EE512: Error Control Coding

Solution for Assignment on Finite Fields

February 16, 2007

1. (a) Addition and Multiplication tables for GF(5) and GF(7) are shown in Tables 1 and 2.

+(0]1|2]3]|4 x|10]12]3 |4
0101|234 0j0j0j0O]0O]O0
111121340 1{10|1]2]|3]4
21213(4(0]1 21012413
31314]0(1]2 3103|142
41410111213 4101413121
Table 1: Tables for GF(5)
+(0]1(2[3|4]5]|6 x[0|12]3|4]5]|6
0101|234 |5]|6 0{0[0|0O]|0O]O]0O]O
11112134560 1170|1123 |4]5]|6
21213456 (0]1 2101246135
313]4|5(6|0|1]2 3101362514
4 1415160123 41041152613
556|011 ]2]|3]4 5105316 |42
6160|123 |4]|5 6 10654321

Table 2: Tables for GF(7)

(b) GF(4) ={0,1,a,0?}, a®> = a + 1, a® = 1. The addition and multiplication tables are shown

in Table 3.
+ 0 1 a | a? x [0 1 a | a2
0 0 1 a | o? 0 0] O 0 0
1 1 0 || « 1 0| 1 a | o?
« a [ a2] 0 1 a |0l ala®]1
a? |l a? | a 1 0 o[ 0] a? 1 «

Table 3: Tables for GF(4)

2. Construction of GF(16) using three different irreducible polynomials:

(a) Using m1(z) = 2* + 2 + 1: Let a be a root of 71(x) = 0; a* = o + 1. Table 4 shows the
construction.

(b) Using m2(z) = 2* + 2% + 1: Let 8 be a root of ma(z) = 0; 8* = 32 + 1. Table 4 shows the
construction.

(c) Using m3(x) = 2* + 2%+ 22+ 2+ 1: Let 7 be a root of m3(x) = 0; v* = 3 +~2 +~+ 1. Table
5 shows the powers of . Note that 7 is not a primitive element of GF(16), since order of v



Power Polynomial Vector Power Polynomial Vector
o~ f 0 0000 3~ it 0 0000
a? 1 0001 30 1 0001
a a 0010 B B 0010
a? a? 0100 32 32 0100
al a’ 1000 33 33 1000
at a+1 0011 B4 B3 +1 1001
a® o’ +a 0110 3° B+B+1 1011
ab a® + a? 1100 g B+ +p+1 ] 1111
a’ ad+a+1 1011 a7 B2+ p+1 0111
ab a?+1 0101 B8 B+ B2+ 1110
o’ o + 1010 3° 32 +1 0101
ato a’?4+a+1 0111 310 3+ 1010
all a® +a?+ 1110 /il BB +p2+1 1101
a2 | +a?+a+1]| 1111 [12 B+1 0011
al? ad+a?+1 1101 B3 B%+ B 0110
alt ad +1 1001 G 6% + B2 1100

Table 4: GF(16) using 71 (x) and ma(x).

is 5. It can be noticed that the polynomial 73(x) = 2* + 2% + 22 + x + 1 can be written as
m3(x) = (1+2)*+ (1 +2)3 +1=m(1+2z). Thus (1+7) is a root of mo(z), and it has to be
a primitive element, since 7o(x) is a primitive polynomial. Table 5 shows the construction of
GF(16) using (1 + ) as the primitive element.

Power Polynomial Vector

(1+~)~mf 0 0000

(1+7)° 1 0001

(1+7) 1+~ 0011

. (147)? 1++2 0101

P?Yffr POlyI(l)OIIllal (14+79)? | 14+y+~2+4%| 1111

7 | (1+7)* Y+ 4+ | 1110

" (1+7)° 1472443 1101

772 772 (1 +7)<;‘ 3 i 1000

arde | I |
4 3 2 Y Y

" (1+ )10 72443 1100

(14~ L+y+793 1011

(14 )12 v 0010

(14" v+ 2 0110

(1+y)H v+A? 1010

Table 5: GF(16) using m3(x).

(d) Isomorphism between two fields is a one-one and onto mapping of the elements of one field
to another such that all the operations of the fields are preserved. If ¢ is an isomorphism
from Fy — Fy, ¢(ay * az) = ¢(a1)od(az), where ay,as € Fy, * is the operation defined in Fi,
and o is the operation defined in F5. Observing the elements of GF(16) constructed using
71 (x), a” is a root of my(x). Thus mapping o’ € GF; — 3 € GF}, is an isomorphism between
GF, and GF,. Similarily, o® is a root of 73(x). Thus mapping o® € GF; — v € GF3 is an
isomorphism between GF; and GFj.

3. (a) Finding all polynomials of degree 2 and degree 3 that are irreducible over GF(2) and GF(3):



4.

i.

ii.

2? + x + 1 is the only irreducible polynomial of degree 2 over GF(2). 2® + x + 1 and
23 4+ 22 + 1 are the irreducible polynomials of degree 3 over GF(2). To check if the
irreducible polynomial of degree m over GF(p), f(x) is primitive, it is required to find
the smallest number n such that f(z) divides 2™ —1. If n = p™ —1, then f(x) is primitive,
If n < p™—1, then f(x) is not primitive. Since there is just one irreducible polynomial of
degree 2 over GF'(2), it has to be primitive. Both the irreducible polynomials of degree
3 over GF(2) are also primitive.

22+ +2, 22 + 22+ 2 and 22 4 1 are the irreducible polynomials of degree 2 over
GF(3). Tt can be seen that 2 + 1 divides z* — 1 over GF(3); thus, it is not a primitive
polynomial. It can be verified that the other two irreducible polynomials of degree 2 over
GF(3)are primitive. 23 + 2z + 1,2% + 222 + 1,23 + 22 + 2,23 + 20 + 2,2° + 22 + v + 2 and
23 + 222 + 22 + 2 are the irreducible polynomilas of degree 3 over GF(3). 2% + 2z + 1
and 23 + 222 + 1 are the primitive polynomials of degree 3 over GF(3), the rest of the
irreducible polynomials are not primitive (It can be verified that they divide x'3 — 1).

(b) Construction of GF(9) in two different ways:

i.

Construction using primitive polynomial: Consider the primitive polynomial m(z) =
2? + x + 2. Let a be a root of 7y (x) = 0; therefore, a® = 2a + 1.

Power | Polynomial | Vector(with basis [1,a])

0 0 00

1 1 01

« o 10

a? 2a0+1 21
o 200+ 2 22
at 2 02
ad 2« 20
ab a+2 12
a’ a+1 11

Table 6: GF1(9)

ii. Construction using non-primitive polynomial: Consider the non-primitive polynomial

ma(x) = 22 4+ 1. Let (3 be a root of ma(z) = 0. Since m(z) is not a primitive polynomial,
B will not be a primitive element of GF(9). m(x) can be written as, mo(z) = (z + 1)2 +
(x +1) 4+ 2, Thus (1 + () is a primitive element of GF'(9).

Power | Polynomial | Vector(with basis [1,5])
0 0 00
1 1 01
(1+73) B+1 11
(1+ )2 26 20
El + ﬂ;i 268 +1 21
1+ 23 2 02
El + 5;2 28 +2 22
1+ 23 6 10
1+ B+2 12

Table 7: GF5(9)

To find the isomorphism between GF; and GF», note that a? € G'F} is a root of m3(x), thus

a? — (3 is an isomorphism.

(a) Let GF(9) = {0,1,a,a?,....,a"}, where « is the root of the primitive polynomial 7(z)

2?2 + 2z +2. The multiplicative group GF*(9) = {1, a, a2, ...,a"}. Ord(a?) = n/(n,i), where n



is the order of the multiplicative group (8 in this case) and (n, ) denotes the GCD of n and
i. Primitive elements are the elements with order 8.

Elements of order 2 = { a*};

Elements of order 4 = { a?,a5};

Elements of order 8 = { a, a3, a%, o} (primitive).

Similarly, let GF(16) = {0,1,a,a?,--- ,a'*, a* = a + 1.

Elements of order 3 = {a® al%};

Elements of order 5 = {a?,a%, o, a'?};

Elements of order 15 = {a,a?, o, a”, af, o't a!? a4} (primitive).

(b) Order of elements in GF(32): Order of the Multiplicative group GF*(32) is n = 31. Since n is
prime, (n,i) = 1 for all i = all elements are primitive. For all non-zero, non-unity elements
of GF(p™) to be primitive, p™ — 1 should be prime.

(a) Multiplication and addition in GF(p)are defined modulo p. Thus, order of an element a is the
smallest number n such that ¢ =1 mod p. Using this condition, order of every element can
be determined. Moreover, order of any element should divide the order of the multiplicative
group p — 1. An element is primitive if its order is equal to p — 1.

GF(7): Elements of order 2 = { 6}; Elements of order 3 = { 2,4}; Elements of order 6
(primitive) = { 3,5}.
GF(11): Elements of order 2 = { 10}; Elements of order 5 = { 3,4,5,9}; Elements of order 10
(primitive) = { 2,6,7,8}.

(b) All non-zero, non-unity elements of GF(p) cannot be primitive for p > 3 since (p — 1) would
not be prime, and there would be elements with order less than (p — 1). In GF(3) there is
only one non-zero, non-unity element and it has to be primitive.

—1

N2 .
(a) Let « € GF(2™). We know that a®" = a. Therefore, <a2 1) = «a. Hence, o? is a
square root of a.
(b) Proof is similar to that for the previous part.
. In GF(16),
(@ +y)° =2 +3° + 327y + 3wy® = 2 +° +ay(z +y).
Using the given values for o + y and 3 + y3, we get that (a!*)® = a + zy(a'?). Simplifying, we

get zy = o't or y = a'* /2. Using in 7 +y = o4, we get
14
e+ E =t
x

or the quadratic equation f(z) = 22 + o'z +a'* =0

By trial and error, we see that the roots of f(z) in GF(16) are a® and o®. Hence, possible solutions

for (x,y) are (a®, a®) or (a®,af).

(a) Since z +y = a?,
<x+y)2 :x2+y2 _ (043)2 _ a6

. We see that the second equation is consistent with and fully dependent on the first equation.
The set of solutions is {(z,z + a3) : € GF(16)}.

(b) The second equation is inconsistent with the first equation. Hence, no solution exists.

. We are given that 23 + 4% + 23 = 0 for x,y,x € GF(64). Note that 253 = 3% = 263 = 1.
Since (a +b)? = a? +b? for a,b € GF(64), we see that (a + b)32 = a3? + b2, Using this, we get

(z® +y® + %)% = 0.

Simplifying the LHS above, we get that 233 + ¢33 + 233 = 0.



10. Suppose 3 € GF(q) is an element of order 5. Then, 3 is a root of #° — 1, since 3° — 1 = 0. Notice

that 42, 33, #* and 3° = 1 are all distinct and additional roots of 2% — 1. Since ° — 1 can have
no further roots in GF(q), we get

2’ —1=(z— B)(z — )z~ )« — ") (x — 5°).
(a) If « € GF(16) is a primitive element, we see that Ord(a®) = 5. Hence,

P +1=(2+3)(z+a® (@ +a”)(z+a?)(z+1)
in GF(16)[z].
In GF(2)[x],
P Hl=(z+ D)zt +2>+ 22+ +1)
is a complete factorization into irreducibles.

In GF(11), we see from Problem (5a) that 3 is an element of order 5. Hence,

=1 = (z—-3)(z—3%(z -3 (z—3%(x - 3°),
(x=3)(x—=9)(z-5)(x—4)(z—1).
(b) x% — 1 factors into linear factors over GF(p) when p — 1 is a multiple of 5.

11. (a) i. Cyclotomic Decomposition of GF(9) (a: primitive): S = {a°} U {a,a3} U {a?,a5} U
{a*} U {a®,a’}. Table 8 lists the minimal poynomials.

Element Minimal Polynomial

0 T

1 z+1
a, o 224+ x+2
a?,ab 22 +1
at T+ 2
a®, o’ 22 —x+2

Table 8: Minimal polynomials of GF(9).

ii. Cyclotomic Decomposition of GF(16) (a: primitive): S = {a'} U {a,a? a* a8} U
{a3,0% a'? 0%} U{a®, a?} U {a”, a'* al? all}. Table 9 lists the minimal poynomials.

Element Minimal Polynomial
0 T
1 z+1
a,a?,a*, a8 2t +z+1
a3, a8, a2, o 4l 2+l
a®, ot A |
o’ o a3 ol R |

Table 9: Minimal polynomials of GF(16).

(b) Not neccessarily. As a counterexample, the minimal polynomial of a® € GF(16) (order 5,
nonprimitive element) has degree 4.



