
EE512: Error Control Coding

Solution for Assignment on Finite Fields

February 16, 2007

1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2.

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Table 1: Tables for GF(5)

+ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

× 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

Table 2: Tables for GF(7)

(b) GF (4) = {0, 1, α, α2}, α2 = α + 1, α3 = 1. The addition and multiplication tables are shown
in Table 3.

+ 0 1 α α2

0 0 1 α α2

1 1 0 α2 α
α α α2 0 1
α2 α2 α 1 0

× 0 1 α α2

0 0 0 0 0
1 0 1 α α2

α 0 α α2 1
α2 0 α2 1 α

Table 3: Tables for GF(4)

2. Construction of GF (16) using three different irreducible polynomials:

(a) Using π1(x) = x4 + x + 1: Let α be a root of π1(x) = 0; α4 = α + 1. Table 4 shows the
construction.

(b) Using π2(x) = x4 + x3 + 1: Let β be a root of π2(x) = 0; β4 = β3 + 1. Table 4 shows the
construction.

(c) Using π3(x) = x4 +x3 +x2 +x+1: Let γ be a root of π3(x) = 0; γ4 = γ3 + γ2 + γ +1. Table
5 shows the powers of γ. Note that γ is not a primitive element of GF (16), since order of γ
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Power Polynomial Vector
α− inf 0 0000

α0 1 0001
α α 0010
α2 α2 0100
α3 α3 1000
α4 α + 1 0011
α5 α2 + α 0110
α6 α3 + α2 1100
α7 α3 + α + 1 1011
α8 α2 + 1 0101
α9 α3 + α 1010
α10 α2 + α + 1 0111
α11 α3 + α2 + α 1110
α12 α3 + α2 + α + 1 1111
α13 α3 + α2 + 1 1101
α14 α3 + 1 1001

Power Polynomial Vector
β− inf 0 0000

β0 1 0001
β β 0010
β2 β2 0100
β3 β3 1000
β4 β3 + 1 1001
β5 β3 + β + 1 1011
β6 β3 + β2 + β + 1 1111
β7 β2 + β + 1 0111
β8 β3 + β2 + β 1110
β9 β2 + 1 0101
β10 β3 + β 1010
β11 β3 + β2 + 1 1101
β12 β + 1 0011
β13 β2 + β 0110
β14 β3 + β2 1100

Table 4: GF(16) using π1(x) and π2(x).

is 5. It can be noticed that the polynomial π3(x) = x4 + x3 + x2 + x + 1 can be written as
π3(x) = (1 + x)4 + (1 + x)3 + 1 = π2(1 + x). Thus (1 + γ) is a root of π2(x), and it has to be
a primitive element, since π2(x) is a primitive polynomial. Table 5 shows the construction of
GF (16) using (1 + γ) as the primitive element.

Power Polynomial
γ− inf 0

γ0 1
γ γ
γ2 γ2

γ3 γ3

γ4 γ3 + γ2 + γ + 1
γ5 1

Power Polynomial Vector
(1 + γ)− inf 0 0000

(1 + γ)0 1 0001
(1 + γ) 1 + γ 0011
(1 + γ)2 1 + γ2 0101
(1 + γ)3 1 + γ + γ2 + γ3 1111
(1 + γ)4 γ + γ2 + γ3 1110
(1 + γ)5 1 + γ2 + γ3 1101
(1 + γ)6 γ3 1000
(1 + γ)7 1 + γ + γ2 0111
(1 + γ)8 1 + γ3 1001
(1 + γ)9 γ2 0100
(1 + γ)10 γ2 + γ3 1100
(1 + γ)11 1 + γ + γ3 1011
(1 + γ)12 γ 0010
(1 + γ)13 γ + γ2 0110
(1 + γ)14 γ + γ3 1010

Table 5: GF (16) using π3(x).

(d) Isomorphism between two fields is a one-one and onto mapping of the elements of one field
to another such that all the operations of the fields are preserved. If φ is an isomorphism
from F1 → F2, φ(a1 ∗ a2) = φ(a1)oφ(a2), where a1, a2 ∈ F1, ∗ is the operation defined in F1,
and o is the operation defined in F2. Observing the elements of GF (16) constructed using
π1(x), α7 is a root of π2(x). Thus mapping α7 ∈ GF1 → β ∈ GF2 is an isomorphism between
GF1 and GF2. Similarily, α3 is a root of π3(x). Thus mapping α3 ∈ GF1 → γ ∈ GF3 is an
isomorphism between GF1 and GF3.

3. (a) Finding all polynomials of degree 2 and degree 3 that are irreducible over GF(2) and GF(3):
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i. x2 + x + 1 is the only irreducible polynomial of degree 2 over GF (2). x3 + x + 1 and
x3 + x2 + 1 are the irreducible polynomials of degree 3 over GF (2). To check if the
irreducible polynomial of degree m over GF (p), f(x) is primitive, it is required to find
the smallest number n such that f(x) divides xn−1. If n = pm−1, then f(x) is primitive,
If n < pm−1, then f(x) is not primitive. Since there is just one irreducible polynomial of
degree 2 over GF (2), it has to be primitive. Both the irreducible polynomials of degree
3 over GF (2) are also primitive.

ii. x2 + x + 2, x2 + 2x + 2 and x2 + 1 are the irreducible polynomials of degree 2 over
GF (3). It can be seen that x2 + 1 divides x4 − 1 over GF (3); thus, it is not a primitive
polynomial. It can be verified that the other two irreducible polynomials of degree 2 over
GF (3)are primitive. x3 + 2x + 1,x3 + 2x2 + 1,x3 + x2 + 2,x3 + 2x + 2,x3 + x2 + x + 2 and
x3 + 2x2 + 2x + 2 are the irreducible polynomilas of degree 3 over GF (3). x3 + 2x + 1
and x3 + 2x2 + 1 are the primitive polynomials of degree 3 over GF (3), the rest of the
irreducible polynomials are not primitive (It can be verified that they divide x13 − 1).

(b) Construction of GF (9) in two different ways:
i. Construction using primitive polynomial: Consider the primitive polynomial π1(x) =

x2 + x + 2. Let α be a root of π1(x) = 0; therefore, α2 = 2α + 1.

Power Polynomial Vector(with basis [1,α])
0 0 00
1 1 01
α α 10
α2 2α + 1 21
α3 2α + 2 22
α4 2 02
α5 2α 20
α6 α + 2 12
α7 α + 1 11

Table 6: GF1(9)

ii. Construction using non-primitive polynomial: Consider the non-primitive polynomial
π2(x) = x2 + 1. Let β be a root of π2(x) = 0. Since π2(x) is not a primitive polynomial,
β will not be a primitive element of GF (9). π2(x) can be written as, π2(x) = (x + 1)2 +
(x + 1) + 2, Thus (1 + β) is a primitive element of GF (9).

Power Polynomial Vector(with basis [1,β])
0 0 00
1 1 01

(1 + β) β + 1 11
(1 + β)2 2β 20
(1 + β)3 2β + 1 21
(1 + β)4 2 02
(1 + β)5 2β + 2 22
(1 + β)6 β 10
(1 + β)7 β + 2 12

Table 7: GF2(9)

To find the isomorphism between GF1 and GF2, note that α2 ∈ GF1 is a root of π2(x), thus
α2 → β is an isomorphism.

4. (a) Let GF (9) = {0, 1, α, α2, ...., α7}, where α is the root of the primitive polynomial π(x) =
x2 +x+2. The multiplicative group GF ∗(9) = {1, α, α2, ..., α7}. Ord(αi) = n/(n, i), where n
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is the order of the multiplicative group (8 in this case) and (n, i) denotes the GCD of n and
i. Primitive elements are the elements with order 8.
Elements of order 2 = { α4};
Elements of order 4 = { α2,α6};
Elements of order 8 = { α, α3, α5, α7} (primitive).
Similarly, let GF (16) = {0, 1, α, α2, · · · , α14, α4 = α + 1.
Elements of order 3 = {α5, α10};
Elements of order 5 = {α3, α6, α9, α12};
Elements of order 15 = {α, α2, α4, α7, α8, α11, α13, α14} (primitive).

(b) Order of elements in GF(32): Order of the Multiplicative group GF ∗(32) is n = 31. Since n is
prime, (n, i) = 1 for all i =⇒ all elements are primitive. For all non-zero, non-unity elements
of GF (pm) to be primitive, pm − 1 should be prime.

5. (a) Multiplication and addition in GF(p)are defined modulo p. Thus, order of an element a is the
smallest number n such that an = 1 mod p. Using this condition, order of every element can
be determined. Moreover, order of any element should divide the order of the multiplicative
group p− 1. An element is primitive if its order is equal to p− 1.
GF(7): Elements of order 2 = { 6}; Elements of order 3 = { 2,4}; Elements of order 6
(primitive) = { 3,5}.
GF(11): Elements of order 2 = { 10}; Elements of order 5 = { 3,4,5,9}; Elements of order 10
(primitive) = { 2,6,7,8}.

(b) All non-zero, non-unity elements of GF (p) cannot be primitive for p > 3 since (p− 1) would
not be prime, and there would be elements with order less than (p − 1). In GF (3) there is
only one non-zero, non-unity element and it has to be primitive.

6. (a) Let α ∈ GF (2m). We know that α2m

= α. Therefore,
(
α2m−1

)2

= α. Hence, α2m−1
is a

square root of α.

(b) Proof is similar to that for the previous part.

7. In GF(16),
(x + y)3 = x3 + y3 + 3x2y + 3xy2 = x3 + y3 + xy(x + y).

Using the given values for x + y and x3 + y3, we get that (α14)3 = α + xy(α14). Simplifying, we
get xy = α14 or y = α14/x. Using in x + y = α14, we get

x +
α14

x
= α14,

or the quadratic equation f(x) = x2 + α14x + α14 = 0.

By trial and error, we see that the roots of f(x) in GF(16) are α6 and α8. Hence, possible solutions
for (x, y) are (α6, α8) or (α8, α6).

8. (a) Since x + y = α3,
(x + y)2 = x2 + y2 = (α3)2 = α6

. We see that the second equation is consistent with and fully dependent on the first equation.
The set of solutions is {(x, x + α3) : x ∈ GF(16)}.

(b) The second equation is inconsistent with the first equation. Hence, no solution exists.

9. We are given that x3 + y3 + z3 = 0 for x, y, x ∈ GF(64). Note that x63 = y63 = z63 = 1.

Since (a + b)2 = a2 + b2 for a, b ∈ GF(64), we see that (a + b)32 = a32 + b32. Using this, we get

(x3 + y3 + z3)32 = 0.

Simplifying the LHS above, we get that x33 + y33 + z33 = 0.
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10. Suppose β ∈ GF(q) is an element of order 5. Then, β is a root of x5 − 1, since β5 − 1 = 0. Notice
that β2, β3, β4 and β5 = 1 are all distinct and additional roots of x5 − 1. Since x5 − 1 can have
no further roots in GF(q), we get

x5 − 1 = (x− β)(x− β2)(x− β3)(x− β4)(x− β5).

(a) If α ∈ GF(16) is a primitive element, we see that Ord(α3) = 5. Hence,

x5 + 1 = (x + α3)(x + α6)(x + α9)(x + α12)(x + 1)

in GF(16)[x].
In GF(2)[x],

x5 + 1 = (x + 1)(x4 + x3 + x2 + x + 1)

is a complete factorization into irreducibles.
In GF(11), we see from Problem (5a) that 3 is an element of order 5. Hence,

x5 − 1 = (x− 3)(x− 32)(x− 33)(x− 34)(x− 35),
= (x− 3)(x− 9)(x− 5)(x− 4)(x− 1).

(b) x5 − 1 factors into linear factors over GF(p) when p− 1 is a multiple of 5.

11. (a) i. Cyclotomic Decomposition of GF(9) (α: primitive): S = {α0} ∪ {α, α3} ∪ {α2, α6} ∪
{α4} ∪ {α5, α7}. Table 8 lists the minimal poynomials.

Element Minimal Polynomial
0 x
1 x + 1

α, α3 x2 + x + 2
α2, α6 x2 + 1

α4 x + 2
α5, α7 x2 − x + 2

Table 8: Minimal polynomials of GF(9).

ii. Cyclotomic Decomposition of GF(16) (α: primitive): S = {α0} ∪ {α, α2, α4, α8} ∪
{α3, α6, α12, α9} ∪ {α5, α2} ∪ {α7, α14 α13, α11}. Table 9 lists the minimal poynomials.

Element Minimal Polynomial
0 x
1 x + 1

α, α2, α4, α8 x4 + x + 1
α3, α6, α12, α9 x4 + x3 + x2 + x + 1

α5, α10 x2 + x + 1
α7, α14, α13, α11 x4 + x3 + 1

Table 9: Minimal polynomials of GF(16).

(b) Not neccessarily. As a counterexample, the minimal polynomial of α3 ∈ GF(16) (order 5,
nonprimitive element) has degree 4.
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