Assignment on Cyclic Codes

EE512: Error Control Coding

Questions marked (Q) or (F) are questions from previous quizzes or final exams, respectively.

1. What is the ideal describing the cyclic code $\{0000,0101,1010,1111\}$?
2. Describe the smallest cyclic code containing the vector 0011010.
3. Show that in an (n, k) cyclic code any k consecutive bits can be taken to be the message bits.
4. Consider the $n=7$ binary cyclic code generated by $g(x)=1+x+x^{3}$.
(a) Find all codewords of the code.
(b) The allzero codeword $c(x)=0$ is obtained uniquely by multiplying $g(x)$ by $m(x)=0$ in $\operatorname{GF}(2)[x]$. Find all $f(x) \in \operatorname{GF}(2)[x] /\left(x^{7}+1\right)$ such that $f(x) g(x)=0$ in $\operatorname{GF}(2)[x] /\left(x^{7}+1\right)$.
5. A binary cyclic code of length 15 has generator polynomial $g(x)=\left(x^{4}+x+1\right)\left(x^{4}+x^{3}+x^{2}+x+1\right)$. Give a generator matrix and parity-check matrix for the code. Find the generator matrix for the dual of the code.
6. Find the dimension and generator polynomial for every binary cyclic code of length $15,17,21,31$, 51, 73, 85.
7. Let C be the $n=3$ cyclic code over $\mathrm{GF}(4)=\left\{0,1, \alpha, \alpha^{2}\right\}\left(\alpha^{3}=1, \alpha^{2}=1+\alpha\right)$ generated by $g(x)=x+\alpha$.
(a) Find all codewords of C. Find the minimum distance of C.
(b) Find the check polynomial of C. Find the generator polynomial of C^{\perp}.
(c) Find all cyclic subcodes of C i.e. cyclic codes that are contained in C.
8. Let two length- n cyclic codes C_{1} and C_{2} be generated by $g_{1}(x)$ and $g_{2}(x)$ respectively.
(a) Show that $C_{1} \subseteq C_{2}$ iff $g_{2}(x) \mid g_{1}(x)$.
(b) State the condition $g_{2}(x) \mid g_{1}(x)$ in terms of the zeros of C_{1} and C_{2}.
(c) Find a necessary and sufficient condition for a cyclic code C to be self-orthogonal, i.e. $C \subseteq C^{\perp}$, in terms of the zeros of C.
9. Consider the linear block code with generator matrix
(a)

$$
G=\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

(b)

$$
G=\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

(c)

$$
G=\left[\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

In which of the above cases is the code cyclic? Can you think of a method other than enumeration of all codewords to answer this question?
10. Show that $g(x)=1+x^{2}+x^{4}+x^{6}+x^{7}+x^{10}$ is a generator polynomial for a $(21,11)$ cyclic code. Find the check polynomial of this code.
11. Let $g(x)$ be the generator polynomial of a binary cyclic code of length n.
(a) Show that if $(x+1)$ is a factor of $g(x)$, the code contains no odd-weight codewords.
(b) If n is odd and $(x+1)$ is not a factor of $g(x)$, show that the code contains the all-1s codeword.
12. Consider a binary $[n, k, d]$ cyclic code C with generator polynomial $g(x)$. Show that $g^{*}(x)=$ $x^{n-k} g\left(x^{-1}\right)$ is also a generator polynomial of a cyclic code C^{*}. What is the minimum distance of C^{*} ?
13. List all polynomials of the ideal $C=<1+x+x^{2}+x^{4}>$ in the ring $\operatorname{GF}(2)[x] /\left(x^{5}+1\right)$. Find the generator polynomial of C. Note that C can be generated by more than one polynomial as an ideal, but only one among them will be the generator polynomial.
14. Let the generator and check polynomials of a cyclic code be $g(x)$ and $h(x)$, respectively. Find the generator and check polynomials of the cyclic codes $\left\langle g(x)>^{\perp},<h(x)>\right.$, and $<h(x)>^{\perp}$.
15. (Q) C is a $(15,11)$ binary cyclic code. The dual code C^{\perp} does not contain any codewords of odd weight.
(a) Show that C contains the vector [1111111111111111].
(b) Given that [001111111111000] belongs to C, find the generator polynomial $g(x)$ for C.
(c) Find the minimum distance of C. Find a nonzero codeword of least weight.

