)\right)$

Discretizing $h(x)$

- For practical implementation we would like to discretize $h(x)$
- Assuming that x is discretized with a step of $1 / N$ the discretized function $h_{N}(k)=\lfloor h(k / N)\rfloor_{N}$
- $h_{N}(k)$ is weakly periodic with $P=N R_{d}$
- $h_{N}\left(k+\left\lfloor l N R_{d}\right\rfloor\right)=h_{N}(k)$ or $h_{N}\left(k+\left\lceil l N R_{d}\right\rceil\right)=h_{N}(k)$

Hallgren's Periodic Function

- After discretization $h(x)$ is weakly periodic not periodic

Quantum Period Finding Algorithms

- A state in superposition
- Transformation to a state with a suitable function
- Partial measurement
- Fourier transform to get rid of offset
- Measurement
- Classical post processing

Hallgren's Period Finding Algorithm

- Form is an uniform superpostion of q states where $q=p N R_{d}+r$

$$
|\psi\rangle=\frac{1}{\sqrt{q}} \sum_{j=0}^{q-1}|j\rangle|0\rangle
$$

- Compute $h_{N}(|\psi\rangle)$

Superposition

$h_{N}|\psi\rangle=\frac{1}{\sqrt{q}} \sum_{j=0}^{q-1}|j\rangle\left|h_{N}(j)\right\rangle$

Partial Measurement

$$
h_{N}|\psi\rangle=\frac{1}{\sqrt{q}} \sum_{j=0}^{N R_{d}-1}\left(\sum_{l=0}^{p-1}\left|j+\left[l N R_{d}\right]\right\rangle\right)\left|h_{N}(j)\right\rangle
$$

- Measure the second register, say we measure $h_{N}(k)$

Partial Measurement - cont'd

After Measurement

First Register

- On measurement the state will collapse to

$$
|\psi\rangle=\frac{1}{\sqrt{p}} \sum_{n=0}^{p-1}\left|k+\left[n N R_{d}\right]\right\rangle\left|h_{N}(k)\right\rangle
$$

QFT to Remove Offset

- Take the Quantum Fourier transform

$$
\begin{aligned}
\mathcal{F}|\psi\rangle & =\frac{1}{\sqrt{p q}} \sum_{n=0}^{p-1} \sum_{j=1}^{q-1} e^{2 \pi i\left(k+\left[n N R_{d}\right]\right)}|j\rangle \\
& =\sum_{j=0}^{q-1} a_{j}|j\rangle
\end{aligned}
$$

Register after Quantum Fourier Transform

QFT - cont'd

Register after Quantum Fourier Transform

Identifying Periodicity

Register after Quantum Fourier Transform

- We are interested in
- $j=l q / N R$
- j is small, more precisely, $j<\frac{q}{\log N R_{d}}$
- $\operatorname{Prob}(j)$ must be large

Identifying Periodicity - cont'd

- For sufficiently large $q \geq 3\left(N R_{d}\right)^{2}$, many j such that - j is a multiple of $q / N R_{d}$
- $j<\frac{q}{\log N R_{d}}$
- Probability of such j is highly likely,

$$
\operatorname{Prob}(j)>\frac{\alpha}{\log N R_{d}},
$$

α a constant

Extracting Periodicity

- But how do we extract the periodicity from the state?
- Measure and repeat to get another measurement such that
- $c=\left[k q / N R_{d}\right]$
- $d=\left[l q / N R_{d}\right]$
- We do not know k, l, R_{d}
- Compute the convergents of $\frac{c}{d}$
-

$$
\left|\frac{c}{d}-\frac{a}{b}\right|<\frac{1}{2 b^{2}}
$$

Extracting Periodicity - cont'd

- Compute the convergents of c / d then

$$
\frac{k}{l}=\frac{c_{n}}{d_{n}} \text { and } k=c_{n},
$$

for some n

- $c=\left[\frac{k q}{N R_{d}}\right]=\frac{k q}{N R_{d}}$
- Estimate the period as

$$
\overline{N R_{d}}=\left[\frac{k q}{c}\right]
$$

- Check if $\overline{N R_{d}}=c_{n} q / c$ satisfies $\left|l R_{d}-\overline{N R_{d}}\right|<1$

Extracting Periodicity - cont'd

- If $\left|\overline{N R_{d}}-j R_{d}\right|<1$, then $h\left(\overline{N R_{d}}\right)$ is an ideal among $\left\{\rho^{-4}(\mathcal{O}), \rho^{-3}(\mathcal{O}), \ldots, \mathcal{O}, \ldots, \rho^{3}(\mathcal{O}), \rho^{4}(\mathcal{O})\right\}$
- Because $\delta\left(I, \rho^{2}(I)\right)>\ln 2>0.693$

Integral Part of R_{d}

- Integral part of R_{d}

$$
\left\lfloor R_{d}\right\rfloor=\left\lfloor\frac{\overline{N R_{d}}}{N}\right\rfloor
$$

- We know R_{d} to a precision $1 / N$
- With probability $\geq 1 / \operatorname{poly}\left(\log N R_{d}\right)$ this algorithm will return $\overline{N R_{d}}$ such that $\left|\overline{N R_{d}}-N R_{d}\right|<1$

Computing the Fractional part of R_{d}

- Given $\left\lfloor R_{d}\right\rfloor$
- Compute $h\left(\left\lfloor R_{d}\right\rfloor\right)=\left(I_{x}, x-\delta\left(I_{x}\right)\right)$

- We know that $\delta\left(I, \rho^{2}(I)\right)>\ln 2=0.693$

Computing the Fractional part of R_{d} -

- Therefore $\delta\left(I, \rho^{4}(I)\right)>2 \ln 2>\left\lceil R_{d}\right\rceil$
- This implies that \mathcal{O} must be one of the ideals $\left\{\rho^{-3}(\mathcal{O}), \rho^{-2}(\mathcal{O}), \rho^{-1}(\mathcal{O}), \mathcal{O}\right\}$
- $\delta(I, \mathcal{O}))$ can be computed in polynomial and this gives the fractional part of R_{d}

Summary of the Algorithm

- Start with a superpostion of inputs
- Compute Hallgren's periodic fucntion for all these inputs
- Perform partial measurement
- Perform QFT to get rid of offset
- Perform a measurement to get c
- Repeat to get another value d
- Extract the Integral part of R_{d}
- Compute the fractional part of R_{d}

Applications

- Principal Ideal Problem
- Given an ideal determine if it is a principal ideal
- Class Group structure
- Determine the structure of the group $\mathcal{I}_{\text {inv }} / \mathcal{P}$

Principal Ideal Problem

- Recall an ideal $I \subseteq \mathbb{Q}(\sqrt{d})$ such that $I \cdot \mathcal{O}=I$
- Principal ideal $I=\gamma \mathcal{O}$
- All ideals of the form $I=\alpha \mathbb{Z}+\beta \mathbb{Z}$
- Given an ideal, decide if there exists a γ such that $I=\gamma \mathcal{O}$

Computing the Class Group

- Invertible ideals
- An ideal I is called invertible if there exists another ideal J such that $I \cdot J=\mathcal{O}$
- Let $\mathcal{I}=\left\{I \mid I^{-1}\right.$ exists $\}$
- $\mathcal{P}=\{I \mid I=\gamma \mathcal{O}\}$
- Let $C=\mathcal{I} / \mathcal{P}$
- C is a finite abelian group and called the class group
- Class group problem is to determine the structure of C

Generalizations

- A general problem is to compute the unit group of a $\mathcal{O} \subseteq \mathbb{Q}(\theta)$ where $[\mathbb{Q}(\theta): \mathbb{Q}]=n$
- For Pell's equation $n=2$
- Similarly the class group and the principal ideal problem also can be generalized
- Two algorithms for the same have appeared recently by Hallgren and Vollmer, Schmidt independetly this year

Questions?

Thank You

