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Infrastructures
An infrastructure of circumference R is a pair (X,d) where

– X= {x0,x1, . . . ,xm−1}
– d :X ,→R

d(x0)= 0< d(x1)< ·· · < d(xm−1)<R

..
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. d(xi)

Figure: Visualizing an infrastructure
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Functions on Infrastructures
Baby-step : bs :X→X

bs(xi)=
{ xi+1 0≤ i<m−1

x0 i=m−1 (1)

..
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.

x1

.

xi−1
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xi = bs(xi−1)

. ∆bs(xi−1)

Figure: Baby-step
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Functions on Infrastructures
Giant-step : gs :X×X→X
Operational interpretation of gs(x,y)

– From x move a distance of d(y) along the circle.
– Find the element z ∈X that is immediately “after” d(x)+d(y).
– ∆gs(x,y)= d(z)−d(x)−d(y) mod R.

..
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.

x

.

y

.

z= gs(x,y)

.

∆gs(x,y)

Figure: Giant-step
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Computational Problems

..

x0
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xi−1
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x

. d(x).

R

Figure: Computational problems of an infrastructure

Ï Compute an m-bit approximation of the circumference R.
Ï Given an element x, compute an m-bit approximation of d(x).
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Example
A cyclic group G= 〈g〉 = {1,g,g2, . . . ,gm−1}. Distance function

d(gi)= i

Baby-step: Multiplication by g.
bs(gl) = gl+1

∆bs(gl) = 1
Giant-step: Group multiplication in G.

gs(gi,gj) = gi+j

∆gs(gi,gj) = 0

Circumference is simply the order of the group.
Discrete logarithm problem: Given gi, compute i.
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Qubits i.e. Quantum Bits
Qubits are 2-state quantum systems

Source: General Chemistry, Principles and Modern Applications

|0〉 = [1
0
]

and |1〉 = [0
1
]

∣∣ψ⟩= a|0〉+b|1〉
State space of a qubit is C2.

The state of n qubits is a unit vector in C2n =C2⊗·· ·⊗C2︸ ︷︷ ︸
n

.

∣∣ψ⟩= ∑
xi∈F2

αx1,...,xn |x1〉⊗ |x2〉⊗ · · ·⊗ |xn〉;
∑

xi∈F2

|αx1,...,xn |2 = 1.
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Qubits—Measurement

In general observing (measuring) a quantum state changes the
state.

α|0〉+β|1〉 Observe7−→
{ |0〉 Pr(|0〉)= |α|2

|1〉 Pr(|1〉)= |β|2

More generally if we observe some qubits of a state, it “collapses”
the state. ∑

i

∑
j

ai,j|i〉A
∣∣j⟩B →∑

i
ai|i〉

∣∣jB⟩
B
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No cloning and entanglement

No Cloning Theorem
We cannot make copies of an unknown quantum state.

Entanglement: Consider the state

∣∣ψ⟩= 1p
2
(|00〉+ |11〉) ̸= (a|0〉+b|1〉)(c|0〉+d|1〉)

Entangled states exhibit non-local correlations.
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Quantum Parallelism and Interference

A quantum computer takes many computational paths
simultaneously.

a1|0〉 b1|1〉 b2|2〉 a2|3〉 b3|4〉 a3|5〉 a4|6〉 b4|7〉

Quantum computer interferes different computational paths so
that only the desirable final states survive with high probabilities.
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Preprocessing

The Road Ahead—Some Obstacles and the Strategy

Some obstacles

— We must be able to compute efficiently within the
infrastructure, i.e., compute bs(x), gs(x,y), ∆bs(x) and
∆gs(x,y) (without the knowledge of R).

— The distances could be transcendental, but we assume only
finite precision arithmetic.
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Preprocessing

Imposing a group structure
In order to be able to compute efficiently within an infrastructure,
we embed into a circle group.

..

x0

.

x1

.

xi−1

.

xi

.

(xi, f)

Figure: Embedding into the circle group R/RZ
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Imposing a group structure
In order to be able to compute efficiently within an infrastructure,
we embed into a circle group.

..

x0

.

x1

.

xi−1

.

xi

.

(xi, f)≡ (x0,d(xi)+ f)

Figure: Embedding into the circle group R/RZ
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Preprocessing

The Road Ahead—Some Obstacles and the Strategy
Structure of the Algorithm

— Setup a function h over R that is periodic with R.

— Evaluate an approximate version of h (due to finite precision).
The goal here is to loosely preserve the periodicity of h in the
approximate version as well.

— Discretize the approximate version of h still preserving
“approximate periodicity”.

— Use quantum Fourier transform to estimate the period R by
finding an integer close to R.

— Refine the approximation to the desired degree of precision
using classical post processing.
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Quantum part of the algorithm

Setting Up a Periodic Function, h :R→R/RZ

..

x0

.

x1

.
xi−1

.

xi = bs(xi−1)

. ∆bs(xi−1)

Unwrap the circle and place it on 0∪R+ as shown below.

.. R.
x0
.

x0
.

x0
.

r
.

f
. x

h(r)= (x, f), where x is the nearest element of X to the left of r and
f= r−d(x) mod R.

Quantum Algorithm for Infrastructures Pradeep Sarvepalli, GaTech



Infrastructures Quantum Information
. . . .
. . . . . .
. . . .

Quantum Algorithm

Quantum part of the algorithm

Preserving Periodicity with Approximate h
If r is too “close” to an element of X, then h may be evaluated
incorrectly. We can overcome this problem as follows:

— Discretize h, and evaluate h for only a finite set of points.
This discrete version hN has period RN, where 1/N is
sampling period.

..

bs−1(x)

.
x

.

bs(x)

.

r= i
N

— Shift the evaluation points so that they are not too close to
the elements of X.

..

bs−1(x)

.
x

.

bs(x)

.

r= i
N + j

L
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Quantum part of the algorithm
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Quantum part of the algorithm

Setting a Pseudo-Periodic State
We choose a sufficiently large integer q≥ 2R2N2.
— Prepare two quantum registers in the following state∣∣ψ⟩ 7→ q−1∑

j=0

∣∣j⟩1|0〉2 (2)

— We then transform this state to∣∣ψ⟩ 7→ q−1∑
j=0

∣∣j⟩1
∣∣hN(j)

⟩
2 (3)

— Measure the second register.∣∣ψ⟩ 7→ ∑
j∈J

∣∣o+⌊jRN⌉⟩1
∣∣hN(o))

⟩
2, J ⊆ {0,1, . . . ,

⌊
q/NR

⌋−1} (4)

We call these states pseudo-periodic states.
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Quantum part of the algorithm

Quantum Fourier Transform
Graphically, the first register is in the following state.

..

⌊k/N⌉

.

⌊k/N⌉

.

⌊k/N⌉

.

⌊k/N⌉

.

⌊k/N⌉

.

⌊k/N⌉

.

⌊k/N⌉

.

⌊k/N⌉

.

⌊k/N⌉

.

⌊k/N⌉

.
o

.
o+⌊RN⌉

.
o+⌊3RN⌉

.
o+⌊4RN⌉

.
o+⌊5RN⌉

.
o+⌊6RN⌉

.
o+⌊8RN⌉

Quantum Fourier transform (QFT) can be be used to extract the
periodicity of the function from this approximately periodic state.

|k〉 QFT7→ 1pq
q−1∑
j=0

ei2πkj/q∣∣j⟩ (5)

∣∣ψ⟩ QFT7→ 1√
q|J |

q−1∑
ℓ=0

∑
j∈J

ei2πℓ⌊jRN⌉/q|ℓ〉 (6)
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Quantum part of the algorithm

Extracting Periodicity via Quantum Fourier Transform
A q-point QFT of the first register gives the following state1.
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— Measure the first register.
— In order to extract the period we need to measure a term

ℓ= [mq/NR].
— Such a state occurs with high probability provided the state

was “sufficiently” periodic and q is large.
— Two such measurements can be used to approximate an

integer that is close to RN using continued fractions.

1Respresentative only, not exact.Quantum Algorithm for Infrastructures Pradeep Sarvepalli, GaTech
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Classical part of the algorithm

Classical Postprocessing
— Observe that ℓ= [mq

NR ] that there are two unknowns, m and R.
So one measurement is not sufficient.

— With two measurements c= [ kq
NR ] and d= [ lq

NR ], k/l occurs as a
convergent of c/d where the denominator of the convergent is
less than q/32.

— We can now obtain a finite list of candidates one of which NR
is guaranteed to be close to NR.

— Compute h(NR/N) and if this is in the neighbourhood of x0,
then NR/N is within a unit of R or its multiples.

— Successively improve the estimate of R using a binary search
procedure with the baby-step.
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Classical part of the algorithm

Improvements

Proposed algorithm
— Generalizes Hallgren’s algorithm for number fields, and can be

used to solve Pell’s equation x2−dy2 = 1.

— Uses a tighter analysis and presents a technical result of larger
applicability.

— Has lower complexity, polynomial speedup over Hallgren’s
algorithm for Pell’s equation.

— Success probability = Ω(1), in contrast Hallgren’s algorithm
which can only guarantee a success probability Ω(1/ logN4R4).
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Classical part of the algorithm

Summary

⋄ Polynomial time quantum algorithms for infrastructures. PS,
Wocjan arXiv:1106.5347

— Computing the circumference of the infrastructures.
— Computing the generalized discrete logarithms.

⋄ When specialized to cases such as the quadratic number
fields, the proposed algorithms have

— Lower complexity.
— Higher success probability.
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Classical part of the algorithm

Questions?

Thank you!
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