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Abstract

We propose a multihopping decode and forward relaying protocol for two-stage Gaussian relay

networks with half-duplex nodes. We analytically show that the achievable rates in suitably defined

strong and weak interference regimes are close to the cut-set bound.

Index Terms: Two-stage relay network, decode and forward protocol, half-duplex relays

I. INTRODUCTION

The diamond channel (DC) [1], where the source and destination are connected by two relays,

has been an important example in the study of relay networks. DC with practical constraints

like half-duplex, non-cooperating, interfering relays and finite SNR has been studied in [2]–[4].

In these studies, decode and forward protocols have been shown to be close to capacity in some

channel regimes. In this paper, we are concerned with extending ideas from DC to multistage

relay networks, where source and destination are connected through multiple stages of relays.

Two-stage relay network: We consider the two-stage Gaussian relay network shown in Fig. 1(a)

with Node 1 as source (S) and Node 6 as destination (D). Nodes 2, 3, 4, 5 are half-duplex,

interfering relays that enable communication from S to D. A link (i, j) indicates that Nodes i

and j are connected by an additive white Gaussian noise (AWGN) channel with constant gain

denoted as hij . Also hij = hji. Every node has a power constraint P as transmitter and a noise

variance σ2 as receiver.

The two-stage relay network studied by us is a natural extension of the diamond channel. It

is also partly motivated by the multistage relaying example for 4G networks in [5], [6]. Further,

a three-hop network is chosen where transmission by the second stage of relays will interfere

with reception by the first stage of relays. This is a crucial factor that affects the capacity of the

relay network, and cannot be observed in two-hop networks that have been studied extensively
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in the literature. Though we discuss a specific two-stage network in this article, the proposed

protocol can be generalized to an arbitrary topology as long as there are two non-overlapping

paths from the source to destination using similar ideas.

We propose a multihopping decode and forward (MDF) protocol that specifies the scheduling

and coding strategies to maximize the information flow in two-stage relay networks. The schedule

decides the time-sharing between the states of the half-duplex network. The coding strategy

decides the rate of information flow in each state. Comparison with the cut-set bound shows that

the performance of the proposed MDF scheme is good for several channel conditions. Under

suitably defined strong and weak interference conditions, the achieved rate by the proposed

MDF protocol is shown to be close to capacity. The specific contributions are as follows: (i)

we have used information-theoretic rate regions for interference networks in the optimization of

multistage relay communications, (ii) we propose a heuristic two path two state (2P2S) schedule,

(iii) we design a coding strategy within a state for appropriate information flow in the 2P2S

schedule using dirty paper coding (DPC), superposition coding (SC) and successive interference

cancellation (SIC), (iv) we prove that the MDF scheme has a gap to capacity of at most 0.5 bits

in the low rate regime, when the links satisfy certain strong and weak interference conditions.

Related work and comparisons: Gaussian relay networks with arbitrary topology have been

studied in [7], [8]. The constant gap to capacity in [7], [8] is proportional to the number of

nodes in a network and the gap is about 90 bits/unit-time for the network studied in this article.

However, our results are for rates around 1 bit/unit-time. The authors of [7] have elaborated

on the low rate regime in their paper where they provide a closeness to cut-set bound result

based on orthogonalization, i.e., interference avoidance. Our numerical results show significant

improvement over interference avoidance.

In the proposed MDF protocol, we restrict the cooperation among nodes for transmission and

do not allow for cooperation in decoding. Even under such restrictions, the gap to capacity has

been shown to be small in several channel conditions. Therefore, more complicated protocols

that allow for more cooperation will provide only marginal gains in the same channel conditions.

II. MULTIHOPPING DECODE AND FORWARD PROTOCOL

We are interested in maximizing the rate RS→D relayed from the source S to the sink D. This

relaying consists of two aspects: (1) scheduling transmissions and receptions by nodes, and (2)
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coding and decoding methods employed by nodes during transmissions and receptions. Optimal

scheduling is known to be a hard problem in most scenarios. So, we propose a heuristic schedule

and coding methods suited to the schedule.

A. Two-path two-state (2P2S) schedule

We propose a simple heuristic schedule for information flow in the network of Fig. 1(a). The

heuristics used are as follows: (1) S always transmits and D always receives, (2) information

is forwarded by relays over at least two node-disjoint shortest paths. The shortest (three-hop)

paths connecting S and D are: (i) Path P1: S → 2 → 4 → D, (ii) Path P2: S → 3 → 5 → D,

(iii) Path P3: S → 2 → 5 → D, and (iv) Path P4: S → 3 → 4 → D. Among these four paths,

there are only two pairs of node-disjoint paths: (i) P1, P2 and (ii) P3, P4. We describe the 2P2S

schedule for the choice P1, P2. A similar schedule for P3, P4 is also possible. First, we construct

two states S1 and S2 that enable information forwarding along paths P1, P2. In both states, S

will transmit and D will receive. In state S1, we activate the first link (S, 2), and the third link

(4, D) of path P1. This fixes Node 2 as a receiver and Node 4 as a transmitter. We add link (3, 5)

to state S1 for information forwarding along path P2. Analogously, in state S2, we activate link

(2, 4) of path P1 and links (S, 3), (4, D) of path P2. The states are: (i) State S1: Nodes S, 3, 4

are transmitters, and Nodes 2, 5, D are receivers and (ii) State S2: Nodes S, 2, 5 are transmitters,

and Nodes 3, 4, D are receivers. These states are similar in structure, and State S1 is shown in

Fig. 1(b). In the proposed MDF protocol, we use the 2P2S schedule.

B. Coding scheme

For a link (i, j) in a state, let Rij denote the rate of information flow. We now describe a coding

scheme for S1 that fixes the rate region i.e., the possible values for Rij . For computing the rate

region, we assume Gaussian codebooks at transmitters and successive interference cancellation

(SIC) decoders at receivers.

Encoding at S (State S1): Source intends to send a message to Node 2 in the presence of

interfering signals from Nodes 3 and 4. Since source is the originator of all messages flowing

through the network, the messages from Nodes 3 and 4 are assumed to be known to S. We

propose that the source does dirty paper coding (DPC) [9] to cancel the known interference at

receiver Node 2, assuming further that h23 and h24 are also known at S. Under this coding,
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reliable transmission along link (S, 2) requires that the rate RS2 must satisfy

RS2 ≤ C
(

h2
S2P/σ2

)

, (1)

where C(x) = 1
2
log2(1 + x).

Encoding at Node 3 (State S1): Transmitter 3 can reach receivers 2 and 5. Since we use DPC

at the source, we set R32 = 0. For reliable transmission along link (3, 5), rate R35 must satisfy:

R35 ≤ C
(

h2
35P/σ2

)

. (2)

Encoding at Node 4 (State S1): Transmitter 4 can reach receivers 2, 5 and D. Since we use

DPC at source, we set R42 = 0. We propose that Node 4 uses superposition coding (SC) to send

codewords x45 and x4D to receivers 5 and D with power sharing variables α45, α4D such that

α45 + α4D = 1. For real a, b, indicator function Ia>b = 1 if a > b else Ia>b = 0. The achievable

rates R45 and R4D are [10]:

R45 ≤ C

(

h2
45α45P

σ2 + I|h45|<|h4D|α4Dh2
45P

)

, R4D ≤ C

(

h2
4Dα4DP

σ2 + I|h45|>|h4D|α45h2
4DP

)

. (3)

The indicator function is used to compactly express the bound on the rates to the strong and

weak receivers under SC. In summary, State S1 is a 3×3 interference network with 4 messages,

which is different from the standard 3 × 3 interference channel with 3 messages in [11].

Decoding at Nodes 2 and D (State S1): The DPC coded message from S is decoded at 2, while

the superposition coded message from Node 4 is decoded at D.

Decoding at Node 5 (State S1): The received signal at receiver 5 is

y5 = h35x3 + h45(x45 + x4D) + w5,

where x3 is the signal from Node 3 and w5 is the noise. We propose the following decoding

depending on channel gains h45 and h4D: when |h45| ≥ |h4D|, Node 5 jointly decodes codewords

x̂3, x̂45, x̂4D. When |h45| < |h4D|, it decodes only codewords x̂3, x̂45 treating x4D as noise. In

either case, decoding is same as SIC decoding in Gaussian multiple access [10]. So, we have

∑

(p,q)∈A

Rpq ≤ C

(

∑

(p,q)∈A αpqh
2
p5P

σ2 + I|h45|<|h4D|α4Dh2
45P

)

, ∀ A ⊆ A, (4)

where α35 = 1, and A =











{(3, 5), (4, 5)} if |h45| < |h4D|,

{(3, 5), (4, 5), (4, D)} otherwise.
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Rate region: The achievable rate region in State S1 under the coding schemes described is

R1 = {(RS2, R35, R45, R4D) : satisfying (1) − (4)}. (5)

We call this scheme as DPC-SC coding. The coding scheme for state S2 is similar to that of state

S1 with the links (S, 2), (3, 5), (4, 5), (4, D) replaced by (S, 3), (2, 4), (5, 4), (5, D), respectively,

with corresponding channel gains and rates. The rate region R2 in State S2 is:

R2 = {(RS3, R24, R54, R5D) : satisfying (1) − (4) with respective variable changes}. (6)

C. Information flow and achievable S-D rate

Information flow from S to D happens by a time-sharing of states S1 and S2 which are active

for λ1 and λ2 fraction of the time with λ1 +λ2 = 1. Fig. 2 illustrates the entire information flow

under 2P2S schedule and DPC-SC coding. Let z1, z2 be the flow (in bits per unit time) along

links (S, 2) and (S, 3), respectively. To conserve flow in 2P2S schedule with DPC at S, the flows

out of Nodes 2 and 3 are also equal to z1 and z2, respectively. SC at Node 4 splits the flow from

Node 2 into az1 units for receiver 5 and (1− a)z1 units for receiver D. Node 5 also does SC to

split the flow from Node 3 into bz2 for receiver 4 and (1− b)z2 units for receiver D. Therefore,

Node 4 receives a total flow of z1 + bz2 from links (2, 4) and (5, 4). It forwards a flow of az1

and (1 − a)z1 + bz2 along links (4, 5) and (4, D), respectively, and conserves flow. Similarly,

Node 5 also conserves the flow. This leads to an achievable rate of z1 + z2. The achievable rate

RS→D from S to D is maximized by solving the constrained flow problem described below:

max
0≤λ1,λ2,a,b≤1

RS→D = z1 + z2,

subject to: z1 ≤ λ1RS2, z1 ≤ λ2R24, z2 ≤ λ2RS3, z2 ≤ λ1R35,

(1 − a)z1 + bz2 ≤ λ1R4D, (1 − b)z2 + az2 ≤ λ2R5D, (7)

az1 ≤ λ1R45, bz2 ≤ λ2R54, 0 ≤ λ1 + λ2 ≤ 1,

(RS2, R35, R45, R4D) ∈ R1, (RS3, R24, R54, R5D) ∈ R2.

In the above optimization, the transmit powers have been set to be equal at all nodes. However,

the constraints can be readily altered to allow for unequal transmit powers, if necessary.

Though the information flow graph of Fig. 2 is shown for the specific two-stage network of

Fig. 1(a), an extension to any other network with two non-overlapping paths from the source to
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the sink is readily possible. The 2P2S schedule and the optimization framework can be extended

to such relay networks as well.

III. APPROACHING THE CUT-SET BOUND

A. Upper Bounds on Relaying Rate

In a relay network with source S and destination D, a subset of the nodes Ω such that S ∈ Ω

and D ∈ Ωc defines a cut with the edges {(u, v) : u ∈ Ω, v ∈ Ωc} being the cut edges. The cut

edges define a Multiple-Input Multiple-Output (MIMO) channel, whose sum capacity denoted

CMIMO(Ω; Ωc) is a full-duplex cut-set upper bound on the rate RS→D from S to D [10].

1) Half-duplex cut-set bound [12]: Suppose a half-duplex relay network operates in M states,

Sk = (Ik, Jk), 1 ≤ k ≤ M , where Ik and Jk denote the nodes in transmit and receive mode in

state k, respectively. Assuming state Sk is active for a fraction of time λk, the rate RS→D is

bounded as follows [12]:

RS→D ≤ sup
λk,

P

λk=1

min
Ω

M
∑

k=1

λkCMIMO(Ω ∩ Ik; Ω
c ∩ Jk). (8)

This upper bound on the half-duplex cut-set bound is computed by solving a linear program [4].

In computations, we use the following upper bound for CMIMO(I; J) as in [7], [8], [13]:

CMIMO(I; J) ≤
1

2
log2(det(In + mPHH

H)), (9)

where m = |I|, n = |J |, In is an n × n identity matrix, matrix H = [hij], i ∈ J, j ∈ I and

receiver noise variance is mormalized to 1.

2) A closed-form half-duplex cut-set bound: For the network of Fig. 1(a), we consider the

channel condition: hS2 = hS3 = h4D = h5D = α, h24 = h35 = β, h23 = h25 = h34 = h45 = γ.

We determine a closed form upper bound of (8) by considering the three cuts: Ω1 = {S},

Ω2 = {S, 2, 3} and Ω3 = {S, 2, 3, 4, 5} representing the three stages in the network of Fig. 1(a).

Note that reducing the number of cuts in the minimization in (8) still provides an upper bound.

For the maximization of (8), it turns out that the six states shown in Table I are sufficient. In

Table I, CUTi = CMIMO(Ωi ∩ Ik; Ω
c
i ∩Jk) and C0 = C (4P (γ2 + β2) + 4P 2((γ2 − β2)2)), which

is an upper bound on CMIMO(Ω2; Ω
c
2) obtained by using (9). The six states S2 to S7 in Table I

are sufficient because, for any other state, the cut capacities [CUT1, CUT2, CUT3] are smaller

or equal (coordinate-wise) to those for one of the states S2 to S7. For example, for state S1
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the cut capacities are the same as for state S2. In this scenario, the half-duplex cut-set bound is

computed by the linear program (LP):

max cTx = R, s.t. Ax ≤ b,x ≥ 0, where (10)

A =















−C(α2P ) 0 0 −C(α2P ) −C(α2P ) −C(2α2P ) 1

−C(β2P ) −C((β + γ)2P ) −C0 −C(γ2P ) −C((β2 + γ2)P ) 0 1

−C(α2P ) −C(α2P ) 0 −C(α2P ) 0 −C(4α2P ) 1

1 1 1 1 1 1 0















is the coefficient matrix, x = [λ1, λ2, λ3, λ4, λ5, λ6, R], c = [0, 0, 0, 0, 0, 0, 1], and b = [0, 0, 0, 1].

To obtain a closed-form upper bound on the optimal cut-set bound, we consider the dual

min bTy = R̃, s.t. ATy ≥ c,y ≥ 0, (11)

where y = [τ1, τ2, τ3, R̃]. Note that any feasible point in the dual (11) gives an upper bound to

the optimal cut-set bound. To find a feasible point in (11), we let τ3 = 0 and τ1 + τ2 = 1. With

these choices for [τ1, τ2, τ3] and using C0 ≥ C((β2 + γ2)P ), ATy ≥ c simplifies to:

R̃ ≥ max{τ2C0, τ1C(α2P ) + τ2C((β2 + γ2)P ), τ1C(2α2P )}. (12)

The lowest value of R̃ satisfying (12) can now be computed to be the following:

R̃ =























C(α2P )C0

C(α2P )+C0−C((β2+γ2)P )
if 1 − C(α2P )

C(2α2P )
< C((β2+γ2)P )

C0
and α2 > β2 + γ2,

C(2α2P )C((β2+γ2)P )
C(2α2P )−C(α2P )+C((β2+γ2)P )

if 1 − C(α2P )
C(2α2P )

< C((β2+γ2)P )
C0

and α2 ≤ β2 + γ2,

C0C(2α2P )
C0+C(2α2P )

if 1 − C(α2P )
C(2α2P )

≥ C((β2+γ2)P )
C0

.

(13)

The R̃ in (13) is a closed-form upper bound to the half-duplex cut-set bound for the network

of Fig. 1(a) under the chosen channel conditions.

B. Relaying rates of proposed MDF protocol

The optimal rates in (5) and (6) can be expressed in closed form under suitable assumptions

on flow in certain channel regimes. For the analysis, we assume that in the MDF protocol

information flows only through the edges in Paths P1 and P2 and compute the rate achieved by

it. All other edges have zero flow and are processed as interference at the receivers. This sets

a = b = 0 in Fig. 2.
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1) Strong interference condition: 1 We suppose that all nodes in states S1 and S2 transmit at

a common rate R1 ≤ C(h2
S2P ) and R2 ≤ C(h2

S3P ), respectively. Further, information received

by a node at rate R1 when state S1 is operational is forwarded in state S2 by the same node

at rate R2. For flow conservation, we require that R1λ1 = R2λ2. Using λ1 + λ2 = 1, we have

λ1 = R2/(R1 +R2) and λ2 = R1/(R1 +R2) and a total rate of 2R1R2/(R1 +R2). The question

to be addressed is the condition for successful decoding by receivers in each state. Receiver 5

in state S1 sees a two-user Gaussian MAC channel from transmitters 3 and 4 with respective

channel gains h35 and h45 under a transmit power constraint P . The rate pair (R1, R1) is feasible

at receiver 5 in State S1, if R1 ≤ C(h2
35P ), R1 ≤ C(h2

45P ) and the sum rate of this two-user

MAC channel satisfies: 2R1 ≤ 2C(h2
S2P ) ≤ C((h2

35 + h2
45)P ). These conditions simplify to

min(|h35|, |h45|) ≥ |hS2|, and |h45| ≥

√

(1 + h2
S2P )2 − 1 − h2

35P

P
, h1. (14)

Similarly to achieve (R2, R2) at receiver 4 in State S2, the channel gains should satisfy

min(|h24|, |h54|) ≥ |hS3|, and |h54| ≥

√

(1 + h2
S3P )2 − 1 − h2

24P

P
, h2. (15)

Sink Node D is interference free in both states. Hence |h4D| ≥ |hS2| and |h5D| ≥ |hS3| are

sufficient to forward information to D at rates R1 and R2 in states S1 and S2, respectively.

Remark 1: When the channel gains satisfy the following strong interference conditions: min(

|h4D|, |h35|, |h45|) ≥ |hS2|, min(|h5D|, |h24|, |h54|) ≥ |hS3|, and |h54| = |h45| ≥ max(h1, h2), the

achievable rate under the proposed MDF protocol in the two-stage relay network is

R(hS2, hS3) ,
2C(h2

S2P )C(h2
S3P )

C(h2
S2P ) + C(h2

S3P )
. (16)

(a) When |hS2| = |hS3| the achievable rate of the MDF protocol in the strong interference

regime is R(hS2, hS3) = C(h2
S2P ) with the full-duplex source cut bound being C(2h2

S2P ).

The gap to capacity is at most C(2h2
S2P ) − C(h2

S2P ) = C(
h2

S2P

1+h2
S2P

) ≤ 0.5 bits, ∀hS2.

(b) In the strong interference regime when hS2 = hS3 = h4D = h5D = α, h24 = h35 = β ≥ α,

h23 = h25 = h34 = h45 = γ ≥ α and γ ≥
√

(1+α2P )2−1−β2P

P
≥ 0, the gap ∆s from the

closed-form half-duplex bound (13) is given by

∆s = lim
α→∞

[

C(2α2P )C((β2 + γ2)P )

C(2α2P ) − C(α2P ) + C((β2 + γ2)P )
− C(α2P )

]

= 0.25 bits. (17)

1The terms “strong” and “weak” are used to merely describe conditions satisfied by the relative strengths of network links.

We do not imply that capacity of the relay network is known in these regions.
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2) Weak interference condition: Suppose that receiver 5 in state S1 decodes the data along

link (3, 5) and treats interference along link (4, 5) as noise. Since we assume Gaussian codebooks

at all transmitters, a rate R1 is achievable whenever R1 = C(h2
S2P ) ≤ C

(

h2
24P

1+h2
45P

)

. The above

condition reduces to |h45| ≤
(√

h2
24

h2
S2P

− 1
P

)+

, h3, where x+ = max(x, 0). Similarly, rate R2

is achievable at receiver 4 in state S2 whenever |h54| ≤
(√

h2
35

h2
S3P

− 1
P

)+

, h4.

Remark 2: When the channel gains satisfy the following weak interference conditions: min(|h24|,

|h4D|) ≥ |hS2|, min(|h35|, |h5D|) ≥ |hS3|, |h54| = |h45| ≤ min (h3, h4), the achievable rate under

the MDF protocol is R(hS2, hS3).

(a) In the weak interference regime, the achievable rate of the MDF protocol is R(hS2, hS3) =

C(h2
S2P ), when |hS2| = |hS3|. So, the gap to capacity is at most 0.5 bits as seen from the

comparison with the full-duplex source cut-set bound C(2h2
S2P ).

(b) Consider the weak interference regime with hS2 = hS3 = h5D = h4D = α, h24 = h35 =

β, h23 = h25 = h45 = h34 = γ, with α ≤ β, and γ → 0. For these channel conditions, we

have C0 → 2C(2β2P ) and the gap ∆w to the closed-form half-duplex cut-set bound is

∆w =











C(2α2P )C(β2P )
C(2α2P )−C(α2P )+C(β2P )

− C(α2P ) if 1 − C(α2P )
C(2α2P )

< C(β2P )
2C(2β2P )

,

2C(2β2P )C(2α2P )
2C(2β2P )+C(2α2P )

− C(α2P ) if 1 − C(α2P )
C(2α2P )

≥ C(β2P )
2C(2β2P )

.
(18)

When α = β, further simplification shows that the gap ∆w in (18) reduces to the following:

∆w =











0 if α2P > 1+
√

5
2

,

2
3
C(2α2P ) − C(α2P ) ≤ 0.07 bits else.

(19)

Though Remarks 1 and 2 are made for the specific two-stage relay network of Fig. 1(a),

extensions to any network with two non-overlapping paths is possible as long as the on-path

gains are either strong or weak, when compared to the inter-path gains. The coding ideas remain

the same, but computing the half-duplex cut-set bound will become more complicated. However,

the gap to the full-duplex cut-set bound will still remain small in suitably defined strong and

weak interference channel gain regimes.

IV. NUMERICAL EVALUATION

In this section, we numerically evaluate the performance of the proposed MDF protocol for

the two-stage relay network and verify the results of Section III. The achievable S-D rate is
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found by solving the optimization (7) in Section II-C using standard optimization routines. We

consider full-duplex cut-set-bound, half-duplex cut-set bound, the closed-form half-duplex bound

described in Section III-A and the interference avoidance (IA) scheme for comparison. In the

IA scheme, all states with only non-interfering links are considered. We set P = 3, σ2 = 1 and

hS2 = hS3 = h5D = h4D = α, h24 = h35 = β, h23 = h25 = h45 = h34 = γ for illustration.

In Fig. 3, α = β = 1 and γ is varied. In the strong (γ ≥ 3.01 dB) and weak (γ ≤ −14

dB) interference regimes, the rate achieved by MDF protocol is C(α2P ) = 1 as determined in

Remark 1(a). In the weak interference regime, capacity is achieved as seen in (19) following

Remark 2(b). In the strong interference regime, the gap from the full-duplex and half-duplex

cut-set bounds are at most 0.40 and 0.33 bits, respectively, as per (8) and (13).

In Fig. 4, α = 1, β = 1.25, and γ is varied. The MDF protocol achieves a rate of C(α2P ) = 1

for a larger range of γ, i.e., strong interference regime (γ ≥ 2.68 dB) and weak interference

regime (γ ≤ −3.63 dB) according to Remarks 1 and 2. The gap from the HD cut-set bound in

the weak and strong interference regimes are 0.06 and 0.33 bits respectively, as per (8) and (13).

Fig. 5 shows the performance of the MDF protocol with varying α, with β = α and γ =

2
√

(1+α2P )2−1−β2P

P
in the strong interference regime. We notice that the gap to the full-duplex

bound is at most 0.5 bits verifying Remark 1(a). The gap between the achievable rate and the

derived half-duplex cut-set bound is only 0.25 bits as determined in Remark 1(b) even when the

rate achieved is large (for large α).

In Figs. 3, 4 and 5, we notice the proposed MDF protocol performs significantly better than

the interference avoidance scheme in all three channel conditions. Overall, the numerical results

agree with the analytical results for strong and weak interference regimes and for the half-duplex

cut-set bound. They show that the closed-form half-duplex bound is close to the computed one

and illustrate the good performance of the proposed protocol in various channel conditions.

Based on Figs. 3, 4 and 5, we can conclude that more complicated coding schemes that exploit

significant cooperation among the nodes will only provide marginal or no gains in the strong

and weak interference regimes.

V. CONCLUSION

We have proposed and analyzed a multi-hopping decode and forward (MDF) protocol for a

two-stage Gaussian relay network. The protocol is shown to perform well under some practical
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assumptions such as half-duplex nodes, non-cooperative decoding among relay nodes and finite

SNR. Through analysis, we show that the MDF protocol used with a simple schedule and suitable

coding can approach the cut-set bound under strong and weak interference regimes of channel

gains. Extensions to use of finite constellations at transmitters [14] [15] and inclusion of fading

in the channel model [16] [17] are possible considerations for future work in the study of the

proposed MDF protocol.
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State Ik Jk CUT1 CUT2 CUT3

S2 {S, 2, 5} {3, 4, D} C(α2P ) C(β2P ) C(α2P )

S3 {S, 2, 3, 5} {4, D} 0 C((β + γ)2P ) C(α2P )

S4 {S, 2, 3} {4, 5D} 0 C0 0

S5 {S, 2, 4} {3, 5, D} C(α2P ) C(γ2P ) C(α2P )

S6 {S, 2} {3, 4, 5, D} C(α2P ) C((β2 + γ2)P ) 0

S7 {S, 4, 5} {2, 3, D} C(2α2P ) 0 C(4α2P )

TABLE I

STATES AND CUT CAPACITIES.
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Fig. 3. Performance of the MDF protocol; Channel condition A: α = 1, β = 1, vary γ.
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