Two days Virtual National Conference on Energy Technologies (NCET-2022)

On 29th & 30th April, 2022

Organized by INAE Chennai Chapter along with IIT Madras and ARCI Chennai /Hyderabad

About the Conference

IIT Madras , ARCI Chennai / Hyderabad along with INAE Chennai Chapter is organizing a two day National Conference on Energy Technologies (NCET) at IIT Madras, during 29-30th April 2022. The Conference aims to bring together leading academic scientists, researchers, research scholars and industry experts to exchange and share their experiences and research results on all aspects of energy storage systems and technologies including battery, fuel cell, super capacitors, solar and wind energy.

Objectives

The initiative proposes to meet the following objectives.

Provide a common platform for sharing and exchanging ideas
Deliberate on emerging national interest and global research trends

Evolve mechanisms for research/industry collaborations

Topics of Discussion

> Energy Storage Technologies for EVs, stationary applications and strategic

sectors

Hydrogen and Fuel Cell technologies

- Material selection and design for Energy Storage and Conversion
- Process technologies for Recycling and Waste management
- Energy Demand Analysis in Smart Grids and other sectors
- Data Analytics for Renewable Energy Integration
- Artificial Intelligence Applications to Energy storage devices

Program Schedule

Day 1: 29th April 2022 (Friday)

09.00 - 9.10 Welcome address

Dr. R. Gopalan, Regional Director, ARCI Chennai

Prof. R. Sarathi, IIT Madras

09.10 - 10.00 Special Remarks

Dr. Anil Kakodkar,

Former Chairman of Atomic Energy Commission; Chairman of Rajiv Gandhi Science & Technology Commission; Chairman of Governing Council, ARCI

Prof. V. Kamakoti,

Director, IIT Madras

Prof. Indranil Manna

President, INAE

Dr. G. Sundararajan, Distinguished Emeritus Scientist, ARCI Prof. S. Narayanan,

President, INAE Chennai Chapter

10.00 – 10.45Keynote SpeakerProf. Ashok Jhunjhunwala,Institute Professor, IIT Madras;President, IITM Research Park, IITM Incubation Cell and RTBI

"How soon Can India get to Net-Zero"

Invited Talks – Session I; Chair: Dr. Ramya K.			
Time	Speaker	Title	
10.45- 11.15	Prof. Vijayamohanan Pillai Senior Professor, IISER Tirupati.	India's Imminent Electric Vehicle Revolution: Challenges and Promises	
11.15- 11.45	Dr. Rahul Walawalkar President & MD, IESA, Indiα	Roadmap for making India a global hub for R&D and manufacturing of advanced energy storage technologies	
11.45- 12.15	Prof. Suddhasatwa Basu Director, CSIR-IMMT, Bhubaneswar ; Director, CSIR- CIMFR, Dhanbad	Hydrogen Production in 3D Printed Microfluidic Electrolyzer with an Asymmetric Electrolyte Configuration	
12.15- 12.45	Prof. Sreenivas Jayanti Professor, IIT Madras	Reversible Fuel Cells for Utility-scale Electrical Energy Storage Needs	
12.45- 13.15	Dr. R. Prakash Scientist-F, ARCI, Chennai	Lithium-Ion Batteries for emerging demands: progress and challenges	
13.15- 14.00	Lunch Break		
Invited Talk – Session II; Chair: Prof. Kothandaraman			
14.00- 14.30	Dr. N. Kalaiselvi Director, CSIR-CECRI, Karaikudi	Electrochemical Power Sources of Today and Tomorrow	
14.30- 15.00	Dr. G A Pathanjali Managing Director, High Energy Battery, Trichy	High Energy Batteries For Defence Applications	
1000	Contributed Oral	Procentations (Part I)	

15.00-		
16.30	Session A: Chair: Dr. Sahana	Session B: Chair: Dr. Balaji
	https://iitmadras.webex.com/iitmadras/j.	https://iitmadras.webex.com/iitmadras/j.
LINK	php?MTID=m218c52aca680ebadf2c8667	php?MTID=m7e4bcebdd68312b4c6ef5c5
	<u>fd5a33034</u>	<u>e9d6439e5</u>
	NCET – 002	NCET – 001
7	Ultrafast and scalable microwave	Modified Digital Pulse Skipping
	synthesis of in-situ carbon coated	Modulation Strategies for DC-DC
15.00	Na3V2(PO4) embedded in 3D-	Converters to Improve the Power
-	mesoporous carbon matrix as dual	Conversion Efficiency at Partially
	electrode for high performance	Loaded Conditions
	sodium ion battery	

15.00-	Contributed Oral Presentations (Part I – Contd.)	
10.30	Session A: Chair: Dr. Sahana	Session B: Chair: Dr. Balaii
	https://iitmadras.webex.com/iitmadras/	https://iitmadras.webex.com/iitmadras/j.ph
LINK	j.php?MTID=m218c52aca680ebadf2c86	p?MTID=m7e4bcebdd68312b4c6ef5c5e9d6
	<u>67fd5a33034</u>	<u>439e5</u>
15.10	NCET – 003	NCET – 021
	Recovery of metal ions from	Design and Analysis of Deadbeat
	complex system of spent Lithium-	control strategy for Multiinput DC-DC
	ion battery cathode materials for	Converter with Hybrid Energy Storage
	sustainable energy storage	System
	application	
15.20	NCET – 006	NCET – 004
	Quantitative recovery of energy	Structural , Microstructural and
	grade materials from NMCbased	Optical properties of Co
	spent LIB cathodes	doped ZnO nanostructures
15.30	NCET – 008	NCET – 005
1	Recycled Spent Lithium-Ion	Development of Ethanol Biofuel-
1	Cathode Material for High-	anode for the efficient Energy
1	Performance Asymmetric	production system
100	Supercapacitor Applications	
15.40	NCET – 009	NCET – 007
-	Rational design of P2 and P3-type	Performance Improvement of Multi
_	Mg doped Na2/3Mn2/3Ni1/3O2	Source Interconnected
	cathodes via microwave assisted	Solar, Wind and Thermal System using
	sol-gel route for high performance	Revolutionary Energy Balance
	sodium-ion hattery	Controller

		soulon-lon outlery	CUITIONEI
	15.50	NCET - 011	NCET – 012
		Fabrication of lithium-ion pouch	Simulation and performance analysis
		cells (LiNi 1/3 Mn 1/3 Co1/3 O2 -	of photovoltaic system
		Graphite) for Electric Vehicle	using PVSYST software
	-	Applications.	
1	16.00	NCET – 013	NCET – 014
		Investigation of micron-sized	From small area to large area:
		lithium iron phosphate as	Perovskite solar cells for
		cathode using aqueous binder for	targeted application
		lithium-ion batteries	

15.00- 16.30	Contributed Oral Presentations (Part I – Contd.)			
	Session A: Chair: Dr. Sahana	Session B: Chair: Dr. Balaji		
16.10	NCET – 015	NCET – 018		
	Effect of electrode thickness and	Investigations on conducting polymer-		
	porosity on the long cyclic	coated metallic bipolar plate in		
	stability of lithium-ion batteries	simulated proton exchange membrane		
		fuel cell conditions		
16.20	NCET – 016			
	Structural, optical and			
	electrochemical properties of LiNix			
	Mny Coz O2 cathode material for			
	Lithium-ion batteries			
	Day 2: 30th April 2022 (Saturday)			
	Invited Talks – Session III; Chair: Prof. Ranga Rao			
	https://iitmadras.webex.com/iitmadra	https://iitmadras.webex.com/iitmadras/j.php		
LINK	s/j.php?MTID=m218c52aca680ebadf2	<pre>?MTID=m7e4bcebdd68312b4c6ef5c5e9d643</pre>		
	<u>c8667fd5a33034</u>	<u>9e5</u>		
9.30-	Dr. T. N. Rao	Indigenization of Technologies for		
10.00	Director (Additional Charge),	Energy Storage Materials & Devices -		
	ARCI	towards Make in India		
10.00-	Prof. Sagar Mitra	Strategies to overcome polysulphides		
10.30	Professor, IIT Bombay	dissolution and anode protection in		
		Lithium sulphur battery		
10.30-	Dr. R. Ratheesh	Lithium-ion battery recycling: A circular		
11.00	Director, C-MET, Hyderabad	economy approach		

11.00-	Dr. S. T. Aruna	An overview of the Solid Oxide Fuel Cell
11.30	Senior Principal Scientist,	Activities at CSIR-NAL
	NAL, Bangalore	
11.30-	Prof. Venkatasailanathan	Use of Physics-Based Models for the
12.00	Ramadesigan	Development of Next-Generation
	Professor, IIT, Bombay	Batteries
12.00-	Dr. Bijoy Kumar Das	Sodium-ion batteries: Towards a
12.30	Scientist, ARCI, Chennai	sustainable, low-cost energy storage
		technology
12.30-	Lunch	
14.00		LUTICI

14.00-	Contributed Oral Presentations (Part II)	
-5.50	Session A: Chair: Dr. Bijov Das	Session B: Chair: Dr. Raman
LINK	https://iitmadras.webex.com/iitmadras/j. php?MTID=m218c52aca680ebadf2c8667f	https://iitmadras.webex.com/iitmadras/j. php?MTID=m7e4bcebdd68312b4c6ef5c5
	<u>d5a33034</u>	<u>e9d6439e5</u>
14.00	NCET – 017	NCET – 022
	Synthesis and electrochemical	Bioelectricity Production From Up-
	properties of LiNi 1/3 Co 1/3	flow Microbial Fuel Cell Using
	Mn 1/3 PO 4 for Li-ion hybrid	Distillery Wastewater Treatment
	capacitors	
14.10	NCET – 019	NCET – 025
	Polypyrrole-MoS2 Nanopetals as	Estimation of SOC of Lithium-ion
	Efficient AnodeMaterial for	battery using Adaptive Neural
	Lead-based Hybrid Ultracapacitors	Network Model for Electric Vehicle
		Application
14.20	NCET – 020	NCET – 026
	Microsphere Hard carbon for High	SoC Estimation of Li-Ion Battery
/	Reversible Capacity for Sodium-Ion	using Deep Neural Network
· /	Batteries: A Technology beyond	Model
100	Lithium-ion batteries	
14.30	NCET – 023	NCET – 027
	Electrochemical Analysis of	A Review of Parameter Estimation
	NaTi2(PO4)3 Cathode for Sodium	for the Single Particle Modeling
	Ion Capacitor	(Spm) and Controller Modeling (Cm)
		of Lithium-ion Batteries Using PSO
		Technique

14.40	NCET – 024	NCET – 029
	Facile Synthesis of NiO-	CO2 conversion using swirl flow
and the second second	Mn2O3@Reduced Graphene Oxide	plasma reactor: an avenue
-	Ternary Composites as Electrode	for energy storage
	Material for Supercapacitor	
1	Application	
14.50	NCET – 028	NCET – 030
-	Biomass derived hard carbon as	Electrochemically nitrided stainless
-	anode for Sodium ion Batteries	steel electrodes for oxygen evolution
		reaction in alkaline water
		electrolyzer

Contributed Oral Presentations (Part II – Contd.)		
	Session A: Chair: Dr. Bijoy Das	Session B: Chair: Dr. Raman
LINK	https://iitmadras.webex.com/iitmadras/j .php?MTID=m218c52aca680ebadf2c866 7fd5a33034	https://iitmadras.webex.com/iitmadras/j .php?MTID=m7e4bcebdd68312b4c6ef5c 5e9d6439e5
15.00	NCET – 034	NCET – 031
	Engineering of Gas diffusion layer for improved water management in PEMFC	The LCLC Resonant Converter for microgrid application
	NCET – 035	
	Sustainable utilization of Plastic	NCET – 032
15 10	Wastes (SPI Code-7) using Non-	Degradation mechanism of
15.10	catalytic and Catalytic Fast	Polymer Electrolyte Membrane
	Pyrolysis in the Prospects of	in PEMFC and PEM Electrolyser
	Circular Economy	
	NCET – 036	
	Synthesis and Characterization of	NCET – 033
	High Performing Metal-	Patterning of platinum coating on
15.20	doped Carbon Catalysts for Oxygen	flow field plates for PEM water
	Reduction Reactions in Al-air	electrolyzers for hydrogen
6.5	Batteries	production
15 20	Best Presentation award ceremony	
15.20	<u>Chief</u>	Guest

Organizing Committee

For any queries and clarifications, contact Prof. R. Sarathi/ Dr. R. Gopalan, ARCI email : <u>energies@ee.iitm.ac.in</u>; Tel : 044 2257 4436 / 66632723

National Advisory board

Patron: Director of IIT Madras, Prof. Kamakoti Veezhinathan

Local organizing committee

- Dr. Bijoy Kumar Das
- Dr. Raman Vedarajan
- Dr. M. B. Sahana
- Dr. VVN Phanikumar
- Mr. Puppala Laxman Mani Kanta

National Advisory Committee

- Dr. S. Chandrasekhar, Secretary, DST, Govt of India
- Mr. Indu Shekhar Chaturvedi, Secretary, MNRE, Govt of India
- Prof. Suddhasatwa Basu, Director, IIMT, Bhubaneswar
- Prof. B. S. Murty, Director, IIT Hyderabad
- Dr. T. N. Rao, Director (Additional charge), ARCI, Hyderabad
- Prof. Vijaymohanan Pillai, Professor, IISER Tirupati
- Dr. Ajay Mathur, Director General, TERI, New Delhi
- Dr. John Albert, CTO, Nsure Power Solutions , Bangalore
- Dr. Anurag Mishra, Sr. Clean Energy Specialist and Energy Team Leader, Clean Energy and Environment Office
- Prof. Sreenivas Jayanti, Professor, IIT Madras
- Prof. Sagar Mitra, Professor, IIT Mumbai
- Dr. N. Kalaiselvi, Director, CECRI, Karaikudi
- Dr. Rahul Walawalkar, President, IESA, Pune
- Mr. Ramanathan, Head Advanced Engineering, Lucas TVS, Chennai