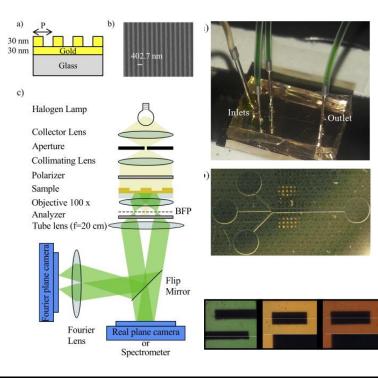

Electromagnetics, RF and Photonics Devices, Circuits and Systems

MS & PhD (By Research) M.Tech. (Microelectronics & Photonics)

January 2017


Ananth Krishnan

PhD, Texas Tech University (USA)

Email: ananthk@ee.iitm.ac.in

RESEARCH AREA

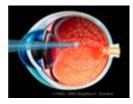
- Planar Optical Sensors
 - Plasmonic bio-sensors
 - Surface Enhanced Raman substrates for sensing
 - Integration with microfluidics
- CMOS compatible visible filters
 - Color filters for CCD cameras
- Electrochemical sensors & Instrumentation
 - Low cost potentiostat
 - Trace chemical detection

Anil Prabhakar

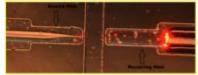
PhD, Carnegie Mellon University (USA)

Email: anilpr@ee.iitm.ac.in

RESEARCH AREA


• Lasers

(Research Scholars)


(Shree, Ikram)

- Picosecond and femtosecond fibre lasers
- fs excitation of RF spin waves
- Biophotonics, surgery, imaging
- LIGO-India (gravity wave observatory)
- Instrumentation:
 - Optoelectronics + embedded systems
 - Optofluidics for healthcare, bioengineering (Rudra, Ambili)
- Beyond 100 Gbps Communication
 - Quantum Key Distribution cryptography (Gautam, Shashank)
 - 150 Gbps time division multiplexing for INO
- Computational electromagnetics (micromagnetics)
 - RF generation using spin wave devices (Nikhil, Guru)

Ophthalmology

Optofluidics

Gravity Waves

Balaji Srinivasan

PhD, University of New Mexico (USA)

Email: balajis@ee.iitm.ac.in

RESEARCH AREA

- Fiber Lasers
 - High power fiber lasers and amplifiers (Yusuf)
 - Coherent beam combining (Waqqas)
 - Mode-locked fiber lasers (Manas)
 - 0
- Fiber Bragg Grating-Based Acoustic Sensors
 - NDE of metallic/composite structures (Pabitro/Jagadeesh)
 - Partial discharge detection in power transformers (Srijith)
 - Combustion instability in gas turbines (suma)
 - 0
- Distributed Fiber sensors
 - Strain/temperature discrimination in Brillouin OTDA (Shahna)
 - Dynamic strain monitoring using Brillouin OCDA (Bhargav)
 - Real-time power monitoring using Raman OTDR

Silicon Photonics Devices and Circuits

Bijoy Krishna Das

PhD, University of Paderborn (Germany)

Email: bkdas@ee.iitm.ac.in

RESEARCH AREA

Optical Interconnect Devices & RF Photonics Circuits

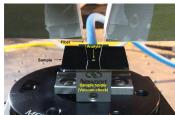
Research Scholars: Riddhi, Sreevatsa, and Keerthana

Lab-on-Chip Sensor Devices and Systems

Research Scholars: Sujith, Ramesh, and Sumi

Integrated Nonlinear and Quantum Photonics Devices

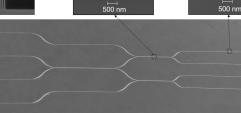
Research Scholars: Parimal, Arijit, and Sooraj

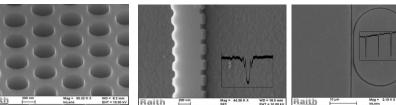


R1

IN1

IN2


R2


OUT1

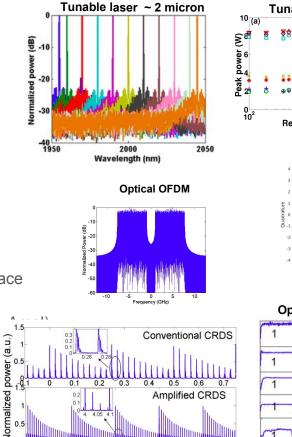
OUT2 OUT3

OUT4

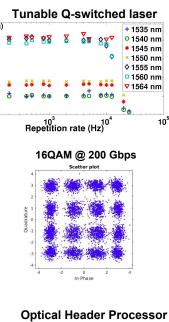
Reference Waveguide

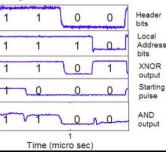
Deepa Venkitesh PhD, IIT Bombay (India)

Email: deepa@ee.iitm.ac.in


RESEARCH AREA

- **Optical Signal Processing**
 - Wavelength Conversion 0
 - Phase sensitive amplification
 - Clock Recovery
 - Logic Gates 0


(Manas, Aneesh)


- **Optical Communication**
 - High-speed optical links for access, long-haul, free-space
 - Advanced modulation formats
 - Mode division multiplexing
- Fiber Lasers
 - CW and pulsed lasers in the 1900 2100 nm range 0
 - Wavelength tunable Q-switched lasers 0
- **Optical Sensing**
 - Cavity ring down spectroscopy
 - Distributed Brillouin Sensing (Kavita, Bhargav)

Time (us)

Harishankar Ramachandran

PhD, University of California Berkeley (USA)

Email: hsr@ee.iitm.ac.in

RESEARCH AREA

- Optical Communication
 - Quantum statistics of optical links
 - Modelling of optical devices
 - Link design
- Computational electromagnetics
 - Simulation of distributed devices
 - Improved computational algorithms
 - Beam propagation in statistical media
- Plasma Physics
 - RF interaction with ionic systems and plasmas
 - Statistics of particle bursts due to magnetic events in Van Allen Belt
- RF
 - Antenna design with finite ground planes
 - Eddy currents in irregular objects

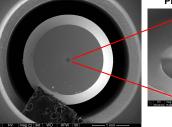
Manivasakan Rathinam PhD, IIT Bombay (India)

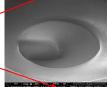
Email: rmani@ee.iitm.ac.in

RESEARCH AREA

- All Optical Networks PHY Layer
 - All Optical Plasmonic Switches
 - Timing & Synchronization in Tbps Networks
 - Performance Bounds in All Optical ULH links with all Optical Regenerators
 - Statistical Modelling and Analysis of Quantum Light Sources for QKD
 - Quantum Key Distribution (QKD) for Network Security
- All Optical Networks Layer 2
 - Performance of Bufferless Networks
 - Virtual Optical Bus (VoB) Performance Analysis
 - **GPoN for the India-based Neutrino Observatory (INO)**
- Intermediate Phase to Emerging All-Optical Networks
 - TDM over PSN: Algorithms Design and Performance Analysis
 - Queueing Models for Jitter Control
 - TDMA as a Solution for Pseudo All-Optical Networks

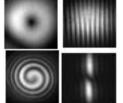
Pramitha V PhD, CUSAT (India)

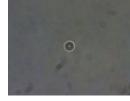

Email: pv@ee.iitm.ac.in

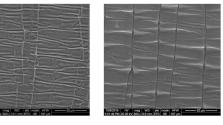

RESEARCH AREA

- Fibre optical vortices
 - Generation using diffractive optics
 - Optical vortex tweezers
 - Optical vortex driven micromotors
- Graphene based hybrid devices for flexible optoelectronics
 - Graphene with perovskites and metal oxides
 - Fabrication of perovskite solar cells

Structured Fibre optic patch cable

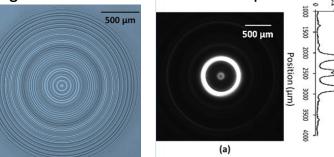

Spiral Phase Plate (Charge 1)

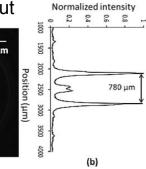


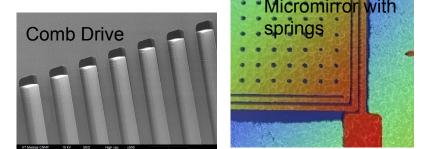

Output beam Profile & Interferograms

Trapped Silica bead

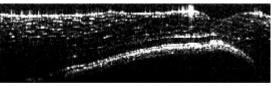
Reduced Graphene Oxide-PDMS films under strain




Shanti Bhattacharya *PhD, IIT Madras (India)* Email: shanti@ee.iitm.ac.in


RESEARCH AREA

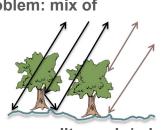
- Diffractive Optics (Gayathri, Raghu, Sruthy)
 - Fabrication with electron beam and Focused lon beam lithography
 - Creation of Complex Light
 - Beam shaping
- Optical MEMS (Manu, Meenakshi)
 - Lamellar Gratings
 - Micro-mirrors
- Fibre Interferometry/Metrology (Athira, Kavita)
 - Optical Coherence Tomography
 - Fourier Transform Spectroscopy
 - Cavity Ring Down Spectroscopy
- Imaging
 - Multimode fibres for biomedical applications

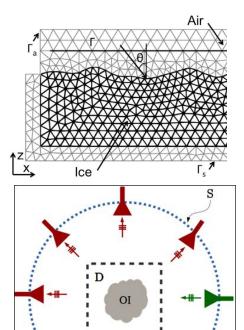

Ring Focus Fresnel lens and Output

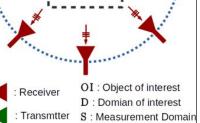
FDOCT Image of a cucumber peel

Uday Khankhoje

PhD, California Institute of Technology (USA)


Email: uday@ee.iitm.ac.in


RESEARCH AREA


- Remote Sensing for observing a dynamic Earth
 - Synthetic Aperture Radar (SAR) studies
 - Computational Electromagnetics for modelling RADAR-Earth interactions (e.g. soil, ice, snow, vegetation)

Funding expected from ISRO

- Inverse Imaging using microwaves for breast cancer detection
 - Computational approaches for solving this problem: mix of electromagnetics and signal processing (Currently 1 research scholar working)
 - Pilot studies for creating hardware setup

Funded by DST

More details at http://www.ee.iitm.ac.in/uday/

Microelectronics & Photonics

Semester - I

	L	T	E	Р	0	С	Cat
Introduction to photonics	2	1	0	3	6	12	Р
Wave propagation	3	1	0	0	5	9	Р
Semiconductor Device Modeling	4				8	12	Р
VLSI Technology	4				8	12	Р
See proposed list of electives						9/12	
1	Wave propagation Semiconductor Device Modeling VLSI Technology	Wave propagation 3 Semiconductor Device Modeling 4 VLSI Technology 4	Wave propagation 3 1 Semiconductor Device Modeling 4 VLSI Technology 4	Wave propagation 3 1 0 Semiconductor Device Modeling 4 VLSI Technology 4	Image: Semiconductor Device Modeling 3 1 0 0 VLSI Technology 4	Image: A stateImage: A stateImage: A stateWave propagation31005Semiconductor Device Modeling4Image: A state8VLSI Technology4Image: A state8	Image: Semiconductor Device Modeling310059VLSI Technology4812

Microelectronics & Photonics

SEMESTER - II

No.	Title	L	т	E	Р	0	с	Cat
EE5400	Analog and Digital Ckts	2	1	0	3	4	9	Р
Elective - II	See proposed list of electives						9/12	
Elective - III	See proposed list of electives						9/12	
Elective - IV	See proposed list of electives						9/12	
Elective - V	See proposed list of electives						9/12	
			1				1	

Microelectronics & Photonics

SUMMER + SEMESTER III + SEMESTER IV

No.	Title	L	Т	Е	Ρ	0	С	Cat
	Research Project	0	0	0	0	0	85	Р
		2						

Total Credits: 190 (Core - 54; Project - 85; Elective - 51)

Microelectronics & Photonics

PROPOSED LIST OF ELECTIVES

EE5340: Microelectromechanical Systems (MEMS) EE5341: MOS Device Modelling and Characterizations EE5343: Solar Cell Device Physics & Material Technology EE5347: Electronic and Photonic Nanoscale Devices EE5404: Fiber Optics Communication Technology EE5430: Foundation of Optical Networking EE5502: Optical Engineering EE6420: Optical Communication Networks EE6470: Optical Signal Processing and Quantum Comm EE6500: Integrated Optoelectronics Devices and Circuits EE6501: Optical Sensors EE6505: Waveguide, Microwave Circuits and Antennae EE6506: Computational Electromagnetics EE6700: Advanced Photonics Labs EE5011: Computer Methods in EE AM5100: Biomedical Laser Instrumentation EE5104: Instrumentation Engineering EE5105: Intro. to Digital Signal Processing EE5109: Digital Signal Processing EE5110: Prob. Foundations for Signal Processings EE5140: Communication Networks ED5316: Antenna Theory and Design ED5511: Lasers in Msrmnts. & Micromanufacturing PH5620: Coherent and Quantum Optics PH5660: Nonlinear Optics and Devices EE5700: DSP Application Laboratory PH5814: Laser Physics and Applications PH5890: Ultrafast Laser and Applications

Microelectronics & Photonics

ONE YEAR M.TECH. RESEARCH PROJECTS : BROAD AREAS

- Plasmonics & Metamaterials
- Diffractive Optical Components & MEMS
- **CMOS Electronics, Silicon Photonics & Integrated Optics**
- **Optofluidics & Biophotonics**
- Fiber-Optics & Free-Space Communications
- High Power Lasers : Development & Industrial Applications

tonics

Computational Electromagnetics & Remote Sensing

Visit our Websites.....

Centre for NEMS and Nanophotonics

http://www.ee.iitm.ac.in/cnnp/

http://www.ee.iitm.ac.in/optics/

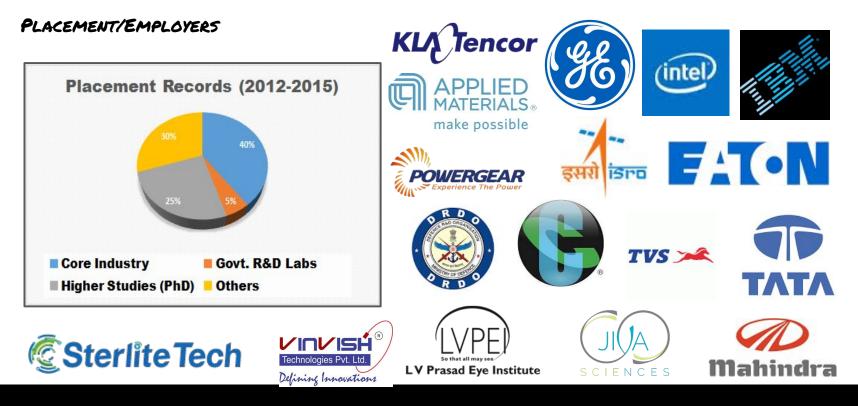
Microelectronics & Photonics

ELIGIBILITY CRITERIA + APPLICATION PROCESS

Who can Apply? http://mtechadm.iitm.ac.in

- A. GATE qualified candidates (EC, EE, PH, IN)
- B. IIT Graduates with B.Tech. Degree (ECE, EE, EP)
- C. Candidates sponsored by various organizations recognized by DST as Research and Development units, candidates sponsored by NIOT or from educational institutions approved by AICTE/UGC/Government or from Government/Public Sector Undertakings
- D. QIP and defence sponsored candidates

How to Apply:


Application can be submitted only **ONLINE**. The application fee is Rs.250/- for SC/ST/PwD candidates and Rs.500/- for others (to be paid online). Instructions on how to apply are available on the IIT Madras Website: <u>http://mtechadm.iitm.ac.in</u>

In case of difficulty in applying, please contact:

The Chairman, M.Tech Admission Committee, GATE OFFICE, IIT Madras, Chennai - 600036 Phone No.044-22578200, Fax:044-22578204 Email: mtechadm@iitm.ac.in

Microelectronics & Photonics

Microelectronics & Photonics

HIGHER STUDIES + RESEARCH OPPORTUNITIES @ IIT MADRAS

M.Tech. students will be eligible to upgrade to a Ph.D. if they satisfy the following criteria:

- 1. The candidate has successfully completed a minimum of 2 semesters in the M.Tech. Programme
- 2. The candidate has a CGPA of 8.0 or more in the prescribed courses

PHOTONICS NEWS + JOB OPPORTUNITIES (GLOBAL)

http://www.photonicsjobs.com/

Our Major Funding Agencies

Sponsored Research & Consultancy

