A Framework for Analysis of Computational Imaging Systems

Kaushik Mitra, Oliver Cossairt, Ashok Veeraghavan

Rice University

Northwestern University

Computational imaging

CI systems that adds new functionality

Light Field Capture

Structured Lighting

HDR Imaging

CI systems that improves performance

Motion deblurring system

Extended depth of field

Others: Multiplexed

- Light field
- Illumination
- Spectography

How does CI improve performance? Increased light throughput

Short exposure

Sharp, but noisy

Flutter Shutter

Increased light throughput but blurry

Deblurred image

How does CI improve performance? Well conditioned optical coding

Flutter Shutter

Captured image

Deblurred image

Large exposure

Slide coutesy Amit Agarwal

One key flaw: Signal prior has not been taken into account

Short exposure

BM3D denoising

SNR= 17 dB

Flutter Shutter BM3D deblurring

SNR= 19 dB

Large exposure

BM3D deblurring

SNR= 13.4 dB

State-of-the-art systems use signal prior

Dabov et al., 2011

Coded exposure video using dictionary learning

Hitomi et al., 2011

Inpainting using GMM

Yu et al., 2011

Our goal: A comprehensive analysis

- Multiplexing matrix
- Noise characteristics

Figure courtesy Oliver Cossairt

Prior Work: Analysis of CI systems

1. Analysis under read noise withour prior

 $=HX+n_{r}$

Harwitt et al. 1979

2. Analysis under affine noise withour prior

 $y = Hx + n_r + n_n$

Ratner et al. 2007, Wuttig 2007, Hasinoff et al. 2008, Ihrke et al. 2010, Cossairt et al. 2011

3. Relates performance to practical considerations such as illumination, sensor characteristics, etc.

Cossairt et al. 2012

Our analysis framework: GMM as signal prior

Advantages of GMM

Sorenson et al., 1971

2. Analytically tractable A special case is Gaussian prior, whose MMSE can be computed analytically

3. State-of-the-art results

Mitra et al. 2012

Our analysis framework: Linear system

Motion blur

[Raskar '06]

[Levin `08] [Cho '10]

Defocus blur

[Hausler '72] [Nagahara '08]

[Levin et al. '07] [Zhou, Nayar '08]

Single pixel camera

[Wakin et al., 2006]

Light Field Capture

[Lanman '08] [Veeraraghavan '07] [Liang `08]

Reflectance

[Schechner '03] [Ratner '07] [Ratner '08]

High speed video

[Hitomi et al. 2011][Veera et al., 2011]

Our analysis framework: Affine noise model

Noise Variance at ith Pixel:

- *J_i*: ith pixel intensity
- Signal dependent / independent noise
- Ignore Dark current, fixed pattern

Noise PDF:

$$n \sim N(0, \sigma^2 I)$$

$$\overline{J} = \sum_i J_i / K \sigma^2 = \overline{J} + \sigma_r^2$$

- Photon noise modeled as Gaussian (good approx. if #photons > 10)
- Photon noise spatially averaged

Complete specification of the framework

MMSE as a performance metric

Mean Squared Error (MSE) of an estimator \mathcal{X} is defined as:

$$MSE = Tr(E[(x - x)(x - x)^T])$$

MMSE estimator:

Defined as the estimator that achieves the minimum MSE

 \wedge

- Given by the posterior mean $x_{MMSE} = E[x | y]$
- MMSE is the corresponding MSE error

MMSE: a scalar that characterizes the performance of a system H

Computation of MMSE estimator

The posterior PDF is also a GMM:

$$P(x \mid y) = \sum_{k=1}^{K} \widetilde{\alpha}_{k} N(\widetilde{m}_{k}, \widetilde{\Sigma}_{k}) \longrightarrow \text{old weight}$$

with new weights $\widetilde{\alpha}_{k} = \alpha_{k} \left(\begin{array}{c} P_{k}(y) \\ \sum_{i} \alpha_{i} P_{i}(y) \end{array} \right) \xrightarrow{\text{Probability of y coming}} from kth cluster}$

k=1

and with new mean and covariance:

$$\widetilde{m}_{k} = m_{k} + \Sigma_{k} H^{T} (H \Sigma_{k} H^{T} + \Sigma_{n})^{-1} (y - H m_{k})$$
$$\widetilde{\Sigma}_{k} = \Sigma_{k} - \Sigma_{k} H^{T} (H \Sigma_{k} H^{T} + \Sigma_{n})^{-1} H \Sigma_{k}$$

The MMSE estimator (posterior mean): $\overset{\wedge}{x_{mmse}} = \sum_{k=1}^{N} \widetilde{\alpha}_{k} \widetilde{m}_{k}$

Interpretation of MMSE

$$mmse(H) = E_{x,y} || x - \hat{x}_{mmse}(y) ||^{2}$$

$$mmse(H) = \sum_{k=1}^{K} \alpha_{k} Tr(\widetilde{\Sigma}_{k}) + \sum_{k=1}^{K} \alpha_{k} \int_{y} || x_{mmse}(y) - \widetilde{m}_{k} ||^{2} P_{k}(y) dy$$
Intra-cluster error, can
be computed analytically
Inter-cluster error
needs MC simulations

We have an analytical lower bound for the MMSE:

$$mmse(H) \ge \sum_{k=1}^{K} \alpha_k Tr(\widetilde{\Sigma}_k)$$

Tight bound for fully-determined system F

Limitations of analysis

Shift invariant blur (motion and focus)

[Nagahara 08] [Dowsky 96] [Levin 08]

Other assumptions:

- Linear systems
- Affine noise

Practical implications of the analysis

Practical system performance depends on

1. Illumination 2. Scene reflectivity 3. Camera parameters condition F/#, Exposure time *t*, quantum efficiency q, pixel size *p* Sensor

Average signal-level is given by:

 $\overline{J} \approx 10^{15} \cdot I_{src} \cdot R \cdot (F / \#)^{-2} \cdot t \cdot q \cdot p^{2}$ Aperture

Average Signal (e⁻) Illumination Reflectivity (lux)

Exposure Quantum Pixel Time (s) Efficiency Size (m)

Average signal level for three form factors

Typical values of average signal level J for different illumination levels

	Quarter moon	Full moon	wilight	Indoor lighting	Cloudy day	💥 Sunny day
l _{src} (lux)	10-2	1	10	10 ²	10 ³	104
J _{SLR} (e ⁻)	8×10 ⁻³	0.8	8.1	81.4	814.3	8143
J _{MVC} (e⁻)	7.9×10 ⁻⁴	7.9×10 ⁻²	0.79	7.9	79.5	7952
<mark>⊂∷</mark> J _{SPC} (e⁻)	1.3×10 ⁻⁴	1.3×10 ⁻²	0.13	1.27	12.7	127

Other parameters:

q=.5, R = .5, F/11, t = 6ms, σ.=4

Common analysis and simulation framework

Learn GMM prior of patch size 16×16

Analytical computations:

Without prior:
$$mse(H) = Tr(H^{-1}\Sigma_n H^{-T})$$

Under GMM prior: $mmse(H) = \sum_{k=1}^{K} \alpha_k Tr(\widetilde{\Sigma}_k) + \sum_{k=1}^{K} \alpha_k \int_{y} ||x_{mmse}(y) - \widetilde{m}_k||^2 P_k(y) dy$

Simulation computations:

Pe

Perform per-patch reconstruction. Let y be the observed patch.

Without prior:
$$\hat{x} = H^{-1}y$$

Under GMM prior: $\hat{x} = \sum_{k=1}^{K} \widetilde{\alpha}_{k} \widetilde{m}_{k}(y)$
rformance measure: SNR gain w.r.t impulse imaging $G(H) = 10\log\left(\frac{mse(I)}{mse(H)}\right)$

Analysis of Extended DOF systems

Depth of Field and SNR

Small apertures have large depth of field and low SNR

Slide courtesy Oliver Cossairt

Focal Sweep: An example EDOF system

Point Spread Function (PSF)

[Hausler '72, Nagahara et al. '08]

Slide courtesy Oliver Cossairt

Focal Sweep: An example EDOF system

[Hausler '72, Nagahara et al. '08]

Depth Invariant PSF

Extended depth of field with a single deconvolution

Slide courtesy Oliver Cossairt

Gain due to prior is much greater than gain due to multiplexing

At high light condition, gain due to both prior and multiplexing is negligible.

Analytic performance:

SNR gain vs. illumination level (without prior case)

Huge multiplexing gain at low light levels

Analytic performance:

SNR gain vs. illumination level (with prior case)

Under signal prior moderate multiplexing gain at low light levels

Other EDOF systems

Analytic performance with Prior

Impulse camera: F/11 Other cameras: F/1

Good EDOF systems perform 9 dB better than impulse imaging

Analysis of motion deblurring systems

Light throughput vs. motion blur

Increasing exposure time

Noise decreases but motion blur increases

Motion deblurring CI systems

Coded exposure (Flutter shutter)

[Raskar '06]

Increased light throughput and inversion better conditioned

Captured image

Motion invariant photography

[Levin '08] [Cho '10]

Captured image has same motion blur for different motions

Whole image deblurred using a single blur kernel

Simulation Performance under signal prior

SNR= 28.2 dB

SNR= 24.7 dB

SNR= 29.4 dB

Analytic Performance under signal prior

Motion invariant camera achieves a peak SNR gain of 7.5 dB

Conclusion: Comprehensive analysis framework of CI

Conclusion: Practical implications

1. Illumination condition

2. Scene reflectivity

3. Camera parameters

We analyzed EDOF and motion deblurring systems for typical values of:

- Illumination conditions
- Scene characteristics
- Camera parameters

Conclusion: Our observations

- More gain due to prior than multiplexing
- Gain due to multiplexing modest when prior is taken into account
- CI systems provide significant advantage over impulse imaging under various illumination and camera parameters
- EDOF systems provides on average 7 dB gain over impulse imaging
- Motion deblurring systems provides on average 4.5 dB gain over impulse imaging

Future Work

Analyze compressive systems:

High speed video

[Hitomi et al. 2011][Veera et al., 2011]

Light Field Capture

[Lanman '08] [Veeraraghavan '07] [Liang `08]

Single pixel camera

Multi/Hyper-Spectral

[Sloane '79] [Hanley '99] [Baer `99] [Wetzstein et al., '12]

[Wakin et al., 2006]

Design optimal CI systems

$$\arg\min_{H} \sum_{k=1}^{K} \alpha_{k} Tr(\widetilde{\Sigma}_{k}) + \sum_{k=1}^{K} \alpha_{k} \int_{y} || x_{mmse}(y) - \widetilde{m}_{k} ||^{2} P_{k}(y) dy$$