



<sup>1</sup> Mayug Maniparambil, <sup>1</sup> Anil Kumar Vadathya, <sup>2</sup> Kannan Umadevi Venkataraju, <sup>1</sup> Kaushik Mitra, <sup>2</sup> Pavel Osten <sup>1</sup>Indian Institute of Technology - Madras, India, <sup>2</sup>Cold Spring Harbor Laboratory - Cold Spring Harbor, NY

### Highlights

- Image Analysis of gene expression data in model animals is key to understanding the distribution of cell types in their brains.
- High density cellular/nuclear gene expression affects registration accuracy via the pixel intensity of the anatomical features in downsampled images.
- We propose to use a deep neural network with adversarial loss for denoising the gene expression to improve the registration accuracy.



Figure 1: Context encoder [1] by Pathak et al., uses adversarial training for block image inpainting.



Figure 2: From left: input image with expression masked, network output and groundtruth

# Denoising High Density Gene Expression in Whole Mouse Brain Images

#### Pipeline



- During training we use 128\*128 image patches from zero expression dataset and 128\*128 masks from high expression dataset
- During testing we use image and its correponding masks, inpaint patchwise and restitch back to get full resolution image.

## Results



Figure 4: Inpainting slices at different depth. In every pair, left is input image and right is the output from network.



IEEE Conference on Computer Vision and Pattern Recognition. 2016.



Figure 5: Inpainting slices, from left, input with expression, mask, inpainted output

#### References

[1] Pathak, Deepak et al. "Context encoders: Feature learning by inpainting", Proceedings of the