
Compressive Image Recovery
using Recurrent Generative Model

Akshat Dave, Anil Kumar Vadathya, Kaushik Mitra
Indian Institute of Technology Madras, India

Highlights

Original Image

* =

Compressive Sensing using Single Pixel Camera
(15% measurements)

Ours
PSNR: 29.68 dB

TVAL3
PSNR: 24.70 dB

Reconstructed Image

D-AMP
PSNR: 26.76 dB 

• Reconstruction of signals from compressively sensed measurements is an
ill-posed problem.

• We propose to use the deep generative model, RIDE, as an image prior to
model long-term dependencies for reconstructing compressively sensed images.

• We use backpropagation to inputs while doing gradient ascent for MAP
inference.

• Using this data-driven global prior provides superior results than the prior
methods TVAL3 and D-AMP.

Background

• Joint distribution over image x can be
factorized as,

p(x) =
∏
ij

p(xij|x<ij)
xijx<ij

• Spatial LSTMs summarize the entire causal
context - long-term dependencies.

hij = f(x<ij,hi−1,j,hi,j−1)
• Each factor is modelled by conditional
Gaussian Scale Mixtures.

p(x) =
∏
ij

p(xij|hij,θ)

p(xij|hij,θ) =
∑
c,s

p(c, s|hij,θ)p(xij|hij, c, s,θ) RIDE by Theis et al,
2015

MAP Inference via Backpropagation

• Here, we use Maximum-A-Posteriori principle to find the desired image as,

x̂ = argmaxx p (x)p (y|x)
x̂ = argmaxx p (x) s.t. y = Φx

• Projected gradient method: Each gradient update is projected back on to the
affine solution space for y = φx

x̂k = xk−1 + η∇xk−1p (x)
xk = x̂k −ΦT

ΦΦT
−1 (Φx̂k − y)

Results

Original image Masked image Multiscale KSVD

21.21, 0.811

Ours

22.07, 0.813
Figure 1 : Inpainting comparisons: We compare our approach with the multiscale
dictionary learning approach (KSVD). Our method is able to recover the sharp
edges better.

Method M.R. = 40% M.R. = 30% M.R. = 25% M.R. = 15%
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

TVAL3 29.70 0.833 28.68 0.793 27.73 0.759 25.58 0.670
D-AMP 32.54 0.848 29.95 0.800 28.26 0.760 24.02 0.615
Ours 33.71 0.903 31.91 0.862 30.71 0.830 27.11 0.704

Table 1 : Average quality of CS reconstructions at different measurement rates for
the selected images(160x160). Our method outperforms the existing global prior
based methods in most of the cases.
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Figure 2 : Reconstructions from noisy measurements at different σ.
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Figure 3 : Reconstruction comparisons: Even at low measurement rates, our
method preserves the sharp and prominent structures in the image. D-AMP has
the tendency to over-smooth the image, whereas TVAL3 adds blotches to even
the smooth parts.
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Figure 4 : Reconstructions on real measurements acquired from single pixel cam-
era.(Data courtesy: Dr. Aswin Sankaranarayanan)
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