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Fig. 1: We propose to use a deep generative model, RIDE [1] , as an image prior for compressive signal recovery. Since RIDE
models long-range dependency in images using spatial LSTM, image recovery is better than other competing methods.

ABSTRACT

In this paper we leverage the recurrent generative model,
RIDE, for applications like image inpainting and compres-
sive image reconstruction. Recurrent networks can model
long range dependencies in images and hence are suitable
to handle global multiplexing in reconstruction from com-
pressive imaging. We perform MAP inference with RIDE
as prior using back-propagation to the inputs and projected
gradient method. We propose a entropy thresholding based
approach for preserving texture well. Our approach shows
comparable results for image inpainting task. It shows supe-
rior results in compressive image reconstruction compared to
traditional methods D-AMP and TVAL3 which uses global
prior of minimizing TV norm.

Index Terms— Compressive imaging, recurent genera-
tive models, image inpainting,

1. INTRODUCTION

It is a well known fact that natural images are sparse in some
transformed basis like DCT and Wavelet etc. Compressive
sensing (CS) theory states that such sparse signals can be
reconstructed from much lower compressed measurements
than sampling at Nyquist rate []. This cuts down the cost of
sensing, especially for imaging in the non-visible region of
the spectrum where sensors are much costlier. Imaging in
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non-visible spectrum has applications in industrial inspec-
tion, surveillance, anti-counterfeiting and many more [2].
Given the potential advantages, CS is a promising solution
for its practical viability. The single-pixel camera (SPC) is
a classical example of CS framework [3]. In SPC, a single
photo diode is used to capture compressive measurements
and then reconstruct back the whole scene. It is extended for
SWIR imaging []. SPC is commercially made available from
InView Corporation.

In SPC, we take M linear measurements of the scene
x ∈ RN , with M < N reconstruction of the signal x is ill-
posed making data priors essential. Initially, priors based on
empirical observations of natural image statistics were pro-
posed for CS reconstruction. For example, priors assuming
sparsity in the domain of wavelets [4], DCT coefficients and
gradients [5]. Most widely used minimum total-variation (TV
norm) prior is based on smooth local variations in natural im-
ages [6, 7]. However, using these priors at low measurement
rates results in low quality reconstructions (see TVAL3 re-
construction in fig. 1). This is due to their inability to capture
the complexity of natural image statistics. On the other hand,
data driven approaches based on dictionary learning [8] and
deep neural nets [9, 10] have also been proposed. Although
they capture the complexity both the approaches handle only
local multiplexing on image patches and are not suitable for
global multiplexing scenario as in case of SPC. To address
these problems, in this work we prospose to use a generative
model, RIDE, proposed by Theis et al. [1] as the prior for CS
image recovery. RIDE is both data driven and because of re-



current nature handles the global multiplexing in SPC well. A
line about LSTM and modeling the long term dependencies.
Our contributions are as follows:

• We utilize RIDE’s ability as an image prior to model
long term dependencies for reconstructing compres-
sively sensed images.

• We use backpropagation to inputs while doing gradient
ascent for MAP inference.

• We formulate random image inpainting as a special
case of compressive sensing recovery problem and
using our MAP framework, show better results than
multiscale KSVD approach.

• We hypothesize that the model’s uncertainty in predic-
tion can be related to the entropy of component pos-
terior probabilities. By thresholding the entropy, we
enhance texture preserving ability of the model.

2. RELATED WORK

Single Pixel Camera: Signal reconstruction from CS mea-
surements is an ill-posed problem and hence we need to use
signal priors. Initially algorithms were proposed to look for
a sparse solution in l1 norm. They assume sparsity in the
domain of wavelet coefficients, DCT coefficients or gradi-
ents. Later class of algorithms known as approximate mes-
sage passing (AMP) algorithms [11, 12] use off-the-shelf de-
noiser to iteratively refine their solution. ReconNet is another
recent method using CNNs [9]. But as mentioned eariler, it
can only handle local multiplexing since it is a patch based
approach. Here we propose to do compressive image recon-
struction with recurrent generative model, RIDE as the image
prior. Since it is not patch limited, we can handle global mul-
tiplexing.

Deep Generative Models: Recently advances with deep
neural nets have led to powerful deep generative models.
These include Generative Adversarial Nets (GAN) [13], Vari-
ational Auto Encoders (VAE) [14], Pixel Recurrent Neural
Networks (PixelRNN) [15] and Recurrent Image Density Es-
timator (RIDE) [1]. Among these contemporary models we
find RIDE particularly suitable as low level image prior for
our tasks involving Bayesian inference. GANs don’t model
the data distribution and VAE doesn’t provide the exact like-
lihood measure. PixelRNN although models the distribution,
it discretizes the distribution of a pixel resulting in optimiza-
tion difficulties. RIDE models continuous distribution and
gives exact likelihood thus facilitating gradient ascent for
optimization. Also, RIDE being auto regressive isn’t limited
to patch size, as is the case with discriminative and even non
deep generative models like dictionary learning. This is very
useful particularly in cases like SPC where the reconstruction
has to take account of global multiplexing and patch based
methods can’t be used directly.

3. BACKGROUND

Let x be a gray scale-image and xij be the pixel intensity at
location ij then x<ij describes the causal context around that
pixel containing all xmn such thatm ≤ i and j < n. Now the
joint distribution over the image can be factorized as,

p(x) =
∏
ij

p(xij |x<ij), (1)

which is a valid factorization involving conditional ditribu-
tions. Natural images in general exhibit long range correla-
tions. In order to model such dependencies Theis et al. [1]
have proposed to use two dimensional Spatial Long Short
Term Memory (LSTMs) units [16]. Spatial LSTMs summa-
rize the entire causal context x<ij through their hidden rep-
resentation hij , as hij = f(x<ij ,hi−1,j ,hi,j−1), where f is
a complex non linear function. f has memory elements anal-
ogous to physical read, write and erase operations thus en-
abling LSTMs to model long term dependencies in sequences.
Now each factor in the above joint distribution is modeled us-
ing conditional Gaussian Scale Mixtures, thus the complete
distribution is given by,

p(x) =
∏
ij

p(xij |hij ,θ), (2)

p(xij |hij ,θ) =
∑
c,s

p(c, s|hij ,θ)p(xij |hij , c, s,θ).(3)

For more details we recommend the reader to go through [1].
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Fig. 2: Inpainting comparisons: From left to right, original
image, masked image, multiscale KSVD [17], ours. The
numbers mentioned below the figures are PSNR(left) and
SSIM(right).



4. COMPRESSIVE IMAGE RECOVERY USING RIDE

Here we consider the problem of image restoration, x ∈ RN ,
from linearly compressed measurements, y ∈ RM as y =
Φx+n, where Φ ∈ RM×N is the sensing matrix withM < N
and n ∈ RM is noise in the observation with known statistics.

4.1. MAP Inference via Backpropagation

Compressive image recovery: Here, we use Maximum-
A-Posteriori principle to find the desired image as x̂ =
argmaxx p (x) p (y|x). For SPC, we formulated the MAP
inference as,

x̂ = argmax
x

log p (x) s.t. y = Φx. (4)

Here we do reconstruction for the noise less case. The log-
likelihood and gradients are given by the model as in Eqns.
2, 3 and 7. To optimize the above we use projected gradients
method, where after each gradient update solution is projected
back on to the affine solution space for y = Φx. Every k-th
iteration consists of the following two steps,

x̂k = xk−1 + η∇xk−1
log p (x) , (5)

xk = x̂k − ΦT
(
ΦΦT

)−1
(Φx̂k − y) . (6)

The gradient with respect to the log prior is given by,

∂ log p(x)

∂xij
=

∑
k≥i,l≥j

∂ log p(xkl|hkl,θ)

∂xij
, (7)

due to the recurrent nature of the model, each pixel through
its hidden representation contributes to the likelihood of all
the pixels that come after it in forward pass. Hence, during
backward pass the gradient from each pixel propagates to all
the pixels prior to it in the sequence.

Image inpainting: In image inpainting our goal is to
recover the missing pixels from a randomly masked image.
Here, we consider this as the special case of compressive
imaging, where Φ is a binary matrix depending on the mask.
Φ has a single 1 in every row and a column either has single
1 or all zeros. The masked image can be written as ΦTy. The
iterative update (6) and (7) here simplifies to gradient ascent
of the prior over missing pixels, while keeping the observed
pixels constant. We have included proof for this in our sup-
plementary material.

In all of our experiments we consider row orthonormal-
ized Φ and the term

(
ΦΦT

)−1
reduces to identity matrix.

4.2. Tricks used for inference

4.2.1. Four directions

Joint distribution in eqn. (1) can be factorized in multiple
ways, for example along each of the four diagonal directions

of an image, i.e., top-right, top-left, bottom-right and bottom-
left. Gradients from different factorizations are considered
at each iteration of the inference, by flipping the image in
the corresponding direction. This leads to faster convergence
as compared to just considering one direction. While doing
inference on crops from BSDS test images, we observe that
the convergence rate is twice faster with flipping.

4.2.2. Entropy-based Thresholding

While solving the MAP optimization, we observed that we
can recover the edges quite well but texture regions are
blurred. This happens because the RIDE model may not
have the right mixture component (see Eqn. (3)) to explain
the latent texture. In such cases, all the mixture components
can be chosen with almost uniform probability, resulting in
blurred texture. To detect such cases, in each iteration, we
consider entropy of the posterior probability of scales and
components in RIDE at each point as a metric to understand
how confident the model is in modeling the distribution at
that point. This is mathematically given as,

H(i, j) = −
∑
c,s

p(c, s|x<ij , xij) log(p(c, s|x<ij , xij)),

if the point ij lies on an edge, the entropy is low as there
are only certain selected components which can explain that
edge. Whereas, if it lies in a flat or textured patch, the en-
tropy is high and the point is equiprobable to come from dif-
ferent components and scales. Therefore, to reduce blurring
we maintain a threshold on the entropy above which we clip
the gradients to zero. Figure 3 shows the effect of entropy
constraint on the texture reconstruction.

Original Image
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Fig. 3: Compressive sensing image reconstructions from 30%
measurements obtained by varying entropy thresholds. The
texture of the magnified patch is recovered better with the
threshold 3.5. The numbers mentioned in dBs are PSNR of
whole image.



5. EXPERIMENTS

For training the RIDE model we have used publicly avail-
able Berkeley Segmentation dataset (BSDS300). Following
the instincts from [1], we trained the model with increas-
ing patch size in each epoch. Starting with 8x8 patch
we go till 22x22 in steps of 2 for 8 epochs. We used
the code provided by authors of RIDE in caffe available
here(https://github.com/lucastheis/ride/). We start with a very
low learning rate (0.0001) and decrease it to half the previ-
ous value after every epoch. We used Adam optimization
[18] for training the model. We observe that models with
more than one spatial LSTM layer don’t result in much of
improvement for our tasks of interest. Hence we proceed
with a single layer RIDE model for all the inference tasks
mentioned in this paper. Also we have used entropy based
gradient thresholding described above (sec. 4.2.2) to avoid
blurring the texture region in all the experiments. In order
to accommodate for boundary issues we remove a two pixel
neighbourhood around the image for PSNR and SSIM calcu-
lations in all the experiments. For a fair comparison, we also
do the same for the results of other methods.

5.1. Single Pixel Camera

In general, the SPC framework involves global multiplexing
of the scene. But the recently proposed state-of-the-art meth-
ods for signal reconstruction, like ReconNet, are designed for
local spatial multiplexing and can’t handle the global mul-
tiplexing case directly. Our model, using Spatial LSTMs,
can reason for long term dependencies in image sequences
and is preferable for such kind of tasks. We show SPC re-
construction results on some randomly chosen images from
the BSDS300 test set which were cropped to 160 × 160 size
for computational feasibility, see figures on top of table 1.
We generate compressive measurements from them using
random Gaussian measurement matrix with orthonormalized
rows. We take measurements at four different rates 0.4, 0.3,
0.25 and 0.15. Using the projected gradient method, we
perform gradient ascent for 200 iterations for 0.4 and 0.3
measurement rates. For lower measurement rates, we run
gradient ascent for 400 iterations. Also, we follow the en-
tropy thresholding procedure mentioned in section 4.2.2 with
a threshold value of 3.5 which we empirically found to be
good for preserving textures. In all the cases, we start with
a random image uniformly sampled from (0, 1). Reconstruc-
tion results for five images are shown in Table 1 and Figure 1.
We were able to show improvements both in terms of PSNR
and SSIM values for different measurement rates. Even at
low measurement rates, our method preserves the sharp and
prominent structure in the image. D-AMP has the tendency
to over-smooth the image, whereas TVAL3 adds blotches to
even the smooth parts of the image.

5.2. Image Inpainting

For image inpainting, we randomly removed 70% of pixels
and estimated them using aforementioned inference method.
We compared our approach with the multiscale adaptive dic-
tionary learning approach [17], which is an improvement over
the KSVD algorithm, see Figure 2. It is clear from the figure
that our approach is able to recover the sharp edges better than
the multiscale KSVD approach. This is because our method
is based on global image prior as compared to the patch-based
multiscale KSVD approach.

6. CONCLUSIONS AND FUTURE WORK

We demonstrate that deep recurrent generative image models
such as RIDE can be used effectively for solving compres-
sive image recovery problems. The main advantages of using
such deep generative models is that they are global priors and
hence can model long term image dependencies. Also using
the proposed MAP formulation we can solve many other im-
age restoration tasks such as image deblurring, superresolu-
tion, demosaicing and computational photography problems
such as coded aperture and exposure. Another direction of
future work would be to adapt the trained generative model
to the specific image that we are interested in restoring. We

Sr. No Method M.R.=30% M.R.=25% M.R.=15%
PSNR SSIM PSNR SSIM PSNR SSIM

1
TVAL3 29.54 0.833 28.40 0.802 26.76 0.736
D-AMP 31.59 0.867 29.70 0.836 24.70 0.716

Ours 33.87 0.898 32.72 0.872 29.68 0.792

2
TVAL3 26.65 0.726 25.86 0.6810 24.51 0.575
D-AMP 26.08 0.674 25.44 0.633 23.67 0.497

Ours 30.03 0.835 28.85 0.791 25.59 0.612

3
TVAL3 26.20 0.789 25.08 0.745 22.63 0.638
D-AMP 31.66 0.923 29.09 0.883 24.5 0.757

Ours 33.02 0.919 31.70 0.897 25.32 0.754

4
TVAL3 30.20 0.849 29.10 0.820 25.44 0.719
D-AMP 30.17 0.858 28.06 0.796 25.81 0.70

Ours 34.70 0.919 33.37 0.900 25.88 0.798

4
TVAL3 30.20 0.849 29.10 0.820 25.44 0.719
D-AMP 30.17 0.858 28.06 0.796 25.81 0.70

Ours 34.70 0.919 33.37 0.900 25.88 0.798

Mean
TVAL3 27.858 0.783 26.90 0.745 24.69 0.646
D-AMP 29.07 0.787 27.51 0.7464 24.48 0.633

Ours 31.57 0.859 30.54 0.818 27.09 0.700

Table 1: Comparisons of compressive imaging reconstruc-
tions at different measurement rates for the images shown
above. Our method outperforms the existing global prior
based methods in most of the cases.



can use our entropy thresholding step to detect which part of
the image is not modeled well by the generic model and then
adapt the model accordingly.
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