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Computational imaging

Light Field Capture Structured Lighting HDR Imaging
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How does CI improve performance?

Increased light throughput
Flutter Shutter

Short exposure
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Sharp, but noisy

Increased light
throughput
but blurry

Deblurred
image

Slide coutesy Amit Agarwal



How does CI improve performance?
Well conditioned optical coding

Flutter Shutter Large exposure

Captured
image

Deblurred
image

Slide coutesy Amit Agarwal



One key flaw: Signal prior has not
been taken into account

Short exposure Flutter Shutter Large exposure
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Captured image

BM3D deblurring ‘ BM3D deblurring

‘ BM3D denoising
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Recovered image

SNR= 17 dB SNR= 19 dB SNR= 13.4 dB



State-of-the-art systems use
signal prior

Den0|smg usmg BM3D Coded exposure video Inpainting using GMM
: using dictionary learning

Dabov et al., 2011 Hitomi et al., 2011 Yu et al., 2011



Our goal: A comprehensive analysis

Computational Multiplexed
camera image
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Multiplexed  Multiplexing (Read+photon)
image matrix Noise

y=Hx+n

Signal prior P(x)

Our analysis takes into account:
— Signal prior
— Multiplexing matrix
— Noise characteristics Figure courtesy Oliver Cossairt



Prior Work: Analysis of CI systems

1. Analysis under read noise 2. Analysis under affine noise

withour prior withour prior

y=Hx+tn  y=Hxtn +n,
Harwitt et al. 1979 Ratner et al. 2007, Wuttig 2007

Hasinoff et al. 2008, Ihrke et al. 2010,
Cossairt et al. 2011

Computational Imaging
(Upper Bound)

3. Relates performance to practical
considerations such as illumination,
sensor characteristics, etc. ekttt

erformance
Cossairt et al. 2012 P Gain

Impulse Imaging
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Our analysis framework:
GMM as signal prior

Advantages of GMM

1.Universal approximation property 3. State-of-the-art results
~ Image processing

orenson e al., 1971
2. Analytically tractable
A special case is Gaussian prior, whose
MMSE can be computed analytically

Mitra et al. 2012



Our analysis framework:
Linear system

Multiplexed Multiplexing Noise
image matrix
Motion blur Defocus blur Single pixel camera

Low-cost, fast, sensitive
optical detection

VS E [Dowski, Cathey “96]
[Raskar '06] [Levin ‘08] [Hausler '7,2] E! CIQ
[Cho "10] [Nagahara '08]

[Levin et al. '07]
[Zhou, Nayar ‘08]

[Wakin et al., 2006]

High speed video

Light Field Capture Reflectance —_—
: B Ao o
; ) ‘.- —(C-Mount
v“ | : - ___ Polanzing  Objective lens
_ & | ‘ e : beam splitter
[Lanman ‘08] [Veeraraghavan '07] [Schechner "03] x —
[Liang ‘08] [Ratnel’ \07] 17 ™ = Relay lens  C-Mount

[Ratner "08] [Hitomi et al. 2011][Veera et al., 2011]



Noise Variance at ith Pixel:

Our analysis framework:
Affine noise model

I I r
photon noise read noise
aperture, electronics,
lighting, ADC's,
pixel size quantization
Noise PDF:

n~ N(0,0°1)

J=YJ /K c’'=J+0;

« J: ith pixel intensity
« Signal dependent / independent noise
« Ignore Dark current, fixed pattern

Photon noise modeled as Gaussian
(good approx. if #photons > 10)
Photon noise spatially averaged

Slide courtesy Oliver Cossairt



Complete specification of the framework

Multiplexed Multiplexing
measurement matrix Noise

Y= Hic+n =P~ NO.0%)
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MMSE as a performance metric

VAN

Mean Squared Error (MSE) of an estimator X is defined as:

MSE = Tr(E[(x — x)(x—x)" ])

MMSE estimator:

= Defined as the estimator that achieves the minimum MSE
N\

= Given by the posterior mean ‘ XMMSE = E[x ‘ y])

= MMSE is the corresponding MSE error

MMSE: a scalar that characterizes the performance of a system H



Computation of MMSE estimator

The posterior PDF is also a GMM:;:

K
P(x|y)= z&kN(ﬁlkazk)
k=1 [ A

Probability of y coming
})k (y) from kth cluster

> a,P(y) —
\ i Y,
and with new mean and covariance:

m,=m, +> H (HZ, H +% )" (y—Hm,)
> =% X H'(HL,H' +X )'Hz,

old weight

with new weights &Jk =,

AN

K
The MMSE estimator (posterior mean): X, mnse = Z&Jkﬁak



Interpretation of MMSE

mmse(H) = E, , || X~ Xumse(3) ||

mmse(H ) = ZakTr(z )+Zak (1120 ) =1 | P ()b

\/_/ G _
-~

Intra-cluster error, can Inter-cluster error

be computed analytically needs MC simulations

We have an analytical lower bound for the MMSE:

mmse(H ) > ZakT r(i L)

Tight bound for fully-determined system H



Limitations of analysis
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Shift invariant blur
(motion and focus)

Other assumptions:

~2000mm - Affine noise
_450mm
550mm
~1100mm
—750mm

0
[Nagahara 08] [Dowsky 96] [Levin 08]

: %

— Linear systems

Local
multiplexing



Practical implications of the analysis



Practical system performance

1. Illumination 2. Scene reflectivity 3. Camera parameters
ndition
& Ad tio F/#, Exposure time ¢,
\ <4 quantum efficiency g,
“’ : pixel size p
}v( :

Average signal-level is given by:

T~10"-1 -R-(F/#) -t-q-p’

Average Illumination  Reflectivity Aperture Exposure Quantum  Pixel
Signal (e) (lux) Time (s) Efficiency Size (m)



Average signal level for three form factors

I

M E
. SITR camera Machine vision camera (MVC) Smartphone camera (SPC)
Pixel size pgr = 8 um Puyc = 2.5um Pspc = 1um

Typical values of average signal level J for different illumination levels

Other parameters:
q=.5,

Zluartermoon Full moon Twilight Indoor lig h'rlru-, Cloudy day Sunny day R=.5

F/11,
t = 6ms,
8x103 814.3 8143 r

n
¥ :




Common analysis and simulation framework

Learn GMM prior of patch size 16x16
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Analytical computations:

Without prior: mse(H) = T”(H_]ZHH_T)

K K
under GMM prior: mmse(H) = >t Tr(E,)+ Y &4, [ 1 %, () =1, P B (y)ely
k=1 k=1

V

=

Simulation computations:

Perform per-patch reconstruction. Let y be the observed patch.

Without prior: x=H"'y

A K
Under GMM prior: x = Z&kﬁ@k (»)
k=l

Performance measure: SNR gain w.r.t impulse imaging G([{):lOlog[ mse((;l))]
nse




Analysis of Extended DOF systems



Depth of Field and SNR

Image Lens

F 8.0

Small apertures have large depth of field and low SNR

Slide courtesy Oliver Cossairt



Focal Sweep: An example EDOF system

Sensor Lens

400 600 900 1200 1500 1700 2000 (depth)

Point Spread Function (PSF)

[Hausler ‘72, Nagahara et al. '08]

Slide courtesy Oliver Cossairt



Focal Sweep: An example EDOF system

Sensor Lens

400 600 900 1200 1500 1700 2000 (depth)

Integrated PSF

® -0+ |+ - +0 |+ 0O |+ @ =

= t=2 t=3 t=4 =5 t=6 t=7
(400) (600) (900) (1200) (1500) (1700) (2000)

[Hausler ‘72, Nagahara et al. '08]

Slide courtesy Oliver Cossairt



Depth Invariant PSF

0.016 Focal Sweep PSF 0 016 Traditional Camera PSF

1200mm

0.012 0.012

750mm

0.008 0.008

400mm
2000mm

0.004 0.004

Extended depth of field with a single deconvolution

Slide courtesy Oliver Cossairt



Captured image

Recovery with GMM Recovery without prior

Simulation performance

Low light condition (10 qu)! Pixel size = 8 um

Exp time = 6 ms
Impulse Focal sweep
(F/11) A (F/)

Gain due to prior is much greater than gain due to multiplexing



Simulation performance

High light condition (1000 qu). e Al

Exp time = 6 ms

Impulse Focal sweep
(F/11) A (F/1)

Recovery with GMM Recovery without prior Captured image

At high light condition, gain due to both prior and multiplexing is negligible.



Analytic performance:

SNR gain vs. illumination level (without prior case)

multiplexing gain
without prior

0.1 1 10 102
Photon to read noise ratio (J/02)

2 750 ol 2x102 2x103
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20 2x102 2x10° 2x104

1.3x103 1.3x10* 1.3x10°




Analytic performance:
SNR gain vs. illumination level (with prior case)

FS GMM
multiplexing gain with prior

Impulse Gain due to
GMM . prior alone

multiplexing gain
without prior

)
[a8)
T
c
£
£
©
o
ad
=
n
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Photon to read noise ratio (J/02)
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Other EDOF systems

Depth invariant PSF systems Coded aperture systems

[Levin et al. ‘07]
[Zhou et al. '08]
[Veeraraghavan et al. ‘07]
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[Dowski, Cafhey '96] [Cossairt et al. '10]

Encoded Blur Camera

Depth invariant PSF Coded Camera PSF
0.016
1200mm
0.012
750mm
0.008
400mm
2000mm /750mm
0.004 ‘ \ /400mm

2000mm




Analytic performance with Prior

Impulse camera: F/11
Other cameras: F/1

SNR gain vs. light level

+Wavefroht codi'ng
-e-Focal Sweep |

. Coded Aper Zhou |
-e-Coded Aper Levin|
-o-| 5




Analysis of motion deblurring systems



Light throughput vs. motion blur

Increasing exposure time

Noise decreases but motion blur increases




Motion deblurring CI systems

Coded exposure (Flutter shutter)
[Raskar '06]

Increased light throughput and
inversion better conditioned

Deblurred imae‘

Motion invariant photography
[Levin '08] [Cho "10]

Captured image has same motion blur
for different motions
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Whole image deblurred using a single blur kernel



Simulation Performance under signal prior

Flutter Shutter Motion invariant

R e

Impulse imaging

tCI= 33x% timpulse

Captured

Low light condition

(10 lux) SN‘-1.7

o
i e TS
= e

Motion invariant 7 dB
better than impulse

Recovered

SNR= 20.9 dB

Audt Sport

Captured

High light condition
(1000 lux)

SNR= 25.8 dB

Motion invariant 1.2 dB
better than impulse

Recovered

SNR= 28.2 dB SNR= 24.7 dB SNR= 29.4 dB



Analytic Performance under signal prior

tCI= 33 ><timpulse

SNR gain vs. light level
—_  [-eMotion invariant|
-e-Flutter shutter
~>-Impulse
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10 102
2x107? 2x103

2x102 2x10° 2x10%

1.3x10? 1.3x103 1.3x107 1.3x10°



Conclusion:
Comprehensive analysis framework of CI

Image Computational Multiplexed
camera Image

Multiplexed  Multiplexing Affine
image matrix noise
Our analysis accounts for ‘

Signal prior (GMM) Signal prior P(x)
Optical coding (H)
Noise (affine)
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Conclusion: Practical implications

1. Illumination 2. Scene reflectivity 3. Camera parameters
condition
" F/#, Exposure time t,
\ <4 quantum efficiency g,
D | >

A pixel size p

v

We analyzed EDOF and motion deblurring systems for typical values of:
= TJllumination conditions

= Scene characteristics

= Camera parameters



Conclusion: Our observations

More gain due to prior than multiplexing

Gain due to multiplexing modest when prior is taken into
account

CI systems provide significant advantage over impulse
imaging under various illumination and camera parameters

EDOF systems provides on average 7 dB gain over impulse
imaging

Motion deblurring systems provides on average 4.5 dB gain
over impulse imaging



Future Work

Analyze compressive systems:

High speed video

Image Sensor

—C-Mou
Relay C-Mount

lenses Polanzing  Objective lens

::‘7'(.5

beam splitter

C-Mount

[Hitomi et al. 2011][Veera et al., 2011]

—— Relay lens

Design optimal CI systems

K
arg min Z o, Ir(Z,)+
H =l

Light Field Capture

——
s‘&** ! ./

[Lanman ‘08] [Veeraraghavan '07]
[Liang '08]

Single pixel camera

Low-cost, fast, sensitive
optical detection

[Wakin et al., 2006]

Multi/Hyper-Spectral

[Sloane '79]

[Hanley "99]

[Baer '99]
[Wetzstein et al., '12]
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