Assignment on Linear Block Codes

Error Control Coding

Questions marked (Q) or (F) are questions from previous quizzes or final exams, respecively.

1. Consider two codes with parity-check matrices

$$
H=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right] \text { and } H=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1
\end{array}\right]
$$

respectively.
(a) List all codewords of the two codes.
(b) Provide G and H in systematic form for both codes.
2. A code is defined by the following generator matrix.

$$
G=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

(a) Find n and k for the code.
(b) Find the minimum distance of the code.
3. Let $u=\left[u_{1}, u_{2}, \cdots, u_{n}\right], v=\left[v_{1}, v_{2}, \cdots, v_{n}\right]$ and $w=\left[w_{1}, w_{2}, \cdots, w_{n}\right]$ be binary n-tuples. Show the following:
(a) $d_{H}(u, v)=\mathrm{wt}(u+v)$.
(b) If $u * v=\left(u_{1} v_{1}, u_{2} v_{2}, \cdots, u_{n} v_{n}\right), d_{H}(u, v)=\operatorname{wt}(u)+\operatorname{wt}(v)-2 \operatorname{wt}(u * v)$.
(c) If u and v have even weight, $u+v$ has even weight.
(d) $d_{H}(u, v) \leq d_{H}(u, w)+d_{H}(w, v)$.
(e) $\operatorname{wt}(u+v) \geq \mathrm{wt}(u)-\operatorname{wt}(v)$.
4. Provide H of a ($n, 8,4$) binary linear code with minimum n. How about $(n, 16,4)$ and $(n, 32,4)$ codes?
5. (a) Find the dual of the $(n, 1, n)$ repetition code.
(b) Find the dual of the ($n, n-1,2$) even weight code.
6. If a code C has an invertible generator matrix, what is C ?
7. G_{1} and G_{2} are generator matrices for $\left[n_{1}, k, d_{1}\right]$ and $\left[n_{2}, k, d_{2}\right]$ codes, respectively.
(a) What are the three parameters of the code with $G=\left[G_{1} \mid G_{2}\right]$?
(b) What are the three parameters of the code with

$$
G=\left[\begin{array}{cc}
G_{1} & 0 \\
0 & G_{2}
\end{array}\right] ?
$$

8. If C is a linear code with both even and odd weight codewords, show that the number of even-weight codewords is equal to the number of odd-weight codewords. Show that the even-weight codewords form a linear code.
9. Let C be an $[n, k]$ code whose generator matrix G contains no all-zero column. Arrange all the codewords of C in a $2^{k} \times n$ array. Show that each column contains 2^{k-1} ones and 2^{k-1} zeros.
10. Design a maximum-likelihood decoder for a code with parity-check matrix

$$
H=\left[\begin{array}{llllllll}
0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

over a BSC. Find the probability of codeword error.
11. Cosntruct the standard array for a code with parity-check matrix

$$
H=\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

Find the probability of message bit error.
12. Consider the $[15,11,3]$ Hamming code.
(a) Give H for the code.
(b) Encode the message 11111100000 .
(c) Decode 111000111000111.
13. If C is a linear binary code and $u \notin C$, show that $C \cup(u+C)$ is also a linear code.
14. Show that
(a) $\left(C^{\perp}\right)^{\perp}=C$.
(b) Let $C+D=\{u+v: u \in C, v \in D\}$. Show that $(C+D)^{\perp}=C^{\perp} \cap D^{\perp}$.
15. Show that, in each of the following cases, the generator matrices G and G^{\prime} generate equivalent codes.
(a)

$$
G=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right], \quad G^{\prime}=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

(b)

$$
G=\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right], \quad G^{\prime}=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

16. (Q) A $(7,3)$ code C has the following parity-check matrix with two missing columns.

$$
H=\left[\begin{array}{lllllll}
1 & - & - & 1 & 0 & 0 & 0 \\
0 & - & - & 0 & 1 & 0 & 0 \\
1 & - & - & 0 & 0 & 1 & 0 \\
1 & - & - & 0 & 0 & 0 & 1
\end{array}\right]
$$

Provide possible bits in the missing columns given that [0110011] is a codeword of C and the minimum distance of C is 4 .
17. (Q) A code C has generator matrix

$$
G=\left[\begin{array}{llllllllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

(a) What is the minimum distance of C ?
(b) Decode the received word [1111111111111].
18. (F) A code C has only odd-weight codewords. Say "possible" or "impossible" for the following with reasons.
(a) C is linear.
(b) Minimum distance of C is 5 .
(c) C is self-orthogonal i.e. $C \subseteq C^{\perp}$.

