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Abstract

Matrix factorization in the presence of missing data is at the core of many com-
puter vision problems such as structure from motion (SfM), non-rigid SfM and
photometric stereo. We formulate the problem of matrix factorization with miss-
ing data as a low-rank semidefinite program (LRSDP) with the advantage that:
1) an efficient quasi-Newton implementation of the LRSDP enables us to solve
large-scale factorization problems, and 2) additional constraints such as ortho-
normality, required in orthographic SfM, can be directly incorporated in the new
formulation. Our empirical evaluations suggest that, under the conditions of ma-
trix completion theory, the proposed algorithm finds the optimal solution, and also
requires fewer observations compared to the current state-of-the-art algorithms.
We further demonstrate the effectiveness of the proposed algorithm in solving the
affine SfM problem, non-rigid SfM and photometric stereo problems.

1 Introduction

Many computer vision problems such as SfM [26], non-rigid SfM [3] and photometric stereo [11]
can be formulated as a matrix factorization problem. In all these problems, the measured data are
observations of the elements of an m × n measurement matrix M of known rank r. The objective
is to factorize this measurement matrix M into factors A and B of dimensions m × r and n × r,
respectively such that the error ||M −ABT || is minimized. When all the elements of M are known,
and assuming that the elements are corrupted by Gaussian noise, the solution to this problem is given
by the singular value decomposition (SVD) of M . However, in most real applications many of the
elements of M will be missing and we need to solve a modified problem given by:

min
A,B

||W � (M − ABT )||2F + λ1||A||2F + λ2||B||2F (1)

where � is the Hadamard element-wise product, W is a weight matrix with zeroes at indices corre-
sponding to the missing elements of M , and ||A||2F , ||B||2F are regularization terms which prevent
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data overfitting. Matrix factorization with missing data is a difficult non-convex problem with no
known globally convergent algorithm. The damped Newton algorithm [4], a variant of Newton’s
method, is one of the most popular algorithms for solving this problem. However, this algorithm has
high computational complexity and memory requirements and so cannot be used for solving large
scale problems.
We formulate the matrix factorization with missing data problem as a LRSDP [6], which is es-
sentially a rank constrained semidefinite programming problem (SDP) and was proposed to solve
large SDP in an efficient way. The advantages of formulating the matrix factorization problem as
a LRSDP problem are the following: 1) it inherits the efficiency of the LRSDP algorithm. The
LRSDP algorithm is based on a quasi-Newton method which has lower computational complexity
and memory requirements than that of Newton’s method, and so is ideally suited for solving large
scale problems. 2) Many additional constraints, such as the ortho-normality constraints for the or-
thographic SfM, can be easily incorporated into the LRSDP-based factorization formulation; this is
possible because of the flexible framework of the LRSDP (see section 2).
Prior Work Algorithms for matrix factorization in the presence of missing data can be broadly
divided into two main categories: initialization algorithms and iterative algorithms. Initialization
algorithms [26, 13, 10, 18, 25] generally minimize an algebraic or approximate cost of (1) and are
used for providing a good starting point for the iterative algorithms. Iterative algorithms are those
algorithms that directly minimize the cost function (1). Alternation algorithms [23, 28, 12, 1, 2, 14],
damped Newton algorithm [4] and our approach fall under this category. Alternation algorithms are
based on the fact that if one of the factors A or B is known, then there are closed form or numerical
solutions for the other factor. Though the alternation-based algorithms minimize the cost in each
iteration, they are essentially a coordinate descent approach and suffer from flatlining, requiring
an excessive number of iterations before convergence [4]. To solve this problem, damped Newton
and hybrid algorithms between damped Newton and alternation were proposed in [4]. Although
these algorithms give very good results, they cannot be used for solving large-scale problems be-
cause of their high computational complexity and memory requirements. Other algorithms based on
Newton’s method have been proposed in [7, 21], which also cannot be used for solving large-scale
problems.
The matrix factorization with missing data problem is closely related to the matrix completion prob-
lem [9]. The goal of matrix completion is to find a low-rank matrix which agrees with the observed
entries of the matrix M . Recently, many efficient algorithms have been proposed for solving this
problem [8, 17, 19, 16, 15, 20]. Some of them [16, 15, 20] are formulated as matrix factoriza-
tion problems. However, we note that these algorithms, by themselves, can not handle additional
constraints. Matrix factorization also arises while solving the collaborative filtering problem. Col-
laborative filtering is the task of predicting the interests of a user by collecting taste information
from many users, for example in a movie recommendation system. In [24], collaborative filtering
is formulated as a matrix completion problem and solved using a semidefinite program. Later a
fast version, using conjugate gradient, was proposed in [22], but it also cannot handle additional
constraints.

2 Background: Low-rank semidefinite programming (LRSDP)

LRSDP was proposed in [6] to efficiently solve a large scale SDP [27]. In the following paragraphs,
we briefly define the SDP and LRSDP problems, and discuss the efficient algorithm used for solving
the LRSDP problem.
SDP is a subfield of convex optimization concerned with the optimization of a linear objective
function over the intersection of the cone of positive semidefinite matrices with an affine space. The
standard-form SDP is given by:

min C • X subject to Ai • X = bi, i = 1, . . . , k X � 0 (2)

where C and Ai are n × n real symmetric matrices, b is k-dimensional vector, and X is an n × n
matrix variable, which is required to be symmetric and positive semidefinite, as indicated by the
constraint X � 0. The operator • denotes the inner product in the space of n × n symmetric
matrices defined as A • B = trace(AT B) =

∑n
i=1

∑n
j=1 AijBij . The most common algorithms

for solving (2) are the interior point methods [27]. However, these are second-order methods, which

2



need to store and factorize a large (and often dense) matrix and hence are not suitable for solving
large scale problems.
In LRSDP a change of variables is introduced as X = RRT , where R is a real, n × r matrix with
r ≤ n. This has the advantage that it removes the non-linear constraint X � 0, which is the most
challenging aspect of solving (2). However, this comes with the cost that the problem may no longer
be a convex problem. The LRSDP formulation is given by:

(Nr) min C • RRT subject to Ai • RRT = bi, i = 1, . . . , k (3)

Note that the LRSDP formulation depends on r; when r = n, (3) is equivalent to (2). But the
intention is to choose r as small as possible so as to reduce the number of variables, while the
problem remains equivalent to the original problem (2).
A non-linear optimization technique called the augmented Lagrangian method is used for solving
(3). The majority of the iterations in this algorithm involve the minimization of an augmented La-
grangian function with respect to the variable R which is done by a limited memory BFGS method.
BFGS, a quasi-Newton method, is much more efficient than Newton’s method both in terms of com-
putations and memory requirement. The LRSDP algorithm further optimizes the computations and
storage requirements for sparse C and Ai matrices, which is true for problems of our interest. For
further details on the algorithm, see [6, 5].

3 Matrix factorization using LRSDP (MF-LRSDP)

In this section, we formulate the matrix factorization with missing data as an LRSDP problem. We
do this in the following stages: in section 3.1, we look at the noiseless case, that is, where the
measurement matrix M is not corrupted with noise, followed by the noisy measurement case in
section 3.2, and finally in section 3.3, we look at how additional constraints can be incorporated in
the LRSDP formulation.

3.1 Noiseless Case

When the observed elements of the m × n dimensional measurement matrix M are not corrupted
with noise, a meaningful cost to minimize would be:

min
A,B

||A||2F + ||B||2F subject to (ABT )i,j = Mi,j for (i, j) ∈ Ω (4)

where Ω is the index set of the observed entries of M , and A, B are the desired factor matrices of
dimensions m × r and n × r respectively. To formulate this as a LRSDP problem, we introduce a

(m + n) × r dimensional matrix R =

(

A
B

)

. Then

RRT =

(

AAT ABT

BAT BBT

)

(5)

We observe that the cost function ||A||2F +||B||2F can be expressed as trace(RRT ) and the constraints
as (RRT )i,j+m = Mi,j . Thus, (4) is equivalent to:

min
R

trace(RRT ) subject to (RRT )i,j+m = Mi,j for (i, j) ∈ Ω (6)

This is already in the LRSDP form, since we can express the above equation as

min
R

C • RRT subject to Al • RRT = bl, l = 1, . . . , |Ω| (7)

where C is an (m + n)× (m + n) identity matrix, and to simplify the notations we have introduced
the index l with Ω(l) = (i, j) l = 1, . . . , |Ω|. Al are sparse matrices with the non-zero entries at
indices (i, j + m) and (j + m, i) equal to 1/2 and bl = Mi,j . This completes the formulation of
the matrix factorization problem as an LRSDP problem for the noiseless case. Next we look at the
noisy case.
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3.2 Noisy case

When the observed entries of M are corrupted with noise, an appropriate cost function to minimize
would be:

min
A,B

||W � (M − ABT )||2F + λ||A||2F + λ||B||2F (8)

where � is the Hadamard element-wise product and W is a weight matrix with zeros corresponding
to the missing entries and 1 to the observed entries in M . To formulate this as an LRSDP problem,
we introduce noise variables el, l = 1, 2, . . . , |Ω| which are defined as el = (M − (ABT ))l . Now,
(8) can be expressed as

min
A,B,e

||e||22 + λ||A||2F + λ||B||2F subject to (M − ABT )l = el for l = 1, 2, . . . , |Ω| (9)

Next, we aim to formulate this as a LRSDP problem. For this, we construct an augmented noise
vector E = [eT 1]T and define R to be

R =





(

A
B

)

0

0 E



 (10)

R is a ‘block-diagonal’ matrix, where the blocks are of sizes (m + n) × r and (|Ω| + 1) × 1
respectively. With this definition, RRT is a block-diagonal matrix given by

RRT =





(

AAT ABT

BAT BBT

)

0

0 EET



 (11)

We can now express (8) in the following LRSDP form:

min
R

C • RRT subject to Al •RRT = bl, l = 1, . . . , |Ω| + 1 (12)

with
C =

(

λI(m+n)×(m+n) 0
0 I(|Ω|+1)×(|Ω|+1)

)

(13)

Note that the number of constraints |Ω|+ 1 in (12) is one more than the number of observations |Ω|.
This is because the last constraint is used to set E|Ω|+1 = 1, which is done by choosing A|Ω|+1 to be
a sparse matrix with the non-zero entry at index (|Ω|+ l + m + n, |Ω|+ 1 + m + n) equal to 1 and
b|Ω|+1 = 1. For the remaining values of l, the Al are sparse matrices with the non-zero entries at
indices (i, j+m), (j+m, i), (|Ω|+1+m+n, l+m+n) and (l+m+n, |Ω|+1+m+n) equal to 1/2
and bl = Ml. Note that (12) is a block-LRSDP problem (R has a block-diagonal structure), which
is a simple extension of the original LRSDP problem [5]. This completes the LRSDP formulation
for the noisy case. Next, we look at incorporating additional constraints in this framework.

3.3 Enforcing Additional Constraints

Many additional constraints can be easily incorporated in the LRSDP formulation. We illustrate
this using the specific example of orthographic SfM [26]. SfM is the problem of reconstructing the
scene structure (3-D point positions and camera parameters) from 2-D projections of the points in
the cameras. Suppose that m/2 cameras are looking at n 3-D points, then under the affine camera
model, the 2-D imaged points can be arranged as an m × n measurement matrix M with columns
corresponding to the n 3-D points and rows corresponding to the m/2 cameras (2 consecutive rows
per camera) [26]. Under this arrangement, M can be factorized as M = ABT , where A is a m × 4
camera matrix and B is a n × 4 structure matrix with the last column of B, an all-one vector.
Thus, M is a rank 4 matrix with a special structure for the last column of B. Further, under the
orthographic camera model, A has more structure (constraints): pair of ’rows’ that corresponds to
the same camera is ortho-normal. To state this constraints precisely, we decompose the A matrix as
A = [P t] where P is a m × 3 sub-matrix consisting of the first three columns and t is the last
column vector. We can now express the camera ortho-normality constraint through the PP T matrix,
whose diagonal elements should be 1 (normality constraint) and appropriate off-diagonal elements
should be 0 (orthogonality constraint). Since, the last column of B is the all one vector, we can write
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B = [X 1], where X is a n × 3 matrix. Thus, ABT = PX + t1T and the observation error can
be expressed as el = (M − PX)l − ti for Ω(l) = (i, j). A meaningful optimization problem to
solve here would be to minimize the observation error subject to the ortho-normality constraints:

min
e,P,X,t

||e||22 subject to el = (M − PX)l − ti, l = 1, 2, . . . , |Ω|

(PP T )k,k = 1, k = 1, 2, . . . , m

(PP T )k,l = 0, if k and l are rows from same camera (14)

To formulate this as an LRSDP problem, we introduce the augmented translation variable T =
[tT 1]T , and propose the following block-diagonal matrix R:

R =







(

P
X

)

0 0

0 T 0
0 0 E






(15)

With this definition of R, we can express (14) as a LRSDP problem; following steps similar to the
previous sections, it is should be straight forward to figure out the appropriate C and Al matrices
required in this LRSDP formulation (3). This completes our illustration on the incorporation of
the ortho-normality constraints for the orthographic SfM case. This example should convince the
reader that many other application-specific constraints can be directly incorporated into the LRSDP
formulation; this is because of the underlying SDP structure of the LRSDP.

4 Matrix Completion, Uniqueness and Convergence of MF-LRSDP

In this section, we state the main result of the matrix completion theory and discuss its implications
for the matrix factorization problem.

4.1 Matrix Completion Theory

Matrix completion theory considers the problem of recovering a low-rank matrix from a few samples
of its entries:

min
X

rank(X) subject to Xi,j = Mi,j for (i, j) ∈ Ω (16)

More specifically, it considers the following questions: 1) when does a partially observed matrix
have a unique low-rank solution? 2) How can this matrix be recovered? The answers to these
questions were provided in theorem 1.3 of [9] which states that if 1) the matrix M , that we want to
recover, has row and columns spaces incoherent with the standard basis and 2) we are given enough
entries (≥ O(rd6/5 log d), where d = max(m, n)), then there exists a unique low-rank solution to
(16). Further, the solution can be obtained by solving a convex relaxation of (16) given by:

min
X

||X ||∗ subject to Xi,j = Mi,j for (i, j) ∈ Ω (17)

where ||X ||∗ is the nuclear norm of X , given by the sum of its singular values.

4.2 Relation with Matrix Factorization and its Implications

In matrix completion the objective is to find a minimum rank matrix which agrees with the partial
observations (16), whereas in matrix factorization we assume the rank r to be known, as in the
problems of SFM and photometric stereo, and we use the rank as a constraint. For example, in our
LRSDP formulation, we have imposed this rank constraint by fixing the number of columns of the
factors A and B to r. However, though the matrix completion and factorization problems are de-
fined differently, they are closely related as revealed by their very similar Lagrangian formulations.
This fact has been used in solving the matrix completion problem via matrix factorization with an
appropriate rank [16, 15, 20]. We should also note that matrix completion theory helps us answer the
question raised in [4]: when is missing data matrix factorization unique (up to a gauge)? And from
the discussion in the previous section, it should be clear that the conditions of the matrix completion
theory are sufficient for guaranteeing us the required uniqueness. Further, in our experimental evalu-
ations (see next section), we have found that the LRSDP formulation, though a non-convex problem
in general, converges to the global minimum solution under these conditions.
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5 Experimental Evaluation

We evaluate the performance of the proposed LRSDP-based factorization algorithm (MF-LRSDP)
on both synthetic and real data and compare it against other algorithms such as alternation [4],
damped Newton [4] and OptSpace [15], which is one of state-of-the-art algorithms for matrix com-
pletion.

5.1 Evaluation with Synthetic Data

The important parameters in the matrix factorization with missing data problem are: the size of
the matrix M characterized by m and n, rank r, fraction of missing data and the variance σ2 of
the observation noise. We evaluate the factorization algorithms by varying these parameters. We
consider two cases: data without noise and data with noise. For synthetic data without noise, we
generate n×n matrices M of rank r by M = ABT , where A and B are n×r random matrices with
each entry being sampled independently from a standard Gaussian distribution N (0, 1). Each entry
is then revealed randomly according to the missing data fraction. For synthetic data with noise, we
add independent Gaussian noise N (0, σ2) to the observed entries generated as above.
Exact Factorization: a first comparison. We study the reconstruction rate of different algorithms
by varying the fraction of revealed entries per column (|Ω|/n) for noiseless 500 × 500 matrices of
rank 5. We declare a matrix to be reconstructed if ||M − M̂ ||F /||M ||F ≤ 10−4, where M̂ = ÂB̂ is
the reconstructed matrix and ||.||F denotes the Frobenius norm. Reconstruction rate is defined as the
fraction of trials for which the matrix was successfully reconstructed. In all the synthetic data exper-
iments, we performed 10 trials. Figure 1(a) shows the reconstruction rate by MF-LRSDP, alternation
and OptSpace. MF-LRSDP gives the best reconstruction results as it needs fewer observations for
matrix reconstruction than the other algorithms. It is followed by OptSpace and alternation, respec-
tively. MF-LRSDP also takes the least time, followed by OptSpace and alternation. For similar
comparison to other matrix completion algorithms such as ADMiRA [16], SVT [8] and FPCA [17],
the interested reader can look at [15], where OptSpace was shown to be consistently better than
these algorithms. For the remaining experiments on synthetic data, we mostly compare MF-LRSDP
against OptSpace. Note that we have not included the damped Newton algorithm in this comparison
because it is very slow for matrices of this size.
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Figure 1: (a) Reconstruction rate vs. fraction of revealed entries per column |Ω|/n for 500 × 500 matrices
of rank 5 by MF-LRSDP, alternation and OptSpace. The proposed algorithm MF-LRSDP gives the best recon-
struction results since it can reconstruct matrices with fewer observed entries. (b) Time taken for reconstruction
by different algorithms. MF-LRSDP takes the least time.

Exact Factorization: vary size. We study the reconstruction rate vs. fraction of revealed entries per
column |Ω|/n for different sizes n of rank 5 square matrices by MF-LRSDP and OptSpace. Figure
2(a) shows that MF-LRSDP reconstructs matrices from fewer observed entries than OptSpace.
Exact Factorization: vary rank. We study the reconstruction rate vs. |Ω|/n as we vary the rank r
of 500× 500 matrices. Figure 2(b) again shows that MF-LRSDP gives better results than OptSpace.
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Figure 2: (a) Reconstruction rate vs. fraction of revealed entries per column |Ω|/n for rank 5 square matrices
of different sizes n by MF-LRSDP and OptSpace. MF-LRSDP reconstructs matrices from fewer observed
entries than OptSpace. (b) Reconstruction rate vs. |Ω|/n for 500 × 500 matrices of different ranks by MF-
LRSDP and OptSpace. Again MF-LRSDP needs fewer observations than OptSpace. (c) RMSE vs. noise
standard deviation for rank 5, 200 × 200 matrices by MF-LRSDP, OptSpace, alternation and damped Newton.
All algorithms perform equally well.

Noisy Factorization: vary noise standard deviation. For noisy data, we use the root mean
square error RMSE = 1/

√
mn||M − M̂ ||F as a performance measure. We vary the standard

deviation σ of the additive noise for rank 5, 200 × 200 matrices and study the performance by
MF-LRSDP, OptSpace, alternation and damped Newton. Figure 2(c) shows that all the algorithms
perform equally well.
For timing comparisons, please refer to the supplementary material.

5.2 Evaluation with Real Data

We consider three problems: 1) affine SfM 2) non-rigid SfM and 3) photometric stereo.
Affine SfM. As discussed in section 3.3, for affine SfM, the m×n measurement matrix M is a rank
4 matrix with the last column of matrix B an all-one vector. M is generally an incomplete matrix
because not all the points are visible in all the cameras. We evaluate the performance of MF-LRSDP
on the ‘Dinosaur’ sequence used in [4, 7], for which M is a 72 × 319 matrix with 72% missing
entries. We perform 25 trials and at each trial we provide the same random initializations to MF-
LRSDP, alternation and damped Newton (OptSpace has its only initialization technique). We use
the root mean square error over the observed entries, ||W �(M −M̂)||F /

√

|Ω|, as our performance
measure. Figure 3 shows the cumulative histogram over the RMS pixel error. MF-LRSDP gives
the best performance followed by damped Newton, alternation and OptSpace. We further tested the
algorithms on a ’longer Dinosaur’, the result of which is provided in the supplementary material.
Non-rigid SfM. In non-rigid SfM, non-rigid objects are expressed as a linear combination of b basis
shapes. In this case, the m × n measurement matrix M can be expressed as M = ABT , where A
is an m × 3b matrix and B is an n × 3b matrix [3]. This makes M a rank 3b matrix. We test the
performance of the algorithms on the ’Giraffe’ sequence [4, 7] for which M is a 240 × 167 matrix
with 30% missing entries. We choose the rank as 6. Figure 3 shows the cumulative histogram of 25
trials from which we conclude that MF-LRSDP, alternation and damped Newton give good results.
Photometric Stereo. Photometric stereo is the problem of estimating the surface normals of an
object by imaging that object under different lighting conditions. Suppose we have n images of
the object under different lighting conditions with each image consisting of m pixels (m surface
normals) and we arrange them as an m × n measurement matrix M . Then under Lambertian as-
sumptions, we can express M as M = ABT , where A is an m × 3 matrix representing the surface
normals and reflectance and B is an n × 3 matrix representing the light-source directions and in-
tensities [11]. Thus, M is a rank 3 matrix. Some of the image pixels are likely to be affected by
shadows and specularities and those pixels should not be included in the M matrix as they do not
obey the Lambertian assumption. This makes M , an incomplete matrix. We test the algorithms
on the ‘Face’ sequence [4, 7] for which M is a 2944 × 20 matrix with 42% missing entries. The
cumulative histogram in figure 3 shows that MF-LRSDP and damped Newton gives the best results
followed by alternation and OptSpace.
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Figure 3: Cumulative histogram (of 25 trials) for the Dinosaur, Giraffe and the Face sequence. For all of them,
MF-LRSDP consistently gives good results.

Additional constraints: Orthographic SfM. Orthographic SfM is a special case of affine SfM,
where the camera matrix A satisfies the additional constraint of ortho-normality, see section 3.3. We
show here that incorporating these constraints leads to a better solution. Figure 4 shows the input
point tracks, reconstructed point tracks without the constraints and reconstructed point tracks with
the constraints for the Dinosaur turntable sequence. Without the constraints many tracks fail to be
circular, whereas with the constraints all of them are circular (the dinosaur sequence is a turntable
sequence and the tracks are supposed to be circular). Thus, incorporating all the constraints of a
problem leads to better solution and MR-LRSDP provides a very flexible framework for doing so.

(a) Input point tracks (b) Reconstructed tracks without
constraints

(c) Reconstructed tracks with con-
straints

Figure 4: (a) Input (incomplete) point tracks of the Dinosaur turntable sequence, (b) reconstructed tracks
without orthonormality constraints and (c) reconstructed tracks with orthonormality contraints. Without the
constraints many tracks fail to be circular, whereas with the constraints all of them are circular (the dinosaur
sequence is a turntable sequence and the tracks are supposed to be circular).

6 Conclusion and Discussion

We have formulated the matrix factorization with missing data problem as a low-rank semidefinite
programming problem MF-LRSDP. MF-LRSDP is an efficient algorithm that can be used for solv-
ing large-scale factorization problems. It is also flexible for handling many additional constraints
such as the ortho-normality constraints of orthographic SfM. Our empirical evaluations on synthetic
data show that it needs fewer observations for matrix factorization as compared to other algorithms
and it gives very good results on the real problems of SfM, non-rigid SfM and photometric stereo.
We note that though MF-LRSDP is a non-convex problem, it finds the global minimum under the
conditions of matrix completion theory. As a future work, it would be interesting to find a theo-
retical justification for this. Also, it would be interesting to find out how MF-LRSDP performs on
collaborative filtering problems.
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