EE512: Error Control Coding

Solution for Assignment on Finite Fields

February 16, 2007

1. (a) Addition and Multiplication tables for $G F(5)$ and $G F(7)$ are shown in Tables 1 and 2.

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

\times	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Table 1: Tables for GF(5)

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

\times	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Table 2: Tables for GF(7)
(b) $G F(4)=\left\{0,1, \alpha, \alpha^{2}\right\}, \alpha^{2}=\alpha+1, \alpha^{3}=1$. The addition and multiplication tables are shown in Table 3.

+	0	1	α	α^{2}
0	0	1	α	α^{2}
1	1	0	α^{2}	α
α	α	α^{2}	0	1
α^{2}	α^{2}	α	1	0

\times	0	1	α	α^{2}
0	0	0	0	0
1	0	1	α	α^{2}
α	0	α	α^{2}	1
α^{2}	0	α^{2}	1	α

Table 3: Tables for GF(4)
2. Construction of $G F(16)$ using three different irreducible polynomials:
(a) Using $\pi_{1}(x)=x^{4}+x+1$: Let α be a root of $\pi_{1}(x)=0 ; \alpha^{4}=\alpha+1$. Table 4 shows the construction.
(b) Using $\pi_{2}(x)=x^{4}+x^{3}+1$: Let β be a root of $\pi_{2}(x)=0 ; \beta^{4}=\beta^{3}+1$. Table 4 shows the construction.
(c) Using $\pi_{3}(x)=x^{4}+x^{3}+x^{2}+x+1$: Let γ be a root of $\pi_{3}(x)=0 ; \gamma^{4}=\gamma^{3}+\gamma^{2}+\gamma+1$. Table 5 shows the powers of γ. Note that γ is not a primitive element of $G F(16)$, since order of γ

Power	Polynomial	Vector		Power	Polynomial
Vector					
$\alpha^{- \text {inf }}$	0	0000		$\beta^{- \text {inf }}$	0
α^{0}	1	0001	β^{0}	0000	
α	α	0010	β	β	0001
α^{2}	α^{2}	0100	β^{2}	β^{2}	0010
α^{3}	α^{3}	1000	β^{3}	β^{3}	100
α^{4}	$\alpha+1$	0011	β^{4}	$\beta^{3}+1$	1000
α^{5}	$\alpha^{2}+\alpha$	0110	β^{5}	$\beta^{3}+\beta+1$	1011
α^{6}	$\alpha^{3}+\alpha^{2}$	1100	β^{6}	$\beta^{3}+\beta^{2}+\beta+1$	1111
α^{7}	$\alpha^{3}+\alpha+1$	1011	β^{7}	$\beta^{2}+\beta+1$	0111
α^{8}	$\alpha^{2}+1$	0101	β^{8}	$\beta^{3}+\beta^{2}+\beta$	1110
α^{9}	$\alpha^{3}+\alpha$	1010	β^{9}	$\beta^{2}+1$	0101
α^{10}	$\alpha^{2}+\alpha+1$	0111	β^{10}	$\beta^{3}+\beta$	1010
α^{11}	$\alpha^{3}+\alpha^{2}+\alpha$	1110	β^{11}	$\beta^{3}+\beta^{2}+1$	1101
α^{12}	$\alpha^{3}+\alpha^{2}+\alpha+1$	1111	β^{12}	$\beta+1$	0011
α^{13}	$\alpha^{3}+\alpha^{2}+1$	1101	β^{13}	$\beta^{2}+\beta$	0110
α^{14}	$\alpha^{3}+1$	1001	β^{14}	$\beta^{3}+\beta^{2}$	1100

Table 4: GF(16) using $\pi_{1}(x)$ and $\pi_{2}(x)$.
is 5 . It can be noticed that the polynomial $\pi_{3}(x)=x^{4}+x^{3}+x^{2}+x+1$ can be written as $\pi_{3}(x)=(1+x)^{4}+(1+x)^{3}+1=\pi_{2}(1+x)$. Thus $(1+\gamma)$ is a root of $\pi_{2}(x)$, and it has to be a primitive element, since $\pi_{2}(x)$ is a primitive polynomial. Table 5 shows the construction of $G F(16)$ using $(1+\gamma)$ as the primitive element.

		Power	Polynomial	Vector
		$(1+\gamma)^{-\mathrm{inf}}$	0	0000
		$(1+\gamma)^{0}$	1	0001
		$(1+\gamma)$	$1+\gamma$	0011
Power		$(1+\gamma)^{2}$	$1+\gamma^{2}$	0101
$\frac{\text { Power }}{} \gamma^{- \text {inf }}$	Polynomial	$(1+\gamma)^{3}$	$1+\gamma+\gamma^{2}+\gamma^{3}$	1111
$\gamma^{-\mathrm{inf}}$	0 1	$(1+\gamma)^{4}$	$\gamma+\gamma^{2}+\gamma^{3}$	1110
γ^{γ}	1	$(1+\gamma)^{5}$	$1+\gamma^{2}+\gamma^{3}$	1101
γ^{γ}	γ	$(1+\gamma)^{6}$	γ^{3}	1000
γ^{2}	γ^{2}	$(1+\gamma)^{7}$	$1+\gamma+\gamma^{2}$	0111
γ^{4}	$\gamma^{3}+\gamma^{\gamma^{3}}+\gamma+1$	$(1+\gamma)^{8}$	$1+\gamma^{3}$	1001
γ^{5}	$\gamma^{3}+\gamma^{2}+\gamma+1$	$(1+\gamma)^{9}$	γ^{2}	0100
		$(1+\gamma)^{10}$	$\gamma^{2}+\gamma^{3}$	1100
		$(1+\gamma)^{11}$	$1+\gamma+\gamma^{3}$	1011
		$(1+\gamma)^{12}$	γ	0010
		$(1+\gamma)^{13}$	$\gamma+\gamma^{2}$	0110
		$(1+\gamma)^{14}$	$\gamma+\gamma^{3}$	1010

Table 5: $G F(16)$ using $\pi_{3}(x)$.
(d) Isomorphism between two fields is a one-one and onto mapping of the elements of one field to another such that all the operations of the fields are preserved. If ϕ is an isomorphism from $F_{1} \rightarrow F_{2}, \phi\left(a_{1} * a_{2}\right)=\phi\left(a_{1}\right) o \phi\left(a_{2}\right)$, where $a_{1}, a_{2} \in F_{1}, *$ is the operation defined in F_{1}, and o is the operation defined in F_{2}. Observing the elements of $G F(16)$ constructed using $\pi_{1}(x), \alpha^{7}$ is a root of $\pi_{2}(x)$. Thus mapping $\alpha^{7} \in G F_{1} \rightarrow \beta \in G F_{2}$ is an isomorphism between $G F_{1}$ and $G F_{2}$. Similarily, α^{3} is a root of $\pi_{3}(x)$. Thus mapping $\alpha^{3} \in G F_{1} \rightarrow \gamma \in G F_{3}$ is an isomorphism between $G F_{1}$ and $G F_{3}$.
3. (a) Finding all polynomials of degree 2 and degree 3 that are irreducible over $\mathrm{GF}(2)$ and $\mathrm{GF}(3)$:
i. $x^{2}+x+1$ is the only irreducible polynomial of degree 2 over $G F(2) \cdot x^{3}+x+1$ and $x^{3}+x^{2}+1$ are the irreducible polynomials of degree 3 over $G F(2)$. To check if the irreducible polynomial of degree m over $G F(p), f(x)$ is primitive, it is required to find the smallest number n such that $f(x)$ divides $x^{n}-1$. If $n=p^{m}-1$, then $f(x)$ is primitive, If $n<p^{m}-1$, then $f(x)$ is not primitive. Since there is just one irreducible polynomial of degree 2 over $G F(2)$, it has to be primitive. Both the irreducible polynomials of degree 3 over $G F(2)$ are also primitive.
ii. $x^{2}+x+2, x^{2}+2 x+2$ and $x^{2}+1$ are the irreducible polynomials of degree 2 over $G F(3)$. It can be seen that $x^{2}+1$ divides $x^{4}-1$ over $G F(3)$; thus, it is not a primitive polynomial. It can be verified that the other two irreducible polynomials of degree 2 over $G F(3)$ are primitive. $x^{3}+2 x+1, x^{3}+2 x^{2}+1, x^{3}+x^{2}+2, x^{3}+2 x+2, x^{3}+x^{2}+x+2$ and $x^{3}+2 x^{2}+2 x+2$ are the irreducible polynomilas of degree 3 over $G F(3) . x^{3}+2 x+1$ and $x^{3}+2 x^{2}+1$ are the primitive polynomials of degree 3 over $G F(3)$, the rest of the irreducible polynomials are not primitive (It can be verified that they divide $x^{13}-1$).
(b) Construction of $G F(9)$ in two different ways:
i. Construction using primitive polynomial: Consider the primitive polynomial $\pi_{1}(x)=$ $x^{2}+x+2$. Let α be a root of $\pi_{1}(x)=0 ;$ therefore, $\alpha^{2}=2 \alpha+1$.

Power	Polynomial	Vector(with basis $[1, \alpha])$
0	0	00
1	1	01
α	α	10
α^{2}	$2 \alpha+1$	21
α^{3}	$2 \alpha+2$	22
α^{4}	2	02
α^{5}	2α	20
α^{6}	$\alpha+2$	12
α^{7}	$\alpha+1$	11

Table 6: $G F_{1}(9)$
ii. Construction using non-primitive polynomial: Consider the non-primitive polynomial $\pi_{2}(x)=x^{2}+1$. Let β be a root of $\pi_{2}(x)=0$. Since $\pi_{2}(x)$ is not a primitive polynomial, β will not be a primitive element of $G F(9) . \pi_{2}(x)$ can be written as, $\pi_{2}(x)=(x+1)^{2}+$ $(x+1)+2$, Thus $(1+\beta)$ is a primitive element of $G F(9)$.

Power	Polynomial	Vector(with basis $[1, \beta]$)
0	0	00
1	1	01
$(1+\beta)$	$\beta+1$	11
$(1+\beta)^{2}$	2β	20
$(1+\beta)^{3}$	$2 \beta+1$	21
$(1+\beta)^{4}$	2	02
$(1+\beta)^{5}$	$2 \beta+2$	22
$(1+\beta)^{6}$	β	10
$(1+\beta)^{7}$	$\beta+2$	12

Table 7: $G F_{2}(9)$

To find the isomorphism between $G F_{1}$ and $G F_{2}$, note that $\alpha^{2} \in G F_{1}$ is a root of $\pi_{2}(x)$, thus $\alpha^{2} \rightarrow \beta$ is an isomorphism.
4. (a) Let $G F(9)=\left\{0,1, \alpha, \alpha^{2}, \ldots, \alpha^{7}\right\}$, where α is the root of the primitive polynomial $\pi(x)=$ $x^{2}+x+2$. The multiplicative group $G F^{*}(9)=\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{7}\right\} . \operatorname{Ord}\left(\alpha^{i}\right)=n /(n, i)$, where n
is the order of the multiplicative group (8 in this case) and (n, i) denotes the GCD of n and i. Primitive elements are the elements with order 8.
Elements of order $2=\left\{\alpha^{4}\right\}$;
Elements of order $4=\left\{\alpha^{2}, \alpha^{6}\right\}$;
Elements of order $8=\left\{\alpha, \alpha^{3}, \alpha^{5}, \alpha^{7}\right\}$ (primitive).
Similarly, let $G F(16)=\left\{0,1, \alpha, \alpha^{2}, \cdots, \alpha^{14}, \alpha^{4}=\alpha+1\right.$.
Elements of order $3=\left\{\alpha^{5}, \alpha^{10}\right\}$;
Elements of order $5=\left\{\alpha^{3}, \alpha^{6}, \alpha^{9}, \alpha^{12}\right\}$;
Elements of order $15=\left\{\alpha, \alpha^{2}, \alpha^{4}, \alpha^{7}, \alpha^{8}, \alpha^{11}, \alpha^{13}, \alpha^{14}\right\}$ (primitive).
(b) Order of elements in $\operatorname{GF}(32)$: Order of the Multiplicative group $G F^{*}(32)$ is $n=31$. Since n is prime, $(n, i)=1$ for all $i \Longrightarrow$ all elements are primitive. For all non-zero, non-unity elements of $G F\left(p^{m}\right)$ to be primitive, $p^{m}-1$ should be prime.
5. (a) Multiplication and addition in GF (p) are defined modulo p. Thus, order of an element a is the smallest number n such that $a^{n}=1 \bmod p$. Using this condition, order of every element can be determined. Moreover, order of any element should divide the order of the multiplicative group $p-1$. An element is primitive if its order is equal to $p-1$.
GF(7): Elements of order $2=\{6\}$; Elements of order $3=\{2,4\}$; Elements of order 6 (primitive) $=\{3,5\}$.
GF(11): Elements of order $2=\{10\}$; Elements of order $5=\{3,4,5,9\}$; Elements of order 10 $($ primitive $)=\{2,6,7,8\}$.
(b) All non-zero, non-unity elements of $G F(p)$ cannot be primitive for $p>3$ since $(p-1)$ would not be prime, and there would be elements with order less than $(p-1)$. In $G F(3)$ there is only one non-zero, non-unity element and it has to be primitive.
6. (a) Let $\alpha \in G F\left(2^{m}\right)$. We know that $\alpha^{2^{m}}=\alpha$. Therefore, $\left(\alpha^{2^{m-1}}\right)^{2}=\alpha$. Hence, $\alpha^{2^{m-1}}$ is a square root of α.
(b) Proof is similar to that for the previous part.
7. In $\mathrm{GF}(16)$,

$$
(x+y)^{3}=x^{3}+y^{3}+3 x^{2} y+3 x y^{2}=x^{3}+y^{3}+x y(x+y) .
$$

Using the given values for $x+y$ and $x^{3}+y^{3}$, we get that $\left(\alpha^{14}\right)^{3}=\alpha+x y\left(\alpha^{14}\right)$. Simplifying, we get $x y=\alpha^{14}$ or $y=\alpha^{14} / x$. Using in $x+y=\alpha^{14}$, we get

$$
x+\frac{\alpha^{14}}{x}=\alpha^{14}
$$

or the quadratic equation $f(x)=x^{2}+\alpha^{14} x+\alpha^{14}=0$.
By trial and error, we see that the roots of $f(x)$ in $\operatorname{GF}(16)$ are α^{6} and α^{8}. Hence, possible solutions for (x, y) are $\left(\alpha^{6}, \alpha^{8}\right)$ or $\left(\alpha^{8}, \alpha^{6}\right)$.
8. (a) Since $x+y=\alpha^{3}$,

$$
(x+y)^{2}=x^{2}+y^{2}=\left(\alpha^{3}\right)^{2}=\alpha^{6}
$$

. We see that the second equation is consistent with and fully dependent on the first equation. The set of solutions is $\left\{\left(x, x+\alpha^{3}\right): x \in \mathrm{GF}(16)\right\}$.
(b) The second equation is inconsistent with the first equation. Hence, no solution exists.
9. We are given that $x^{3}+y^{3}+z^{3}=0$ for $x, y, x \in \mathrm{GF}(64)$. Note that $x^{63}=y^{63}=z^{63}=1$.

Since $(a+b)^{2}=a^{2}+b^{2}$ for $a, b \in \operatorname{GF}(64)$, we see that $(a+b)^{32}=a^{32}+b^{32}$. Using this, we get

$$
\left(x^{3}+y^{3}+z^{3}\right)^{32}=0
$$

Simplifying the LHS above, we get that $x^{33}+y^{33}+z^{33}=0$.
10. Suppose $\beta \in \operatorname{GF}(q)$ is an element of order 5 . Then, β is a root of $x^{5}-1$, since $\beta^{5}-1=0$. Notice that $\beta^{2}, \beta^{3}, \beta^{4}$ and $\beta^{5}=1$ are all distinct and additional roots of $x^{5}-1$. Since $x^{5}-1$ can have no further roots in $\operatorname{GF}(q)$, we get

$$
x^{5}-1=(x-\beta)\left(x-\beta^{2}\right)\left(x-\beta^{3}\right)\left(x-\beta^{4}\right)\left(x-\beta^{5}\right)
$$

(a) If $\alpha \in \operatorname{GF}(16)$ is a primitive element, we see that $\operatorname{Ord}\left(\alpha^{3}\right)=5$. Hence,

$$
x^{5}+1=\left(x+\alpha^{3}\right)\left(x+\alpha^{6}\right)\left(x+\alpha^{9}\right)\left(x+\alpha^{12}\right)(x+1)
$$

in $\mathrm{GF}(16)[x]$.
In $\operatorname{GF}(2)[x]$,

$$
x^{5}+1=(x+1)\left(x^{4}+x^{3}+x^{2}+x+1\right)
$$

is a complete factorization into irreducibles.
In GF (11), we see from Problem (5a) that 3 is an element of order 5. Hence,

$$
\begin{aligned}
x^{5}-1 & =(x-3)\left(x-3^{2}\right)\left(x-3^{3}\right)\left(x-3^{4}\right)\left(x-3^{5}\right), \\
& =(x-3)(x-9)(x-5)(x-4)(x-1) .
\end{aligned}
$$

(b) $x^{5}-1$ factors into linear factors over $\operatorname{GF}(p)$ when $p-1$ is a multiple of 5 .
11. (a) i. Cyclotomic Decomposition of GF(9) (α : primitive): $S=\left\{\alpha^{0}\right\} \cup\left\{\alpha, \alpha^{3}\right\} \cup\left\{\alpha^{2}, \alpha^{6}\right\} \cup$ $\left\{\alpha^{4}\right\} \cup\left\{\alpha^{5}, \alpha^{7}\right\}$. Table 8 lists the minimal poynomials.

Element	Minimal Polynomial
0	x
1	$x+1$
α, α^{3}	$x^{2}+x+2$
α^{2}, α^{6}	$x^{2}+1$
α^{4}	$x+2$
α^{5}, α^{7}	$x^{2}-x+2$

Table 8: Minimal polynomials of GF(9).
ii. Cyclotomic Decomposition of $\mathrm{GF}(16)$ (α : primitive): $S=\left\{\alpha^{0}\right\} \cup\left\{\alpha, \alpha^{2}, \alpha^{4}, \alpha^{8}\right\} \cup$ $\left\{\alpha^{3}, \alpha^{6}, \alpha^{12}, \alpha^{9}\right\} \cup\left\{\alpha^{5}, \alpha^{2}\right\} \cup\left\{\alpha^{7}, \alpha^{14} \alpha^{13}, \alpha^{11}\right\}$. Table 9 lists the minimal poynomials.

Element	Minimal Polynomial
0	x
1	$x+1$
$\alpha, \alpha^{2}, \alpha^{4}, \alpha^{8}$	$x^{4}+x+1$
$\alpha^{3}, \alpha^{6}, \alpha^{12}, \alpha^{9}$	$x^{4}+x^{3}+x^{2}+x+1$
α^{5}, α^{10}	$x^{2}+x+1$
$\alpha^{7}, \alpha^{14}, \alpha^{13}, \alpha^{11}$	$x^{4}+x^{3}+1$

Table 9: Minimal polynomials of GF(16).
(b) Not neccessarily. As a counterexample, the minimal polynomial of $\alpha^{3} \in \operatorname{GF}(16)$ (order 5, nonprimitive element) has degree 4.

