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Stabilizer Codes

Quantum code is a subspace in a finite dimensional Hilbert
space

H = C ⊕ C⊥ where H = Cq ⊗ Cq ⊗ · · · ⊗ Cq︸ ︷︷ ︸
n

One main critique of
quantum codes has
been the need for
active error-correction
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Passive Error-Correction

In passive error-correction the recovery operation is trivial

Unfortunately, noiseless
subsystems (NS) have poor
distance for the depolarizing
channel

If the size of the redundant system is 1, then the code is called
a decoherence free subspace (DFS)
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Subsystem Codes

Operator codes or subsysytem codes are a generalization of
the previous ideas

We do not care what is the state of subsystem B after recovery
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The Big Picture

All these different methods can be unified using the idea of
subsystem codes

The code space can be resolved as a tensor product of
two subsystems

H = C ⊕ C⊥ = (A ⊗ B)⊕ C⊥

Information is stored in system A only, the subsystem B is
often called the gauge subsystem
There may not be a one to one correspondence between
the physical qubits and the systems A and B, i.e., the
virtual qubits
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Operator Quantum Codes

Operator codes unify all the different types of quantum codes

We denote an operator code as [[n, k , r , d ]]q, where dim A = k ,
dim B = r and distance of code is d

Code Error-Correction dim A dim B
Operator Active & Passive k r
Stabilizer Active & Passive k 0
NS Passive k r
DFS Passive k 0

If we use the depolarizing channel model, then it means that
NS and DFS cannot correct all errors.
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Why Subsystem Codes?

Claims

Lead to better error recovery schemes
Possibility of codes that outperform the optimal stabilizer
codes

Are these claims true?
For a large class of codes - No.

But the following claims could be

Codes that beat the quantum Hamming bound may exist
Conjectured that some codes maybe self-correcting
Greater flexibility for fault-tolerant operations
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Previous Work vs New Results

No systematic methods to construct operator codes
No bounds on the size of the gauge qubits
Comparison of stabilizer and subsystem codes was not fair
Many claims without any proofs
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Operator Codes - A Closer Look

Error model: Assuming independent errors, the error group

E = {E1 ⊗ E2 ⊗ · · · ⊗ En | Ei ∈ P} where P = 〈i , I, X , Y , Z 〉

Let N be normal subgroup of E and Z (N), the center of N and
CE(Z (N)), the centralizer of Z (N)

Every nontrivial normal subgroup N defines a subsystem code
C, which is precisely the stabilizer code defined by Z (N).

The code C = A ⊗ B, where B is the smallest subspace of H
that is invariant under the action of N and A is the smallest
subspace invariant under the action of CE(N)
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A Closer Look – cont’d

Undetectable errors in
CE(Z (N))− N
Errors in N require no active
error-correction
Errors in E − CE(Z (N))
require active error-correction

Let qr =
√

|N|
|Z (N)| , qk =

√
|CE (Z (N))|

|N| and d = wt(CE(Z (N))− N),
then N defines an [[n, k , r , d ]]q code
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Constructing Subsystem Codes

Like stabilizer codes we can construct subsystem codes from
classical codes over F2n

q

Undetectable errors in
D⊥s − C
Errors in C require no active
error-correction
Errors in F2n

q − D⊥s require
active error-correction

Let qr =
√

|D⊥s |
|C| , qk =

√
|C|
|D| and d = wt(D⊥s − C), then C

defines an [[n, k , r , d ]]q code
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Comparing Stabilizer Codes and Subsystem Codes

Criterion Operator Stabilizer
[[n, k , r , d ]]q [[n, k , d ]]q

Error Recovery n-k-r n-k
Distance Better?
Encoding Same? Same?
Fault Tolerance Better?

The main advantage is with respect to the number of syndrome
measurements to be performed

An [[n, k , d ]]q stabilizer code requires n − k syndrome
measurements
An [[n, k , r , d ]]q subsystem code requires only n − k − r
syndrome qubits
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An Obvious Question

Can we just throw away the gauge qubits?
No. There is no one to one correspodence between the
physical qubits and the gauge qubits

Theorem (Gilbert-Varshamov Bound)
Let Fq be a finite field of characteristic p. If 0 < k + r ≤ n and
d > 0 such that

d−1∑
j=1

(
n
j

)
(q2 − 1)j(qn+k+r − qn+r−k ) < (p − 1)(q2n − 1)

holds, then an [[n, k , r ,≥ d ]]q operator quantum error-correcting
code exists.
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An Obvious Question - cont’d

Theorem
If 0 < k + r ≤ qn and d > 0 such that

d−1∑
j=1

(
n
j

)
(q2 − 1)j(qn+k+r − qn−k+r ) < (p − 1)(q2n − 1)

holds, then an [[n − r , k ,≥ d ]]q operator quantum
error-correcting code exists.

Our intuition does hold in most cases; we can just throw away
the gauge qubits – But . . .
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Upper Bounds on Subsystem Codes

Since the gains from subsystem codes are dependent on r , an
upper bound on r will be useful

For linear [[n, k , r , d ]]q subsystem codes, k + r ≤ n− 2d + 2, for
stabilizer codes k ≤ n − 2d + 2

Indicates that there is a trade off between k and r

The bound suggests that reduction in syndrome measurements
can be attained only by reducing the information stored
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Better than MDS Stabilizer Codes

Quantum MDS codes
A stabilizer code with parameters [[n, k , d ]], where
2d = n − k + 2, i.e., [[k + 2d − 2, k , d ]]q

Theorem
If a QMDS code [[n, k , d ]]q exists, no linear operator code can
have fewer syndrome measurements than n − k

Proof: Assume that that [[n, k , r , d ]]q is better than an
[[k + 2d − 2, k , d ]]q code

k + 2d − 2 − k > n − k − r
k + 2d − 2 > n − r

k + r > n − 2d + 2, contradiction for linear codes
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Summary

Systematic methods for construction of operator codes
Upper bounds for pure or linear operator codes
Lower bounds for additive operator codes
Proved that linear operator codes cannot beat quantum
MDS codes when they exist

Open Questions
Does the Singleton bound hold for additive codes also?
Are there subsystem codes that beat the quantum
Hamming bound?
Are there operator codes that beat the non MDS optimal
stabilizer codes?
Is a higher threshold possible for operator codes?
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Questions? Thank You!
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