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Abstract 

The scale and scope of multi-camera networks has advanced significantly; camera networks are now 

found not only in surveillance and access control applications but also in motion capture systems, light 

stages for reflectance acquisition, and large scale traffic monitoring. While the specifics of the individual 

applications differ, certain broader trends transcend these applications; examples of such trends relate to 

the scalability of the network in terms of the increasing number of cameras and the increasing capabilities 

of individual cameras. In this article, we study the role of compressive sensing (CS) in multi-camera 

networks and its central role in enabling scalability of network. Specifically, we focus on the central 

question of whether recent advances in CS and sparse representations can enable solutions to scalability 

challenges in large-scale multi-camera networks. Some of this discussion is speculative, focused on the 

potential opportunities afforded by fundamentally re-architecting camera networks by exploiting CS 

based approaches to tackle the data deluge challenge inherent in multi-camera networks. 

1. Introduction  

Applications that benefit from multi-camera systems cover a wide spectrum --- ranging from the mundane 

(surveillance) to the exotic (markerless motion capture, crowd dynamics). In most of these applications, 

scalability of the system to encompass a very large number of cameras faces tremendous challenges in 

terms of data acquisition, transmission and processing costs. This is further exacerbated when sensors are 

costly as in high-speed and night-vision photography. As an example, the number of cameras in a network 

can vary from a few cameras for video conferencing, to tens for monitoring buildings, to hundreds for 

traffic monitoring, and tens of thousands over a city such as London or New York.  Thus, for large 

camera networks, storing, transmitting, and processing this huge amount of data is extremely challenging. 

The traditional paradigm of acquiring a high-resolution video feed and then compressing the data for 

transmission and storage places unreasonable resource requirements on the network. Clearly, there is a 

need for more efficient techniques for sensing and processing. 

Traditional sampling is done on the basis of Shannon-Nyquist sampling theorem, which states that, to 

avoid loss of information, a signal should be sampled at a rate that is at least twice its signal bandwidth. 

For applications that involve a network of cameras, this leads to an inordinately high data-rate that places 

a significant burden on the associated processing infrastructure. However, much of this is alleviated by 

the recently proposed theory of compressive sensing (CS) which suggests that we can exploit geometric 

structures inherent to most real-world signals to sense them at a rate that is often far smaller than the 

Nyquist rate [1, 2]. For example, natural images are sparse in wavelet domain --- in that, most of the 

energy of the signal is captured by a small fraction of its wavelet coefficients. CS exploits this sparsity; it 

states that we can sample the signal at a rate proportion to the sparsity of the signal and recover the signal. 
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In this paper, we evaluate the potential for compressive cameras to alleviate sensing and processing 

requirements in a multi-camera network. We discuss the key concepts in video compressive sensing, 

which can be enhanced using multi-view constraints to enable sensing at smaller measurement rates. 

Given that CS provides significant improvements when sensing is costly, we envision that it could play a 

significant role in enabling multi-modal multi-camera networks of the future. Such networks would be 

extremely powerful and capable of imaging scenes and objects in various dimensions of light including 

spectrum, time, polarization, and angle. 

2. Compressive Cameras 

Cameras based on the CS theory hold significant promise to alleviate the data deluge problem. By 

adopting such cameras in place of traditional Nyquist samplers, we can often obtain significant reductions 

in processing while simultaneously enabling many desirable features. Let us begin by considering the 

impact of compressive sensing on a single camera before we address the impact on a network of cameras.  

Single pixel camera (SPC). Rather than measuring intensity values on a 2D sampling of the scene, CS 

requires measurement of inner products between the scene and a set of test functions that satisfy the 

restricted isometry property. When the scene is compressible by an algorithm like JPEG or JPEG2000, 

CS enables stable reconstruction of an image of the scene from far-fewer measurements than the number 

of reconstructed pixels (see Figure 1(b)), thus resulting in sub-Nyquist image acquisition. The “single-

pixel” CS camera architecture [3] is basically an optical computer (comprising a DMD, two lenses, a 

single photon detector, and an analog-to-digital (A/D) converter) that optically computes random linear 

measurements of the scene (see Figure 1(a)). The random CS measurements enable a tradeoff between 

space and time during image acquisition. Since the camera compresses during the acquisition, it has the 

capability to efficiently handle high-dimensional data from applications like video and hyper-spectral 

imaging. The camera design reduces the required size, complexity, and cost of the photon detector array 

down to a single unit, which enables the use of exotic detectors for sensing in non-visible wavebands that 

would be impossible in a conventional digital camera. 

A key advantage of the SPC is in capturing signals beyond the visible spectra. Consumer digital cameras 

in the mega-pixel range are now ubiquitous thanks to the happy coincidence that the semiconductor 

material of choice for large-scale electronics integration (silicon) also happens to readily convert photons 

at visual wavelengths into electrons. In contrast, imaging at wavelengths where silicon is blind is often 

considerably more expensive. Thus, for comparable resolution, a $50 digital camera for the visible 

becomes a $50,000 camera for the infrared. The SPC design reduces the required size, complexity, and 

cost of the photon detector array down to a single unit, which enables the use of exotic detectors that 

would be impossible in a conventional digital camera that requires an array of sensors. 

Video compressive sensing. The SPC can also be used for capturing videos. However, video CS is 

complicated by the ephemeral nature of dynamic events, which makes direct extensions of standard CS 

imaging architectures and signal models difficult. This requires the use of more sophisticated signal 

model and measurement strategies that are specific to the video sensing problem. 

Parametric motion model (CS-LDS). One way to address this challenge is to narrow our scope to certain 

parametric models that are suitable for a broad class of videos; this morphs the video recovery problem to 

one of parameter estimation and provides a scaffold to address the challenges listed above. We have 

developed a CS framework for videos [4] modeled as linear dynamical systems (LDSs).  Parametric 

models, like LDSs, offer lower dimensional representations for otherwise high-dimensional videos. This 

significantly reduces the number of free parameters that need to be estimated and, as a consequence, 

reduces the amount of data that needs to be sensed. In the context of video sensing, LDSs offer interesting 

tradeoffs by characterizing the video signal using a mix of dynamic/time-varying parameters and 

static/time-invariant parameters (see Figure 1(c)). Further, the generative nature of LDSs provides a prior 



for the evolution of the video in both forward and reverse time. To a large extent, this property helps us 

circumvent the challenges presented by the ephemeral nature of videos. We use sparse priors for the 

parameters of the LDS model. The core of the framework is a two-step measurement strategy that enables 

the recovery of the LDS parameters from compressive measurements by solving a sequence of linear and 

convex problems. For more details, see [4]. 

Figure 1. Compressive imaging: (a) Single-pixel camera block diagram [3]. Incident lightfield (corresponding to the 

desired image) is reflected off a digital micro-mirror device (DMD) array whose mirror orientations are modulated in the 

pseudorandom sequence  supplied by the random number generators (RNG). Each different mirror pattern produces a 

voltage at the single photodiode that corresponds to one measurement. (b) Examples of image reconstructions using the 

SPC. (c) A gallery of reconstruction results using the CS-LDS framework [4]. Each subfigure shows reconstruction results 

for a different video. The three rows of each subfigure correspond to, from top-bottom, the ground truth video and CS-

LDS reconstructions at compression ratios of 20 and 50. Each column is a frame of the video and its reconstruction. Fig.  

1(a) courtesy [3] and Fig. 1(c) courtesy [4] “Copyright ©2013 Society for Industrial and Applied Mathematics.  Reprinted 

with permission.  All rights reserved.” 



General motion (CS MUVI): As discussed earlier, the key challenge with sensing videos with SPC is that 

the scene changes with every compressive measurement obtained. Though LDS can account for simple 

motion, it cannot handle complex motions. We circumvent this problem by designing special 

measurement matrices that enable a two-step recovery process; the first step is to estimate motion in the 

scene and the second step is to recover the scene in full spatial and temporal resolution [5]. We design 

measurement matrices that simultaneously satisfy two properties: (i) contains high-spatial frequencies so 

as to recover videos at full spatial-resolution; and (ii) has close-to-optimal l2-recovery properties when 

downsampled. Given that Hadamard matrices are optimal, among the space of +/- 1 matrices, for l2-

recovery we design our dual-scale sensing (DSS) matrices by upsampling low-resolution Hadamard 

matrices and adding random sign-flips to this. This ensures that the DSS matrices satisfy both properties 

we require. Least-squares recovery using our DSS matrices works extremely well. The key here is that 

our recovered result is at a lower spatial resolution which has two main advantages: (i) lesser resolution 

implies a smaller dimensional signal to estimate and hence, lesser measurements; and (ii) in essence, we 

provide a tradeoff between spatial blur (downsampling) and motion blur. This, coupled with least square 

recovery (no use of sparse approximation) and Hadamard matrices (that provide optimal linear recovery 

guarantees) gives us these high-quality initial estimates. We refer to these initial estimates as the preview. 

These are extremely fast to compute; all it requires is a matrix multiplication with the added advantage of 

the matrix enjoying a fast transform. In particular, the preview provides insight into the scene and its 

temporal evolution.  Given the preview of a video, we use optical flow to estimate motion field between 

the preview images (upsampled to full resolution). Optical flow estimates can be written as a linear 

relationship between images (using bilinear interpolation model). We can now solve an l1-recovery 

problem with compressive measurement constraints as well as optical flow constraints between frames. 

The recovered video has both high-spatial and temporal resolutions. Recently, an alternative sampling 

matrix and video reconstruction algorithm have been proposed which provides faster preview and 

removes the need for computing optical flow [6]. 

                

Figure 2. CS-MUVI, a framework for sensing compressed videos [5]:  The key challenge with sensing videos with  SPC is 

that the scene changes with every compressive measurement obtained. Traditional l1-recovery methods fail in the 

presence of fast motion. We circumvent this problem by designing special measurement matrices that enable a two-step 

recovery process; the first step is to estimate motion in the scene and the second step is to recover the scene in full spatial 

and temporal resolution.  



3. Compressive Cameras Networks 

Given that CS based cameras can reduce the sampling requirements on individual cameras, they provide a 

potential solution to the data deluge in large scale camera networks. In addition to the direct sampling 

advantages offered by compressive sensing to independent cameras, if the different cameras in a network 

have overlapping fields of view, then further reductions in sampling rate may be obtained by carefully 

treating the entire network as a single compressive imaging system rather than treating each camera as an 

independent compressive imager. 

When a number of CS cameras are connected into a network, we can further reduce the data bandwidth 

by exploiting the redundancy across overlapping field of views (FOV) [12]. Consider the scenario shown 

in Figure 3, where a large area is being imaged using many single pixel cameras. In Figure 3(a) we show 

FOV of some of the single pixel cameras in the network. During reconstruction, instead of doing 

independent SPC reconstruction for each camera, we can perform joint reconstruction of the whole scene 

by first geometrically registering the images. The advantage of joint reconstruction is that pixels that are 

common to multiple cameras need fewer measurements. Suppose we want to reconstruct N pixels per 

SPC and there are M cameras with overlapping FOVs. If we perform independent reconstruction for each 

camera, then the total number of unknown parameters is MN. In contrast, if we perform joint 

reconstruction, with a fraction f of pixels being common to all camera, then the number of unknown is 

MN(1-f)+Nf. For large N, the number of unknown in joint reconstruction is a fraction (1-f) of the 

independent reconstruction case. Since the number of measurements required increases with the number 

of unknowns, we need fewer measurements for joint reconstruction. Thus, we can further reduce the data 

bandwidth. Registration across views is done using geometric transformations such as homography. To 

estimate homography, we need to perform independent reconstruction of a single frame at each SPC. 

After computing homography from this frame, we can use the joint reconstruction scheme. Figure 3(b-c) 

show the advantage of joint reconstruction (26.2 dB) over independent reconstruction (20.2 dB) for 

compression ratio of 4 at each SPC camera.  Figure 3(d) shows the SNR vs. compression ratio for 

independent and joint reconstruction, from which it is clear that joint reconstruction scheme can be used 

for reducing data bandwidth. A similar approach has been considered in [7], where the images are 

considered as points in a low-dimensional manifold and a manifold lifting algorithm has been proposed 

for joint reconstruction. 

 

Figure 3. Data bandwidth reduction in network of compressive cameras: (a) The original image is of size 512*512 and is 

being observed by 9 SPC cameras (Figure courtesy Skybox Imaging, Inc.). The boxes show FOV of 3 such cameras. (b) 

Independent reconstruction of each SPC produce poor reconstruction (20.2 dB) for compression ratio of 4 at each SPC. 

(c) Joint reconstruction of all the SPC after geometric registration produces better result (26.2 dB) for the same 

compression ratio. (d) SNR vs. compression ratio plot clearly show the advantage of joint SPC reconstruction over 

independent reconstruction. Thus, using joint SPC reconstruction, we can reduce the data bandwidth. 



4. Inference in Compressive Camera Networks 

The ultimate goal of most camera networks is to perform an inference task such as tracking, object 

recognition, or activity recognition. The usual way to perform inference in CS network would be to 

recover the original video at each SPC using one of recovery algorithms discussed in Section 2. However, 

recovering the original video is computationally taxing. A better approach would be to perform inference 

directly on the compressed measurements. We provide example of two inference tasks: first, background 

subtraction and 3D shape estimation, and second, target recognition. In both these tasks we perform 

inference directly from compressed samples.  

Direct background subtraction and 3D shape estimation from compressive measurements. 

Background subtraction is fundamental in automatically detecting and tracking moving objects with 

applications in surveillance, teleconferencing and 3D modeling. Usually, the foreground or the innovation 

of interest occupies a sparse spatial support, as compared to the background and may be caused by the 

motion and the appearance change of objects within the scene. For CS camera network, it is desirable to 

directly reconstruct the sparse foreground innovations within a scene without any intermediate image 

reconstruction. The background-subtracted images being 

sparse in the spatial image domain, we use CS theory to 

directly recover the sparse foreground of a scene [8]. We 

show that the object silhouettes (binary background 

subtracted images) can be recovered as a solution of a 

convex optimization or an orthogonal matching pursuit 

problem. In the context of calibrated multi-camera 

networks, background subtracted images obtained at each 

view can also be fused to recover 3D shape of the object. 

Specifically, in [13], we showed that a class of estimation 

techniques that obtain 3D shape from projected 2D 

silhouettes can be enabled directly from compressive 

measurements. Figure 4 shows an example of 

recovered 3D shapes from compressive measurements 

simulated from an 8-camera network. The recovered 

point cloud clearly captures the 3D geometry of the 

person. 

Compressive classification and target recognition. We propose a framework for compressive 

classification that operates directly on the compressive measurements without first reconstructing the 

image [9]. We dub the resulting dimensionally reduced matched filter the smashed filter. We map 

traditional maximum likelihood hypothesis testing into the compressive domain and find that the number 

of measurements required for a given classification performance level does not depend on the sparsity or 

compressibility of the images but only on the noise level. We then apply the generalized maximum 

likelihood method to deal with unknown transformations such as the translation, scale, or viewing angle 

of a target object. We exploit the fact the set of transformed images forms a low-dimensional, nonlinear 

manifold in the high-dimensional image space. We find that the number of measurements required for a 

given classification performance level grows linearly in the dimensionality of the manifold but only 

logarithmically in the number of pixels/samples and image classes. 

We evaluate the smashed filter in an image target classification setting. We consider three classes, each 

for a different vehicle model: a tank, a school bus, and a truck, see Figure 5(a). All images are of size 

128×128 pixels and all measurement matrices are binary ortho-projectors obtained from a random number 

generator. We use real data from SPC and perform target recognition with unknown rotations of the three 

targets in the z-axis in R3. We assume that we do not know the explicit structure of the three manifolds; 

hence we use training data to provide an estimate of the manifold structure. We acquired a training set of 

Figure 4. Direct 3D shape estimation from a network 

of 8 compressive cameras: (top) Background 

subtracted silhouettes observed at 4 views (bottom) 3 

views of 3D shape   recovered directly from 

compressive measurements. Figure courtesy [13]. 



compressive measurements for each vehicle for rotation angles that are multiples of 10◦ (10◦, 20◦, . . . , 

360◦). We first estimated the most likely rotation angle for each class by computing the nearest neighbor 

from each class and then performed nearest neighbor classification. We evaluate the performance of the 

smashed filter classifier using leave-one-out testing. The measurements for each rotation/class 

combination were classified using a smashed filter trained on all other available data points. We 

performed classification experiments for different numbers of compressive measurements, varying from 

M = 2 to 60. Figure 5(b) provides confusion matrices for M = 2, 4, and 6. The diagonal elements show the 

probabilities of correct classification for each of the classes. The matrices show that performance 

improves as M increases. Specifically, for M ≥ 6, the classification rate remains at 100%. Figure 5(c) 

plots the average rotation estimate error as a function of the number of measurements. 

5. The Future of Compressive Camera Networks 

Recognition tasks such as object or activity recognition are very difficult machine vision problems. Given 

that ultimately we want to perform such tasks, it is imperative that we not just collect more data but 

collect data with different modalities such as hyper-spectral data. We can use camera network for 

capturing different modalities of the visual signal such as multi-spectral data and high dynamic range. 

Multi-modal data is best captured using a camera array with small spacing between the cameras. We call 

such an array of camera as Generalized Assorted Cameras (GAC) [10]. We place a mosaic of filters is 

placed in front of an array of cameras. Since the different cameras in a GAC do not share a single 

viewpoint, correspondence across cameras needs to be established. Luckily, the recent success in multi-

view stereo and structure from motion has shown that sub-pixel dense correspondences can be reliably 

obtained. We leverage these existing state-of-the-art techniques to establish dense correspondence across 

a GAC array and warp the data obtained from the different cameras to the viewpoint of a reference 

camera. The GAC then essentially acts like a GAP camera [11], where diverse filters are placed directly 

on the photo-detectors. The primary advantage of the GAC architecture is that the external filter mosaic 

can be customized for particular applications which require spectral selectivity, high dynamic range etc. 

GAC assumes that the measurements of a scene point’s radiance from cameras with slight different 

viewpoints are identical. As long as the cameras are close together relative to the depths of the different 

objects in the scene, this requirement is usually true for a broad range of scene reflectance. If we obtain 

dense pixel correspondence between all the cameras, then we can warp the views from the different 

sensors onto a canonical “central” camera, transforming it into a multi-dimensional image sensor. The 

central camera is usually the sensor whose location is closest to the median camera location. The set of 

Figure 5. Direct target recognition from compressed measurement. (a) Models used for target recognition experiment.  

We performed classification experiments for different numbers of compressive measurements, varying from M = 2 to 60. 

(b) Confusion matrices for M = 2, 4, and 6. The confusion matrices summarize the distributions for elements belonging to 

a given class (one per row: tank, school bus, or truck) being assigned a given class label (one per column: tank, school bus, 

or truck). The diagonal elements show the probabilities of correct classification for each of the classes. The matrices show 

that performance improves as M increases. Specifically, for M ≥ 6, the classification rate remains at 100%. (c) Average 

rotation estimate error as a function of the number of measurements. Figure courtesy [9]. 



warped images forms a cube of data, much like a hyper-spectral cube. Note that multi-view reconstruction 

works best when all the camera characteristics are almost identical. Yet, GAC requires that the 

characteristics of our sensors are diverse and assorted. Therefore, some near-identical subset of the 

cameras must be available for scene reconstruction. To warp all images to a central camera with sub-pixel 

accuracy we perform the procedure outlined in Figure 6, namely: 1) for all cameras calibrate the intrinsic 

parameters, such as focal length and principle points, 2) compute the extrinsic parameters, rotation and 

translation, of all the cameras with respect to the central camera, 3) perform dense 3-D reconstruction 

using groups of cameras, 4) using the 3-D point reconstruction warp all of the images to the viewpoint of 

the central camera. 

Multi-spectral imaging. Traditional cameras are unable to differentiate between metameric scene points, 

which have the same RGB values but different spectral composition. The GAC framework allows for 

increased spectral resolution to capture these differences by using narrowband filters in front of some 

cameras in the array. In general, the specifications of the filters such as bandwidth and the central 

wavelengths of the filters are application dependent. For example, suppose that we wish to capture multi-

spectral information within the range 410nm-710nm. Using a 5x5 camera array, it would be possible to 

use 16 filters with a bandwidth of 10nm while leaving the remaining cameras vacant to compute point 

correspondences. The center wavelengths of the filters are chosen to span the range of interest and are 

shown in Fig. 7(b). We implement our GAC using a ProFUSION 5x5 camera array distributed by 

PointGrey. Each camera has a resolution of 640x480 pixels, a Bayer color filter array, and a throughput of 

15 frames per second. Additionally, image acquisition is synchronized but each camera offers 

independent control of gain and exposure duration. In our experiments the gain was held constant across 

all cameras. 

An image of the camera array and the filter configuration used to directly sample multiple spectral bands 

is shown in Figure 7(a) and (b). We first capture multi-spectral images of an assortment of fruit in front of 

a multi-colored background. Since the ProFUSION sensor contains a Bayer mosaic, the captured images 

are demosaiced and then converted into a luminance image. The nine spectral bands are shown in Figure 

5(e). Notice that the citrus fruits and bananas are dark in the blue and green wavelengths (below 580nm) 

and bright in the yellow, orange and red wavelengths, while the green apple is brightest at 550nm. After 

capturing the spectral images, false RGB images can be constructed for ease of display. 

 

Figure 6. View interpolation in video. Calibration prior to video capture: 1) compute the internal parameters (focal length 

and principal points) of all the cameras separately, 2) compute the external parameters (rotation and translation w.r.t. the 

center camera). For each frame: 3) obtain a dense 3-D point cloud using groups of camera, and 4) warp all the images to 

the center camera based on the 3-D point cloud. Figure courtesy [10].  



6.  Conclusions 

Networks of camera are becoming ubiquitous and their proliferation poses a data deluge challenge. In this 

paper, we hypothesize that compressive sensing can potentially tackle this resulting data deluge. Further, 

we envision, that this may lead to a future in which camera networks capture higher dimensional visual 

information such as hyper-spectral and light-field data, rather than just videos. 
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