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Abstract

The traditional bundle adjustment algorithm for struc-
ture from motion problem has a computational complexity
of O((m + n)3) per iteration and memory requirement of
O(mn(m+n)), where m is the number of cameras and n is
the number of structure points. The sparse version of bundle
adjustment has a computational complexity of O(m3+mn)
per iteration and memory requirement of O(mn). Here we
propose an algorithm that has a computational complexity
of O(mn(

√
m +

√
n)) per iteration and memory require-

ment of O(max(m, n)). The proposed algorithm is based
on minimizing the L∞ norm of reprojection error. It alter-
nately estimates the camera and structure parameters, thus
reducing the potentially large scale optimization problem
to many small scale subproblems each of which is a quasi-
convex optimization problem and hence can be solved glob-
ally. Experiments using synthetic and real data show that
the proposed algorithm gives good performance in terms of
minimizing the reprojection error and also has a good con-
vergence rate.

1 Introduction

Bundle adjustment is the procedure for refining a visual
reconstruction to produce optimal 3D structure and camera
parameters. Explicitly stated it is the problem of estimating
structure and camera parameters given an initial estimate
and the observed image data. An appropriate cost function
to minimize for this problem is some norm of the repro-
jection error [14]. Reprojection error is the error between
the reprojected image points, obtained from the current esti-
mates of camera and structure parameters, and the observed
image points.

The L2 norm of reprojection error is the commonly used
cost function. A lot of work has been done on bundle ad-
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justment based on the L2 norm. Triggs et al [14] pro-
vides a good review on this approach. One reason for
this choice of the norm is that the cost function becomes
a differentiable function of parameters and this allows the
use of gradient and Hessian-based optimization methods.
Second order methods like Gauss-Newton and Levenberg-
Marquardt(LM) algorithms are the preferred methods for
bundle adjustment as they have some nice convergence
properties near local minimum. The LM algorithm has a
computational complexity of O((m+n)3) per iteration and
memory requirement of O(mn(m + n)), where m is the
number of cameras and n is the number of structure points.
However, for the structure from motion problem there exists
a sparse version of the LM algorithm that takes advantage of
the fact that there are no direct interactions among the cam-
eras. They interact only through the structure. The same
is true for the structure points. Using this fact, a computa-
tional complexity of O(m3 + mn) per iteration and mem-
ory requirement of O(mn) can be obtained. Appendix 6
of [2] provides a good review on this. Computational com-
plexity and memory requirement are very important issues
especially when solving problems that involve hundreds of
frames and points. This motivates us to look for an algo-
rithm which has lower computational complexity and mem-
ory requirement.

Another problem in minimizing the L2 norm of repro-
jection error is that it is a highly non-linear and non-convex
function of the camera and structure parameters. Even
the simpler problem of estimating the structure parameters
given the camera parameters and the corresponding image
points, known as the triangulation problem, is a nonlinear
and non-convex optimization problem. The corresponding
cost function might have multiple minima and finding the
global minimum is a very difficult problem. The same is
true for the problem of estimating the camera parameters
given the structure parameters and the corresponding image
points. This problem is known as the resection problem.

Another norm that is geometrically1 and statistically
meaningful is the L∞ norm. Minimizing the L∞ norm is

1For a discussion on geometrical significance, please see [5].
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the same as minimax estimation in statistics. Apart from ge-
ometrical and statistical significance, the L∞ norm of repro-
jection error has a nice analytical form for some problems.
Specifically for the triangulation and resection problems, it
is a quasi-convex function of the unknown parameters. A
quasi-convex function has the property that any local min-
imum is also a global minimum. The global minimum can
be obtained using a bisection algorithm ([3],[5]). Further,
each step of the bisection algorithm can be solved by check-
ing for the feasibility of a second order cone programming
problem(SOCP) [3],[5], for which efficient software pack-
ages such as SeDuMi [11] are readily available.

The availability of efficient means of finding the global
solution for the triangulation and resection problems in the
L∞ norm prompted us to look for bundle adjustment al-
gorithms using the same norm. Joint structure and camera
parameter estimation in the L∞ norm is not a quasi-convex
optimization problem because of the non-linear coupling of
structure and camera parameters. However if we fix one of
the unknowns, say structure, and optimize over the camera
parameters then we are back to the original problem of L∞
resection. The next step would be to fix the camera parame-
ters and optimize over the structure. These two steps should
be iterated till convergence. This algorithm is an instance of
alternation algorithms and more specifically of resection-
intersection algorithms in bundle adjustment [14]. In this
discussion, intersection and triangulation are synonymous.

The proposed algorithm, using the L∞ norm, has two
advantages. One, fixing one of the unknown set of parame-
ters, say the structure parameters, the camera parameters es-
timation problem can be solved for each camera separately,
which effectively reduces the high-dimensional problem to
many low-dimensional subproblems. The same is true when
the camera parameters are fixed and the structure param-
eters are estimated. Hence a high-dimensional parameter
estimation problem transforms into many low-dimensional
subproblems. The second advantage is that the subprob-
lems that we have to solve are all quasi-convex optimization
problems whose global minimum can be efficiently found.

Our algorithm is a projective bundle adjustment algo-
rithm and so the triangulation and resection subproblems
have to be solved in the projective space. In [3] and [5] the
L∞ triangulation problem is solved in the Euclidean/affine
space where the optimization is done over the convex re-
gion ’in front of’ all the cameras that the point is visible in.
This region is well defined in Euclidean/affine space but not
in the projective space. The search for this region results
in an increase in the computational cost for the projective
triangulation problem [4]. The same is true for the projec-
tive resection problem. We have avoided these computa-
tions by initializing our algorithm using a quasi-affine re-
construction. Quasi-affine reconstruction can be easily ob-
tained from an initial projective reconstruction by solving a

linear programming problem.
There are resection-intersection algorithms based on the

L2 norm. The algorithms proposed by Chen et al [1] and
Mahamud et al [9] are some examples of this. These algo-
rithms have almost the same computational complexity as
our algorithm but they are based on minimizing algebraic
errors, which are approximations of the actual L2 repro-
jection error. These approximations make them susceptible
to non-physical solutions [9]. Also in our experiments we
have found that though the algebraic cost based algorithms
converge in the algebraic cost, they may not converge in the
L2 reprojection error cost.

The organization of the paper is as follows: In section
1.1, we provide some necessary background on solving the
triangulation and resection problems in the L∞ framework.
In section 2, we discuss the proposed L∞ bundle adjust-
ment algorithm. In section 3, we compare the computa-
tional complexity and memory requirements of our algo-
rithm with the L2 bundle adjustment algorithm and the L2

based resection-intersection algorithms. Section 4, exper-
imentally evaluates our algorithm for convergence, com-
putational complexity, robustness to noise with appropriate
comparison to other algorithms.

1.1 Background: geometric reconstruc-
tion problems using L∞ norm

Here we give a very brief overview of the problem of
minimizing the L∞ norm for Euclidean/affine triangulation
and resection problems. For more details see Kahl [3] and
Ke et. al [5]. We begin with the definition of a quasi-convex
function since the triangulation and resection cost function
reduces to this form.

Definition 1. A function f(X) is a quasi-convex function if
its sublevel sets are convex.

1.1.1 Triangulation

Let Pi = (aT
i ; bT

i ; cT
i ), i = 1, 2, ..., M be the projection ma-

trices for M cameras and (ui, vi), i = 1, 2, ..., M be the
images of the unknown 3D point X in these M cameras.
The problem is to estimate X given Pi and (ui, vi). Let
X̃ be the homogeneous coordinate of X i.e, X̃ = (X ; 1).
Then the reprojected image point, in camera i, is given by(

aT
i X̃

cT
i X̃

,
bT

i X̃

cT
i X̃

)
and the L2 norm of reprojection error func-

tion is given by:

fi(X) =

∣∣∣∣∣
∣∣∣∣∣
(

aT
i X̃

cT
i X̃

− ui,
bT
i X̃

cT
i X̃

− vi

)∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣
(

aT
i X̃ − uic

T
i X̃

cT
i X̃

,
bT
i X̃ − vic

T
i X̃

cT
i X̃

)∣∣∣∣∣
∣∣∣∣∣
2

(1)
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In Euclidean triangulation, the fact that X is in front of
camera i is expressed by: cT

i X̃ > 0 (also known as cheiral-
ity constraint). With this constraint, we have:

fi(X) =

∣∣∣∣∣∣aT
i X̃ − uic

T
i X̃, bT

i X̃ − vic
T
i X̃
∣∣∣∣∣∣

2

cT
i X̃

=
pi(X)
qi(X)

(2)

pi(X) is a convex function because it is a composition
of a convex function (norm) and an affine function. qi(X)
is an affine function. Functions of the form of fi(X) are
quasi-convex (for proof, see [3],[5]).

The L∞ norm of reprojection error is

F∞(X) = max
i

fi(X) (3)

which is again a quasi-convex function, as point-wise max-
imum of quasi-convex functions is also quasi-convex.(for
proof, see [3],[5]).

Minimization of the quasi-convex function F∞ can be
done using a bisection algorithm in the range of F∞ ([3],
[5]). One step in the bisection algorithm involves solving
the following feasibility problem:

find X s.t. X ∈ Sα (4)

where Sα is the alpha sub-level set of F∞(X) with the
cheirality constraint.

For triangulation,

Sα = {X |fi(X) ≤ α, qi(X) > 0, ∀i}
= {X |pi(X) − αqi(X) ≤ 0, qi(X) > 0, ∀i} (5)

Sα is a convex set and hence we have to solve a convex
feasibility problem. Moreover, since pi(X) is a L2 norm,
this problem is a second order cone programming problem
which can be solved efficiently using software packages like
Sedumi [11].

1.1.2 Resection

Here we are given N 3D points Xi, i = 1, 2, ..., N and their
corresponding image points (ui, vi), i = 1, 2, ..., N . The
problem is to estimate the camera projection matrix P .
Again, the L∞ reprojection error is a quasi-convex function
of the unknown camera parameters and the global minimum
can be obtained as in the triangulation case [3],[5].

2 The L∞ projective bundle adjustment algo-
rithm

For L∞ projective bundle adjustment, we propose an
iterative algorithm based on the principle of resection-
intersection. We partition the unknown structure and cam-
era parameters into two separate sets and minimize the L∞

norm of reprojection error over one set of parameters while
keeping the other set fixed. In the resection step, the min-
imization is done over the camera parameters while keep-
ing the structure parameters fixed and in the intersection
step, the optimization is done over the structure param-
eters while keeping the camera parameters fixed. These
resection-intersection steps are iterated many times till the
algorithm converges.

The resection and intersection step of the proposed al-
gorithm is still a high-dimensional optimization problem.
In section 2.1, we show that how these two steps can be
further simplified by solving a large number of small opti-
mization problems. In section 2.2, we discuss the correct
way to initialize our algorithm. Convergence is another im-
portant issue for any iterative method. In section 2.3, we
show the convergence of our algorithm in the L∞ norm of
reprojection error.

2.1 Decoupling

Consider the intersection step of the algorithm, where
camera parameters are fixed and minimization of the L∞
norm of reprojection error is done over the structure param-
eters. Let P j , j = 1, 2, ..., M be the given projection ma-
trices of M cameras and Xi, i = 1, 2, ..., N be the N 3D
points, which are to be estimated. Let f j

i be the L2 norm of
reprojection error for the i-th 3D point imaged in the j-th
camera.

The L∞ norm of reprojection error is:

F∞(X1, X2, ..., XN ) = max
i,j

f j
i (X1, X2, . . . , XN)

= max
i

max
j

f j
i (Xi)

= max
i

f∞,i(Xi)

(6)

where,
f∞,i(Xi) = max

j
f j

i (Xi) (7)

Theorem 1. The problem of minimizing the L∞
norm of reprojection error over the joint structure
(X1, X2, . . . , XN) can be solved by minimizing, in-
dependently, the L∞ norm of reprojection error cor-
responding to each 3D structure Xi, i.e. suppose
(X̂1, X̂2, . . . , X̂N) solves the joint structure problem and
(X̃1, X̃2, . . . , X̃N) solves the independent problems of min-
imizing f∞,1(X1), f∞,2(X2), . . . , f∞,N(XN ) respectively,
then

F∞(X̂1, X̂2, . . . , X̂N) = F∞(X̃1, X̃2, . . . , X̃N) (8)

Proof. By definition (see equation 6),

F∞(X̃1, X̃2, ..., X̃N ) = max
i

f∞,i(X̃i)
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F∞(X̂1, X̂2, . . . , X̂N) = max
i

f∞,i(X̂i)

Now, X̃i solves minXi f∞,i(Xi) therefore,

f∞,i(X̃i) ≤ f∞,i(Xi) ∀Xi

implies,

f∞,i(X̃i) ≤ f∞,i(X̂i)

This is true for all i, therefore

max
i

f∞,i(X̃i) ≤ max
i

f∞,i(X̂i)

i.e.,

F∞(X̃1, X̃2, . . . , X̃N) ≤ F∞(X̂1, X̂2, . . . , X̂N )

but since

F∞(X̂1, X̂2, . . . , X̂N ) = min
(X1,...,XN )

F∞(X1, X2, ..., XN)

therefore

F∞(X̃1, X̃2, . . . , X̃N) = F∞(X̂1, X̂2, . . . , X̂N )

It should be noted that the proof does not mention about
the cheirality constraints. This is to keep the proof simple.
The proof with cheirality constraints will follow essentially
the same arguments.

In the resection step, the structure is fixed and optimiza-
tion is done over the camera parameters and we have the
following corollary:

Corollary 1. The problem of minimizing the L∞ norm of
reprojection error over the joint camera projection ma-
trices (P 1, P 2, . . . , PM ) can be solved by minimizing,
independently, the L∞ norm of reprojection error cor-
responding to each projection matrix P j , i.e. suppose

(P̂ 1, P̂ 2, . . . , P̂M ) solves the joint camera matrices prob-

lem and (P̃ 1, P̃ 2, . . . , P̃M ) solves the independent problem
for P 1, P 2,. . . ,PM respectively, then

F∞(P̂ 1, P̂ 2, . . . , P̂M ) = F∞(P̃ 1, P̃ 2, . . . , P̃M ) (9)

The proof is similar to that of Theorem 1 with the struc-
ture parameters replaced by the camera parameters. Hence
joint minimization over all the structure/camera parameters
can be solved by solving for individual structure/camera pa-
rameters.

2.2 Cheirality and quasi-affine initializa-
tion

The usual way to initialize a projective bundle adjust-
ment algorithm is a projective reconstruction obtained from
the given images. Any of the methods mentioned in [2] can
be used for projective reconstruction. However doing this
for the proposed algorithm will increase its computational
complexity. To understand and get around this problem, we
make a small digression and precisely state the definition of
cheirality.

Let X = (X, Y, Z, T ) be a homogeneous representation
of a point and P = (aT ; bT ; cT ) be the projection matrix of
a camera, then the imaged point x is given by PX = ωx̂,
where x̂ denotes the homogeneous representation of x in
which the last coordinate is 1. The depth of the point X
with respect to the camera is given by:

depth(X; P ) =
sign(detM)ω

T ||m3|| (10)

where M is the left hand 3×3 block of P and m3 is the third
row of M [2].

A point X is said to be in front of the camera if and only
if depth(X; P ) > 0.

Definition 2. The quantity sign(depth(X; P )) is known as
the cheirality of the point X with respect to the camera [2].

If detM > 0 and T > 0, then cTX > 0 implies that
the point is in front of the camera(since ω = cTX). In sec-
tion 1.1, we have seen that the triangulation and resection
problems were solved while satisfying this cheirality con-
straint. Cheirality is invariant under Euclidean and affine
transformations (in fact, also under quasi-affine transfor-
mations) [2] and so seeking a solution with the cheirality
constraint is justified when solving for the Euclidean/affine
triangulation and resection problems.

However, cheirality is not invariant under projective
transformations. Hence when solving the projective trian-
gulation problem, we can’t just restrict our search for X in
the convex region of {X : cjT X > 0, ∀j}. If there are
M cameras, then the M principal planes divide the projec-
tive space P 3 into (M3 + 3M2 + 8M)/6 regions [4]. The
L∞ cost, with respect to X , has to be minimized over each
of these regions and the minimum among them is the de-
sired solution of the projective triangulation problem[4]. To
avoid this minimization over all the regions during trian-
gulation, a projective reconstruction should be converted to
an Euclidean/affine/quasi-affine reconstruction. Once this
is done, we can minimize the cost over the convex region
{X : cjT X > 0, ∀j}. A similar argument holds for the
projective resection problem.

A good choice would be to perform a conversion from
a projective reconstruction to a quasi-affine reconstruction.
A quasi-affine reconstruction lies in between projective and
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Algorithm Bundle Adjustment using L∞ norm minimization

Input: Set of images
Output: Projective reconstruction
1. Do initial projective reconstruction from set of images.
2. Convert to quasi-affine reconstruction.
3. while Reprojection error > ε
4. do Get camera parameters for each camera by L∞

resection.
5. Get 3D structure parameters for each point by

L∞ triangulation.

Figure 1. L∞ BA Algorithm

affine reconstruction. The only information required for this
conversion is the fact that if a point is imaged by a camera,
then it must be in front of the camera. The transformation
that takes a projective reconstruction to a quasi-affine re-
construction can be found by solving a linear programming
problem [2].

To summarize, we first obtain an initial projective recon-
struction from the images and then convert this to a quasi-
affine reconstruction by solving a linear programming prob-
lem. This reconstruction is then used as an initialization for
our algorithm. After this initialization, we can use the trian-
gulation/resection method of section 1.1.

The summary of the algorithm is given in Figure 1.

2.3 Convergence of the algorithm

Here we give a formal proof that at each step of resection
and intersection, the L∞ reprojection error either decreases
or remains constant.

Theorem 2. Consider the following sequence of steps in the
algorithm : Initial Structure → Resection (R) → Intersec-
tion (I). Then F∞(I) ≤ F∞(R), where F∞(I) and F∞(R)
are L∞ cost after intersection and resection respectively.

Proof. Let the initial structure points be (X̂i, i =
1, 2, . . . , N). In the resection step, P j , j = 1, 2, . . . , M

are estimated based on X̂i. Let the estimated P j be P̂ j =
[ ˆajT ; ˆbjT ; ˆcjT ]. Then ˆcjT X̂i > 0 for all i and j (cheirality
constraint imposed by the algorithm).

Now consider the intersection step, where the structure
is estimated from P̂ js. Let C be the cheirality constraint
set {X : ˆcjT X > 0}. By decoupling (see section 2.1), the
estimated structure X̃i is given by:

X̃i = arg min
Xi∈C

f∞,i(Xi) (11)

i.e.
f∞,i(X̃i) ≤ f∞,i(Xi) ∀Xi ∈ C

hence,
f∞,i(X̃i) ≤ f∞,i(X̂i)

This is true for all i, therefore

max
i

f∞,i(X̃i) ≤ max
i

f∞,i(X̂i) (12)

F∞(X̃1, X̃2, . . . , X̃N) ≤ F∞(X̂1, X̂2, . . . , X̂N ) (13)

F∞(I) ≤ F∞(R) (14)

The intuition of the proof is that when we look at the
two steps, Initial Structure → Resection and Resection →
Intersection, resection is the common step. So P js will be
same in the two steps, with the values of Xis differing. In
the intersection step, we are minimizing over Xis under the
cheirality constraints and since the original structure also
satisfies the same constraints, the structure after intersection
will contribute a smaller cost than the original structure.

Corollary 2. Consider the following step in the algorithm:
Initial camera parameters → Intersection (I) → Resection
(R). Then F∞(R) ≤ F∞(I), where F∞(R) and F∞(I) are
the L∞ cost after resection and intersection respectively.

The proof is the same with structure replaced by cam-
era parameters and vice versa. Theorem 2 and corollary 2
together prove that the L∞ reprojection error decreases or
remains constant with every step of resection and intersec-
tion. Since the reprojection error is bounded from below
by zero, by monotone convergence theorem, the algorithm
converges in the L∞ reprojection error. This proof only
guarantees the convergence of the algorithm to a local min-
imum of the L∞ cost function. Convergence to global min-
imum is dependent on good initialization. We should note
that the L2 based bundle adjustment also has similar guar-
antee.

3 Computational complexity and memory re-
quirement

This section first describes the computational complex-
ity and memory requirement of the proposed algorithm and
then compares it with that of L2 based bundle adjustment
and L2 based resection-intersection algorithms.

As discussed in section 2.1, at any time we are either
solving the triangulation problem for one structure point
or the resection problem for one camera. We first analyze
the computational complexity and memory requirements
for solving one triangulation problem. The triangulation
problem is solved by a bisection algorithm [3],[5]. At each
step of the bisection, we solve a convex feasibility problem,
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given in (5) of section 1.1. If the point that we are triangulat-
ing is visible in m cameras then we have to solve m second
order cone feasibility problem. This problem has a compu-
tational complexity of O(m1.5) and a memory requirement
of O(m) [7]. By analogy, the resection problem for one
camera has an empirical computational complexity O(n1.5)
and memory requirement O(n) where n points are visible in
that camera. Now consider one iteration of our algorithm.
For the case where there are m cameras and n points and
all the points are visible in all the cameras, per iteration
empirical computational complexity is O(mn(

√
m +

√
n))

and the memory requirement is O(max(m, n)). Further-
more a parallel implementation of the algorithm is possible
because during each resection/intersection step all the cam-
eras/points can be estimated at the same time. This is be-
cause of the decoupling discussed in section 2.1. Such an
implementation will result in a reduction of computational
complexity.

The L2 norm bundle adjustment algorithm (L2 BA) is
based on the Levenberg-Marquardt (LM) method. The cen-
tral step involves solving an equation with all the camera
and structure parameters as unknowns. Hence its com-
putational complexity is O((m + n)3) per iteration. For
memory requirement, we can consider the Jacobian which
is O(mn(m + n)). For structure from motion problems,
there exists a sparse LM method which uses the fact that
the cameras are related to each other only through structure
and vice-versa [2]. For sparse LM, computation complexity
is O(m3 + mn) per iteration. The memory requirement is
O(mn) [2].

The L2 based resection-intersection algorithms [1],[9]
have computational complexity of O(mn) per iteration
and same memory requirement as our algorithm, i.e,
O(max(m, n)) [9]. But since these algorithms minimize
approximate algebraic errors, they are not so reliable as we
found in our experiments 4.1.

Uptill now we have discussed only about the computa-
tional complexity per iteration. But there is also the ques-
tion of number of iterations required for convergence. The-
oretically it is a difficult question to answer, but we would
like to point out one fact which favors our algorithm. In
each step of resection and intersection our algorithm finds
the global minimum of the respective cost functions. This is
a big advantage over L2 BA algorithm which doesn’t do an
exact line search over it’s search direction. Deciding how
much to move along a search direction is an important issue
for fast convergence and it goes by the name of step control
[14]. The L2 based resection-intersection algorithms [1],
[9] do find the global minimum in each step but they do so
of approximate, algebraic cost functions.

4 Experiments

We have done experimental evaluation of the proposed
algorithm (L∞ BA) for convergence, computational scala-
bility and robustness to noise. Comparisons with L2 bun-
dle adjustment based on LM algorithm (L2 BA) and L2

resection-intersection algorithms are also given. For L2 BA
we have used a publicly available implementation of projec-
tive bundle adjustment [8] based on the sparse LM method.
The L2 based resection-intersection algorithms that we
have compared with are the Weighted Iterative Eigen al-
gorithm (WIE) proposed by Chen et al [1] and a varia-
tion of the same algorithm where we avoid the reweight-
ing step, henceforth called the IE algorithm. In section 4.1,
while studying the convergence of the four algorithms we
found that the performance of WIE and IE are unreliable
and hence in the rest of the sections we have compared L∞
BA with only L2 BA.

For initial reconstruction, we have used the projective
factorization method of Triggs et al [13] with proper han-
dling of missing data. This reconstruction was then con-
verted to a quasi-affine reconstruction. Any other projective
reconstruction followed by a conversion to a quasi-affine re-
construction will also work fine. When comparing different
algorithms, all of them have been provided with the same
initial reconstruction.

4.1 Convergence

Here we study the convergence with iteration of L∞ BA,
L2 BA, WIE and IE algorithms. Experiments are done on
one synthetic data set and three real data sets. The synthetic
data set consists of 100 points distributed uniformly within
a unit sphere and 50 cameras in a circle around the sphere
looking straight at the sphere. Gaussian noise of standard
deviation 1 pixel is added to the feature points. In all the
experiments, reprojection error for this data set is the mean
reprojection error over ten trials. The real data sets used
are the corridor and dinosaur data set2 and the hotel data
set3. We have used a subset of 464 structure points from the
dinosaur data set and a subset of 60 views from the hotel
data set. For the corridor and the dinosaur data sets, feature
points are already available and we have used them as they
are. For the hotel data set we have used the KLT tracker
to track feature points and then used Torr’s Matlab SFM
Toolbox [12] to remove the outliers.

We compare the convergence of the algorithms in the
L∞ norm of reprojection error and the Root Mean Squares
reprojection error (RMS) which is a measure of the L2

norm. Figure 2 shows that the L∞ error decreases mono-
tonically for L∞ BA, as claimed in section 2.3, but not so

2http://www.robots.ox.ac.uk/∼vgg/data/data-mview.html
3http://vasc.ri.cmu.edu/idb/
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for the other algorithms. Figure 3 shows RMS error de-
creases (almost) monotonically for L∞ BA and L2 BA but
not so for WIE and IE. From Figure 3, we can further con-
clude the following. All the algorithms converge well for
the sphere data set. For the corridor data set, WIE con-
verges at a higher value than others. For the hotel data set,
both WIE and IE first diverge and then later converge. For
the dinosaur data set, IE fails to converge. To further study
the nature of WIE and IE, we added Gaussian noise of stan-
dard deviation 1 pixel to the real data sets and found that the
algorithms fail to converge at many trials. However, each
time these algorithms have converged in the algebraic cost
that they minimize. This study tells us that algebraic cost
based algorithms may not be very reliable. For all of the
above data sets, our algorithm converges within ten itera-
tions with similar RMS reprojection error as L2 BA. Figure
4 shows the final 3-D reconstruction by our algorithm for
the datasets, sphere and corridor.
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Figure 2. L∞ reprojection error versus itera-
tion for the four algorithms on the data sets:
sphere, corridor, hotel and dinosaur. L∞ er-
ror decreases monotonically for L∞ BA but
not so for the other algorithms.

4.2 Computational scalability

We did experiment on the synthetic sphere data set to
compare the total convergence time for L2 BA and L∞
BA as the number of cameras is varied with the number
of points fixed at 500, Figure 5. To ensure fairness, both the
algorithms were implemented in Matlab with the computa-
tionally intensive routines as mex files. L2 BA converges at
about 10 iterations and L∞ BA at about 2 iterations. Fig-
ure 5 clearly shows that our algorithm has the advantage in
terms of time from 250 cameras onwards. For a video with
30 frames per second this is approximately 8 sec of data.

0 5 10 15 20
0

5

10

15

20

Iterations

R
M

S
 r

ep
ro

je
ct

io
n

 e
rr

o
r 

in
 p

ix
el

s

RMS reprojection error Vs Iterations for Sphere

 

 
Linf_BA
L2_BA
WIE
IE

0 10 20 30 40

0.5

1

1.5

2

Iterations

R
M

S
 r

ep
ro

je
ct

io
n

 e
rr

o
r 

in
 p

ix
el

s

RMS reprojection error Vs Iterations for Corridor

 

 

Linf_BA
L2_BA
WIE
IE

0 10 20 30 40
0

2

4

6

8

10

Iterations

R
M

S
 r

ep
ro

je
ct

io
n

 e
rr

o
r 

in
 p

ix
el

s

RMS reprojection error Vs Iterations for Hotel

 

 
Linf_BA
L2_BA
WIE
IE

0 10 20 30 40
0

2

4

6

8

10

Iterations

R
M

S
 r

ep
ro

je
ct

io
n

 e
rr

o
r 

in
 p

ix
el

s

RMS reprojection error Vs Iterations for Dinosaur

 

 
Linf_BA
L2_BA
WIE
IE

Figure 3. RMS reprojection error versus itera-
tion : RMS error decreases monotonically for
L∞ BA and L2 BA but not so for WIE and IE.
IE fails to converge for the dinosaur data set.

Note that we have to estimate the camera parameters corre-
sponding to each frame of the video. Thus our algorithm is
suitable for solving reconstruction problems for video data
where the number of frames can be large.

Recently, there has been some work on faster computa-
tions of L∞ triangulation and resection problems [10] and
incorporating this will reduce the convergence time of our
algorithm. Further reduction in convergence time is possi-
ble by a parallel implementation, which we have not done
here.

4.3 Behavior with noise

Gaussian noise of different standard deviations are added
to the feature points. Figure 6 shows the RMS reprojection
error in pixels with noise for the synthetic data set, sphere.
Generally the L∞ norm has the reputation of being very
sensitive to noise, but here we see a graceful degradation
with noise. Further to handle noise with strong directional
dependence, we can incorporate the directional uncertainty
model of Ke et. al. [6] into the resection and triangulation
steps of our algorithm, though we have not done it here. We
have not considered outliers here, as bundle adjustment is
considered to be the last step in the reconstruction process
and outlier detection is generally done in the earlier stages
of the reconstruction. In fact as mentioned earlier in sec-
tion 4.1, we have done outlier removal for the hotel data set
before the initial reconstruction step.

5 Conclusion

We have proposed a scalable projective bundle adjust-
ment algorithm using the L∞ norm. It is a resection-
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Figure 4. 3-D reconstruction result for the
datasets, Sphere and Corridor. The Red ’*’
represents the camera center and Blue ’o’
represents the structure point. The first col-
umn shows the initialization, second column
shows the final reconstruction and the third
column shows the groundtruth.
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Figure 5. Total convergence time of L2 BA
and L∞ BA as the number of cameras is var-
ied with number of points fixed at 500.

intersection algorithm which converts the large scale opti-
mization problem to many small scaled ones. There are
scalable resection-intersection algorithms based on the L2

norm but they are not so reliable as we have found out in
our experiments. Our algorithm gives similar performance
as L2 BA in terms of minimizing the reprojection error. It
has a good convergence rate and degrades gracefully with
noise.

In conclusion we can say that our algorithm will outper-
form L2 BA when solving for problems with large number
of cameras or frames like in a video data set. It is possible
to make the present algorithm faster using a parallel imple-
mentation and by a more efficient implementation of L∞
resection and triangulation.
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Figure 6. Behavior of L∞ BA and L2 BA with
image feature noise for the sphere data set.
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