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Computational imaging 

Light Field Capture HDR ImagingStructured Lighting

CI systems that adds new functionality

Others: Multiplexed 
• Light field
• Illumination
• Spectography

Motion deblurring system Extended depth of field

CI systems that improves performance



How does CI improve performance? 

Short exposure

Sharp, but noisy

Flutter Shutter

Increased light 
throughput 
but blurry

Deblurred
image

Slide coutesy Amit Agarwal

Increased light throughput



Flutter Shutter Large exposure

Slide coutesy Amit Agarwal

How does CI improve performance? 
Well conditioned optical coding

Deblurred
image

Captured
image



One key flaw: Signal prior has not 
been taken into account

Short exposure Flutter Shutter Large exposure
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BM3D denoising BM3D deblurring BM3D deblurring

SNR= 17 dB SNR= 19 dB SNR= 13.4 dB



State-of-the-art systems use 
signal prior

Inpainting using GMM

Yu et al., 2011

Coded exposure video
using dictionary learning

Hitomi et al., 2011

Denoising using BM3D

Dabov et al., 2011



Our goal: A comprehensive analysis

Scene Multiplexed
image

Computational
camera

Image

Multiplexed
image

Multiplexing
matrix

(Read+photon)
Noise

Signal prior P(x)

Our analysis takes into account: 

– Signal prior 

– Multiplexing matrix

– Noise characteristics Figure courtesy Oliver Cossairt



Prior Work: Analysis of CI systems

1. Analysis under read noise 
withour prior

Harwitt et al. 1979

2. Analysis under affine noise 
withour prior

Ratner et al. 2007, Wuttig 2007,
Hasinoff et al. 2008, Ihrke et al. 2010,
Cossairt et al. 2011

3. Relates performance to practical
considerations such as illumination,
sensor characteristics, etc. 

Cossairt et al. 2012



Our analysis framework: 
GMM as signal prior

Advantages of GMM

1.Universal approximation property

2. Analytically tractable
A special case is Gaussian prior, whose 
MMSE can be computed analytically

3. State-of-the-art results

Image processing

Yu et al.
2010

LF processing

Mitra et al. 2012

Sorenson et al., 1971



Our analysis framework: 
Linear system

Multiplexed
image

Multiplexing
matrix

Noise

[Wakin et al., 2006]

Single pixel cameraMotion blur

[Raskar ’06] [Levin ‘08]
[Cho ’10]

Defocus blur

[Hausler ’72]
[Nagahara ’08]

[Levin et al. ’07]
[Zhou, Nayar ’08]

[Dowski, Cathey ‘96]

Light Field Capture

[Lanman ’08] [Veeraraghavan ’07]

[Liang ‘08]

Reflectance

[Schechner ‘03]
[Ratner ‘07]
[Ratner ‘08]

High speed video

[Hitomi et al. 2011][Veera et al., 2011]



• Ji: i
th pixel intensity

• Signal dependent / independent noise 

• Ignore Dark current, fixed pattern

Our analysis framework: 
Affine noise model

Noise Variance at ith Pixel:

photon noise

aperture, 
lighting, 
pixel size 

read noise

electronics,
ADC’s, 
quantization

• Photon noise modeled as Gaussian 

(good approx. if #photons > 10)

• Photon noise spatially averaged

Noise PDF:

Slide courtesy Oliver Cossairt



Complete specification of the framework

Multiplexed
measurement

Multiplexing
matrix Noise

Learn patch-based GMM prior

GMM Cluster 1: mean and PCA components

GMM Cluster 2: mean and PCA components

Cluster weight

Cluster mean

Cluster covarianceGMM patch 
prior



MMSE as a performance metric

Mean Squared Error (MSE) of an estimator     is defined as:

MMSE estimator:
 Defined as the estimator that achieves the minimum MSE

 Given by the posterior mean

 MMSE is the corresponding  MSE error

MMSE: a scalar that characterizes the performance of a system H



Computation of MMSE estimator 

The posterior PDF is also a GMM:

and with new mean and covariance:

with new weights

old weight

Probability of y coming 
from kth cluster

The MMSE estimator (posterior mean): 



Interpretation of MMSE 

Intra-cluster error, can 
be computed analytically

Inter-cluster error
needs MC simulations

We have an analytical lower bound for the MMSE:

Tight bound for fully-determined system  H



Limitations of analysis

Local 
multiplexing

Patch-based GMM prior

GMM Cluster 2

Shift invariant blur
(motion and focus)

[Nagahara 08] [Dowsky 96] [Levin 08]

Other assumptions:

– Linear systems

– Affine noise

GMM Cluster 1



Practical implications of the analysis



Practical system performance 
depends on 

Average signal-level is given by:

Illumination
(lux)

Aperture Exposure
Time (s)

Pixel
Size (m)

Quantum
Efficiency

ReflectivityAverage
Signal (e-)

2. Scene reflectivity 3. Camera parameters1. Illumination
condition

F/#, Exposure time t, 
quantum efficiency q,

pixel size p



Average signal level for three form factors

SLR camera
Pixel size pSLR = 8 μm

Machine vision camera (MVC)
pMVC = 2.5μm

Smartphone camera (SPC)
pSPC = 1μm

Typical values of average signal level J for different illumination levels

Other parameters: 

q=.5, 

R = .5, 

F/11, 

t = 6ms,

σr=4



Common analysis and simulation framework

Analytical computations:

Under GMM prior:

Without prior:

Simulation computations: 

Perform per-patch reconstruction. Let y be the observed patch.

Without prior:

Under GMM prior:

Learn GMM prior of patch size 16×16

GMM Cluster 2

GMM Cluster 1

Performance measure: SNR gain w.r.t impulse imaging 



Analysis of Extended DOF systems



F 1.4F 2.8F 5.6F 8.0

LensImage

Depth of Field and SNR

Small apertures have large depth of field and low SNR

Slide courtesy Oliver Cossairt



LensSensor

Focal Sweep: An example EDOF system

400 600 900 1500 20001200 1700 (depth)

Point Spread Function (PSF)

[Hausler ‘72, Nagahara et al. ‘08]

Slide courtesy Oliver Cossairt



400 600 900 1500 2000   (depth)1200 1700

+ + + + + + =

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7
(400) (600) (900) (1500) (2000)(1200) (1700)

Integrated PSF

[Hausler ‘72, Nagahara et al. ‘08]

LensSensor

Slide courtesy Oliver Cossairt

Focal Sweep: An example EDOF system



Depth Invariant PSF

Extended depth of field with a single deconvolution
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Simulation performance
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Low light condition (10 lux)
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~5.5 dB multiplexing gainSNR = 4.8 dB SNR = 10.2 dB
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Gain due to prior is much greater than gain due to multiplexing

SNR = 22.4 dBSNR = 15.7 dB

~11.5 dB gain due to prior

Pixel size = 8 um
Exp time = 6 ms



Simulation performance
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High light condition (1000 lux)

Impulse
(F/11)

Focal sweep
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~1 dB multiplexing gainSNR = 29.5 dB SNR = 30.3 dB
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At high light condition, gain due to both prior and multiplexing is negligible.

SNR = 30.8 dB SNR = 31.9 dB

~1.5 dB gain due to prior

Pixel size = 8 um
Exp time = 6 ms



Photon to read noise ratio (J/σ2)
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Impulse 

multiplexing gain
without prior

Analytic performance:

Huge multiplexing gain at low light levels

SNR gain vs. illumination level (without prior case)



Photon to read noise ratio (J/σ2)
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Impulse 
GMM

FS GMM

multiplexing gain
without prior

multiplexing gain with prior

Gain due to
prior alone

Analytic performance:

Under signal prior moderate multiplexing gain at low light levels

SNR gain vs. illumination level (with prior case)
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1200mm 

Other EDOF systems
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Depth invariant  PSF

Depth invariant PSF systems Coded aperture systems

[Dowski, Cathey ‘96] [Cossairt et al. ‘10]

[Levin et al. ‘07]
[Zhou et al. ‘08]

[Veeraraghavan et al. ‘07]



Analytic performance with Prior

Good EDOF systems perform 9 dB better than impulse imaging 

Impulse camera: F/11
Other cameras: F/1
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SNR gain vs. light level



Analysis of motion deblurring systems



Light throughput vs. motion blur

Increasing exposure time

Noise decreases but motion blur increases



Motion deblurring CI systems

[Levin ‘08] [Cho ’10]
[Raskar ’06]

Coded exposure (Flutter shutter) Motion invariant photography

Increased light throughput and
inversion better conditioned

Captured image has same motion blur 
for different motions

Whole image deblurred using a single blur kernel

Captured image

Deblurred image



Simulation Performance under signal prior

SNR= 13.5 dB

SNR= -1.7 dB

SNR= 20.9 dBSNR= 16.8 dB

Impulse imaging Flutter Shutter Motion invariant
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Low light condition 
(10 lux)

High light condition 
(1000 lux)

tCI=33×timpulse

Motion invariant 7 dB 
better than impulse

Motion invariant 1.2 dB 
better than impulse



Analytic Performance under signal prior
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SNR gain vs. light level

Motion invariant camera achieves a peak SNR gain of 7.5 dB

tCI=33×timpulse



Conclusion: 
Comprehensive analysis framework of CI

Scene Multiplexed
image

Computational
camera

Image

Multiplexed
image

Multiplexing
matrix

Affine
noise

GMM Cluster 2

GMM Cluster 1

Signal prior P(x)

Our analysis accounts for

 Signal prior (GMM)

 Optical coding (H)

 Noise (affine)



Conclusion: Practical implications

2. Scene reflectivity 3. Camera parameters1. Illumination
condition

F/#, Exposure time t, 
quantum efficiency q,

pixel size p

We analyzed EDOF and motion deblurring systems for typical values of: 
 Illumination conditions 
 Scene characteristics
 Camera parameters 



Conclusion: Our observations

 More gain due to prior than multiplexing

 Gain due to multiplexing modest when prior is taken into 
account

 CI systems provide significant advantage over impulse 
imaging under various illumination and camera parameters

 EDOF systems provides on average 7 dB gain over impulse 
imaging

 Motion deblurring systems provides on average 4.5 dB gain 
over impulse imaging



Future Work

[Wakin et al., 2006]

Single pixel camera

Light Field Capture

[Lanman ’08] [Veeraraghavan ’07]

[Liang ‘08]

High speed video

[Hitomi et al. 2011][Veera et al., 2011]

Multi/Hyper-Spectral

[Sloane ’79] [Hanley ’99]

[Baer ‘99]
[Wetzstein et al., ’12]

Analyze compressive systems:

Design optimal CI systems


