
EE512: Error Control Coding

Solution for Assignment on Linear Block Codes

February 14, 2007

1. Code 1: n = 4, n− k = 2
Parity Check Equations: x1 + x3 = 0, x1 + x2 + x4 = 0
Parity Bits: x3 = x1, x4 = x1 + x2

C1 = {0000,0101,1011,1110}

Code 2: n = 4, n− k = 2
Parity Check Equations: x2 + x3 + x4 = 0, x1 + x2 + x4 = 0
Parity Bits: x3 = x1,x4 = x1 + x2,
Hence C2 = C1

Systematic form:
Generator Matrix:

G =
[

1 0 1 1
0 1 0 1

]
Parity Check Matrix:

H =
[

1 0 1 0
1 1 0 1

]
2. After Gaussian Elimination:

G =


1 0 0 1 0 1 1 0
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1


Blocklength, n = 8, Dimension k = 4, Minimum Distance dmin = 4 (found by enumerating all
codewords).

3. (a)

dH(u,v) = {1 ≤ i ≤ n : ui 6= vi}
= {1 ≤ i ≤ n : ui + vi 6= 0}
= wt(u + v).

(b) wt(u)+wt(v) gives the number of ones in u and v with the common positions counted twice.
Hence, subtract 2wt(u ∗v), which is the number of nonzero positions common to both u and
v, from wt(u) + wt(v) to get dH(u,v).

(c) Follows from (3b).
(d) Since dH(u,v) =

∑n
i=1 d(ui, vi), it is enough to prove

d(ui, vi) ≤ d(ui, wi) + d(wi, vi). (1)

If ui = vi = wi, then (1) evaluates to 0 ≤ 0. If ui 6= vi and ui = wi, vi 6= wi, 1 = 1. If ui 6= vi

and ui 6= wi, vi = wi, (1) evaluates to 1 ≤ 1. If ui 6= vi and ui 6= wi, vi 6= wi, (1) evaluates
to 1 ≤ 2. In all cases, inequality is satisified. Hence, dH(u,v) ≤ dH(u,w) + dH(w,v).
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(e) From (3d), we know that wt(u + w) ≤ wt(u + v) + wt(v + w). Let w = 0. It follows
wt(u) ≤ wt(u + v) + wt(v)

4. (a) (n, 8, 4) Code
By Hamming bound, n ≥ 12. By Singleton bound, n ≥ 11. GV Bound evaluates to n ≥ 15.
For n = 11 or n = 12, we cannot construct a (n − 1, 8, 3) code with minimum distance 3,
since we do not have n− 1 distinct columns. A (13, 8, 4) code is constructed by extending a
(12, 8, 3) code. One sample parity-check matrix is shown below.

H =


1 0 0 0 0 0 0 0 1 1 1 1 0
0 1 0 0 0 1 1 1 0 0 0 1 0
0 0 1 0 1 0 1 1 0 1 1 0 0
0 0 0 1 1 1 0 1 1 0 1 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1


(b) (n, 16, 4) Code

By Hamming bound, n ≥ 21. By Singleton bound, n ≥ 19. GV Bound evaluates to n ≥ 25.
For n = 19 or , n = 20, we cannot construct a (n − 1, 16, 3) code with minimum distance 3,
since we do not have n− 1 distinct columns. A (22, 16, 4) code is constructed by extending a
(21, 16, 3) code.

(c) (n, 32, 4) Code
By Hamming bound, n ≥ 38. By Singleton bound, n ≥ 33. GV bound evaluates to n ≥ 42.
A (39, 32, 4) code is constructed by extending a (38, 32, 3) code.

5. (a) Dual of the (n, 1, n) repetition code is the (n, n− 1, 2) even weight codeword.

(b) Dual of the (n, n− 1, 2) even weight codeword is the (n, 1, n) repetition code.

6. G = Ik. Hence C = {0, 1}k.

7. (a) Block Length n = n1+n2, Dimension k. Any codeword x can be written as x = [x1x2], where
x1 = uG1 and x2 = uG2. If u 6= 0, wt(x) ≥wt(x1)+wt(x2). Therefore, minimum distance
d ≥ d1 + d2.

(b) Block Length n = n1 + n2, Dimension k = k1 + k2, Minimum distance d = min(d1, d2). Let
x1, x2 be codewords generated by G1, G2. The vectors [x10], and [0x2] are codewords of the
new code. Hence, minimum distance = min(d1, d2).

8. Let C = Ce∪Co, where Ce and Co are the set of even and odd weight codewords in C respectively.
Since 0 ∈ Ce and sum of even weight codewords is an even weight codeword, Ce is a linear code.

Let c1 ∈ Co. Consider the coset of Ce generated by c1 denoted as c1 +Ce. For c2 ∈ Co, we see that
c1 + c2 ∈ Ce, which implies that c2 ∈ c1 + Ce and Co ⊆ c1 + Ce. Also, for c3 ∈ Ce, c1 + c3 ∈ Co,
which implies that c1 + Ce ⊆ Co. Thus, Ce + c1 = Co. Since, | Ce | = | Ce + c1 |, | Ce | = | Co |.

9. Let C0 and C1 be the set of codewords with 0 and 1 in any particular column. C0 is a subspace,
since it includes 0 and is closed. Let c1, c2 ∈ C1. Consider the coset of C0, generated by c1. We
know that c1 + c2 ∈ C0. Hence any vector c2 ∈ C1, also belongs to C0 + c1. Thus, C0 + c1 = C1.
Since, | C0 | = | C0 + c1 |, | C0 | + | C1 |= 2k. Therefore, | C0 |=| C1 |= 2(k − 1).

10. The parity-check matrix for the code is

H =
[

H1 0
1 1

]
,

where H1 is the parity-check matrix of the (7,4) Hamming code. Note that H is a parity-check
matrix for the (8,4) extended Hamming code. The syndrome is given by s = rHT for a received
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s Syndrome e Error Pattern
0000 00000000
0001 00000001
1111 00000010
0111 00000100
1011 00001000
1101 00010000
1001 00100000
0101 01000000
0011 10000000
1110 00000011
1000 00000110
1100 00001100
0110 00011000
0100 00110000
0010 10000001
1010 00010100

Table 1: Syndrome table.

vector r. The code has a total of 16 cosets represented by the 16 syndromes. Table 1 presents a
syndrome table for the maximum likelihood decoder over a BSC.

The probability of codeword error is given by

Pr(Codeword Error) = 1−Pr(e = Correctable Error Vector) = 1−8p(1−p)7−7p2(1−p)6−(1−p)8.

11. Message Bit Error: In general, finding accurate probability of bit error involves more drudgery
than probability of block error. Typically, simple bounds such as

Pr(block error)
message length)

≤ Pr(bit error) ≤ Pr(block error)

are sufficient in practice. We will illustrate the entire calculation for this problem.

The list of codewords is seen to be C = {000000, 101001, 111010, 010011, 110100, 011101, 001110, 100111}.
The sydrome table is given in Table 2.

s Syndrome e Error Pattern
000 000000
001 001000
010 010000
011 100010
100 100000
101 000001
110 000100
111 000010

Table 2: Syndrome Table.

The syndrome table is not sufficient for our calculation. Each coset needs to be explicitly de-
termined in the form of a standard array as shown in Table 3. Notice that the first row of the
standard array is the code itself, and the first column is the list of coset leaders.

Let us assume that the all-zero codeword [000000] is transmitted and the last three bits of a
codeword are set to be the message bits. We will compute the average number of message-bit
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Syndrome Words in coset
000 {000000, 101001, 111010, 010011, 110100, 011101, 001110, 100111}
001 {001000, 100001, 110010, 011011, 111100, 010101, 000110, 101111}
010 {010000, 111001, 101010, 000011, 100100, 001101, 011110, 110111}
011 {100010, 001011, 011000, 110001, 010110, 111111, 101100, 000101}
100 {100000, 001001, 011010, 110011, 010100, 111101, 101110, 000111}
101 {000001, 101000, 111011, 010010, 110101, 011100, 001111, 100110}
110 {000100, 101101, 111110, 010111, 110000, 011001, 001010, 100011}
111 {000010, 101011, 111000, 010001, 110110, 011111, 001100, 100101}

Table 3: Standard array.

errors in one decoded codeword. More precisely, if X denotes the number of message-bit errors
in a decoded codeword, we will compute the PMF of X given that [000000] is the transmitted
codeword. Table 4 shows the value of X corresponding to each possiblity for the decoded codeword.

Decoded codeword Decoded message vector X
000000 000 0
101001 001 1
111010 010 1
010011 011 2
110100 100 1
011101 101 2
001110 110 2
100111 111 3

Table 4: Message-bit error table

From Table 4 and Table 3, we see the following:

Pr(X = 0) = Pr(e is in 1st column of array),
Pr(X = 1) = Pr(e is in 2nd, 3rd, or 5th column of array),
Pr(X = 2) = Pr(e is in 4th, 6th or 7th column of array),
Pr(X = 3) = Pr(e is in 8th column of array).

Now,

E[X] = Pr(X = 1) + 2Pr(X = 2) + 3Pr(X = 3),
= (7p2(1− p)4 + 8p3(1− p)3 + 7p4(1− p)2 + 2p5(1− p))

+2(6p2(1− p)4 + 8p3(1− p)3 + 7p4(1− p)2 + 2p5(1− p) + p6)
+3(p2(1− p)4 + 4p3(1− p)3 + p4(1− p)2 + 2p5(1− p)),

= 22p2(1− p)4 + 36p3(1− p)3 + 24p4(1− p)2 + 12p5(1− p) + 2p6.

Assuming the transmission of each codeword is independent, we can see that the bit-error rate (or
expected fraction of message bits in error) will evaluate to E[X]/k = E[X]/3.

We could also compute other probabilities using the standard array and the syndrome table. For

4



instance,

Pr(first message bit is in error) = Pr(e is in 5th, 6th, 7th or 8th column of array),
= 7p2(1− p)4 + 12p3(1− p)3 + 8p4(1− p)2 + 4p5(1− p) + p6.

Pr(second message bit is in error) = Pr(e is in 3rd, 4th, 7th or 8th column of array),
= 8p2(1− p)4 + 12p3(1− p)3 + 8p4(1− p)2 + 4p5(1− p).

Pr(third message bit is in error) = Pr(e is in 2nd, 4th, 6th or 8th column of array),
= 7p2(1− p)4 + 12p3(1− p)3 + 8p4(1− p)2 + 4p5(1− p) + p6.

Notice that the average of the above three probabilities also works out to be equal to E[X]/3. Are
these two averages always equal? How about for linear codes? What about the conditioning on
the all-zero codeword?

12. (a) Parity Check Matrix

H =


1 0 0 0 0 0 0 0 1 1 1 1 1 1 1
0 1 0 0 0 1 1 1 0 0 0 1 1 1 1
0 0 1 0 1 0 1 1 0 1 1 0 0 1 1
0 0 0 1 1 1 0 1 1 0 1 0 1 0 1


(b) The parity bits are found using the following equations so that the codeword satisfies H[p m]T =

0.

x12 = x5 + x6 + x7 + x8 + x9 + x10 + x11

x13 = x2 + x3 + x4 + x8 + x9 + x10 + x11

x14 = x1 + x3 + x4 + x6 + x7 + x10 + x11

x15 = x1 + x2 + x4 + x5 + x7 + x9 + x11

Using the given message, we get the codeword to be [111111000000100].
(c) Syndrome

s = HrT = [1010]T . The syndrome equals the tenth column of H implying that the tenth bit
is in error. Therefore, decoded message = [1110001111].

13. To show that C ∪ (u + C) is closed, let a,b ∈ C ∪ (u + C). We consider the following cases:

case 1: a,b ∈ C implies a + b ∈ C.
case 2: a,b ∈ u + C implies a + b ∈ C.
case 3: a ∈ C,b ∈ u + C implies a + b ∈ u + C.

Hence, C ∪ (u + C) is a linear code.

14. (a) Note that a vector is in C iff it is orthogonal to all vectors in C⊥. Similarly, a vector is in
C⊥ iff it is orthogonal to all vectors in C.
We need to show that (C⊥)⊥ = C. Consider x ∈ C. By definition x · y = 0 for all y ∈ C⊥;
hence, we conclude that x ∈ (C⊥)⊥. So, C ⊆ (C⊥)⊥.
Now consider u ∈ (C⊥)⊥. By definition u · v = 0 for all v ∈ C⊥; hence, we conclude that
u ∈ C. So, (C⊥)⊥ ⊆ C.
Hence proved.

(b) Similar to above part.

15. (a) Converting G into systematic form, we get the following:

Gs =

 1 1 0 0
0 1 1 0
0 0 1 1


Since Gs = G′, the two codes are identical.
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(b) In systematic form, the matrix G′ becomes

G′
s =

 1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1


After a column permutation, we get

G′
eq =

 1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1


Since G = G′

eq, the two codes are equivalent.

16. Let the parity-check matrix be

H =


1 a b 1 0 0 0
0 c d 0 1 0 0
1 e f 0 0 1 0
1 g h 0 0 0 1

 ,

where the variables a through g are bits that need to be determined. Since H[0110011]T = 0, we
get the following equations:

a + b = 0 =⇒ a = b

c + d = 0 =⇒ c = d

e + f = 1 =⇒ e 6= f

g + h = 1 =⇒ g 6= h

For a minimum distance of 4, we need to have atleast 3 linearly independent columns. This implies
atleast 3 ones must be present in each of the columns. Therefore the parity check matrix is

H =


1 1 1 1 0 0 0
0 1 1 0 1 0 0
1 0 1 0 0 1 0
1 1 0 0 0 0 1


Note that we still need to check that the minimum distance is actually 4!

17. (a) Notice that the generator matrix can be written as G = [G1 G2], where

G1 =


1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1


is a generator matrix of the (5,4,2) even-weight code (why? find its parity-check matrix in
systematic form) and G2 is a generator matrix of the (7,4,3) Hamming code (why? find
parity-check matrix). By Problem (7a), we see that d ≥ 2 + 3 = 5. Since the first row of G is
a codeword of weight 5, we see that d = 5.
Alternatively, by enumerating all 16 codewords, we find dmin = 5.

(b) By careful inspection, we can quickly see that the codeword closest to [111111111111] will be
[111101111111]. Alternatively, we need to calculate the syndrome and find a suitable coset
leader!

18. (a) Linear: Impossible
For a ∈ C, a+a = 0 has even weight and does not belong to C. Hence, the code is nonlinear.
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(b) Minimum Distance is 5: Impossible
Let u, v belong to C. dH(u,v) = wt(u) + wt(v) − 2wt(uv) = some even number. Hence
minimum distance cannot be an odd number.

(c) C is self-orthogonal: Impossible
For a self-orthogonal code, any codeword is orthogonal to itself. For a ∈ C, a · a = wt(a)
mod 2 = 1. Hence, C cannot be self-orthogonal.
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