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Original image TVAL3 DAMP Ours

Highlights MAP Inference via Backpropagation

« Here, we use Maximum-A-Posteriori principle to find the desired image as,

arg max p (x) p (ylx)
argmaxp (x) s.t. y = Dx
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(15% measurements) PSNR: 26.76 dB PSNR: 24.70 dB PSNR: 29.68 dB X = Xk — O ((D D ) ((I)Xk _ y)

Reconstructed Image

26.16 dB, 0.784 32.21 dB, 0.929 33.82 dB, 0.935

= Projected gradient method: Each gradient update is projected back on to the
affine solution space for y = ¢px

Xk = Xy_1 + NV P (x)

Reconstructions with 30% M.R.

= Reconstruction of signals from compressively sensed measurements is an - 31.75dB, 0.874 31.54 dB, 0.874 35.19 dB, 0.922
ill-posed problem. ' |
posedp Results

« We propose to use the deep generative model, RIDE, as an image prior to

model long-term dependencies for reconstructing compressively sensed images.
Original image Masked image
« We use backpropagation to inputs while doing gradient ascent for MAP —

inference.

: : . . : : : 22.75 dB, 0.644 245 dB, 0.757
« Using this data-driven global prior provides superior results than the prior

methods TVAL3 and D-AMP.

Reconstructions with 15% M.R.

21.21, 0.811 22.07, 0.813
Figure 1 : Inpainting comparisons: We compare our approach with the multiscale
dictionary learning approach (KSVD). Our method is able to recover the shar
Background Y & apPP ( ) P 28.30 dB, 0.771 24.98 dB, 0.688 29.30 dB, 0.786

edges better. . . .
Figure 3 : Reconstruction comparisons: Even at low measurement rates, our

method preserves the sharp and prominent structures in the image. D-AMP has
the tendency to over-smooth the image, whereas TVAL3 adds blotches to even
the smooth parts.

= Joint distribution over image X can be
factorized as,

X i Full reconstruction TVAL3 DAMP Ours
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context - long-term dependencies. Table 1 : Average quality of CS reconstructions at different measurement rates for * |
hi; = f(xi5, hi_15,hi; 1) Cal e te e the selected images(160x160). Our method outperforms the existing global prior
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e S e Figure 4 : Reconstructions on real measurements acquired from single pixel cam-
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Figure 2 : Reconstructions from noisy measurements at different o. _ _
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