EE512: Error Control Coding

Solution for Assignment on Finite Fields

February 16, 2007

1. (a) Addition and Multiplication tables for GF(5) and GF(7) are shown in Tables 1 and 2.

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

\times	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Table 1: Tables for GF(5)

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

×	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Table 2: Tables for GF(7)

(b) $GF(4) = \{0, 1, \alpha, \alpha^2\}, \alpha^2 = \alpha + 1, \alpha^3 = 1$. The addition and multiplication tables are shown in Table 3.

+	0	1	α	α^2	×		0	1	α	α^2
0	0	1	α	α^2	0		0	0	0	0
1	1	0	α^2	α	1		0	1	α	α^2
α	α	α^2	0	1	$\overline{\alpha}$		0	α	α^2	1
α^2	α^2	α	1	0	α^2	2	0	α^2	1	α

- 2. Construction of GF(16) using three different irreducible polynomials:
 - (a) Using $\pi_1(x) = x^4 + x + 1$: Let α be a root of $\pi_1(x) = 0$; $\alpha^4 = \alpha + 1$. Table 4 shows the construction.
 - (b) Using $\pi_2(x) = x^4 + x^3 + 1$: Let β be a root of $\pi_2(x) = 0$; $\beta^4 = \beta^3 + 1$. Table 4 shows the construction.
 - (c) Using $\pi_3(x) = x^4 + x^3 + x^2 + x + 1$: Let γ be a root of $\pi_3(x) = 0$; $\gamma^4 = \gamma^3 + \gamma^2 + \gamma + 1$. Table 5 shows the powers of γ . Note that γ is not a primitive element of GF(16), since order of γ

Power	Polynomial	Vector	Power	Polynomial	Vector
$\alpha^{-\inf}$	0	0000	$\beta^{-\inf}$	0	0000
$lpha^0$	1	0001	eta^0	1	0001
α	α	0010	eta	β	0010
α^2	α^2	0100	β^2	β^2	0100
α^3	$lpha^3$	1000	eta^3	eta^3	1000
α^4	$\alpha + 1$	0011	β^4	$\beta^3 + 1$	1001
α^5	$\alpha^2 + \alpha$	0110	eta^5	$\beta^3 + \beta + 1$	1011
α^6	$\alpha^3 + \alpha^2$	1100	eta^6	$\beta^3+\beta^2+\beta+1$	1111
α^7	$\alpha^3 + \alpha + 1$	1011	β^7	$\beta^2 + \beta + 1$	0111
α^8	$\alpha^2 + 1$	0101	β^8	$\beta^3 + \beta^2 + \beta$	1110
α^9	$\alpha^3 + \alpha$	1010	β^9	$\beta^2 + 1$	0101
α^{10}	$\alpha^2 + \alpha + 1$	0111	β^{10}	$\beta^3 + \beta$	1010
α^{11}	$\alpha^3 + \alpha^2 + \alpha$	1110	β^{11}	$\beta^{3} + \beta^{2} + 1$	1101
α^{12}	$\alpha^3 + \alpha^2 + \alpha + 1$	1111	β^{12}	$\beta + 1$	0011
α^{13}	$\alpha^3 + \alpha^2 + 1$	1101	eta^{13}	$\beta^2 + \beta$	0110
α^{14}	$\alpha^3 + 1$	1001	β^{14}	eta^3+eta^2	1100

Table 4: GF(16) using $\pi_1(x)$ and $\pi_2(x)$.

is 5. It can be noticed that the polynomial $\pi_3(x) = x^4 + x^3 + x^2 + x + 1$ can be written as $\pi_3(x) = (1+x)^4 + (1+x)^3 + 1 = \pi_2(1+x)$. Thus $(1+\gamma)$ is a root of $\pi_2(x)$, and it has to be a primitive element, since $\pi_2(x)$ is a primitive polynomial. Table 5 shows the construction of GF(16) using $(1+\gamma)$ as the primitive element.

		Power	Polynomial	Vector
		$(1+\gamma)^{-\inf}$	0	0000
		$(1+\gamma)^0$	1	0001
		$(1+\gamma)$	$1 + \gamma$	0011
Power	Polynomial	$(1+\gamma)^2$	$1 + \gamma^2$	0101
$\frac{10\text{WCl}}{2^{-\inf}}$		$(1+\gamma)^3$	$1 + \gamma + \gamma^2 + \gamma^3$	1111
· y	0	$(1+\gamma)^4$	$\gamma + \gamma^2 + \gamma^3$	1110
Ϋ́Υ	1	$(1+\gamma)^5$	$1 + \gamma^2 + \gamma^3$	1101
γ	γ	$(1+\gamma)^6$	γ^3	1000
γ ~3	γ	$(1+\gamma)^7$	$1 + \gamma + \gamma^2$	0111
γ°	γ^{\sim}	$(1 + \gamma)^{8}$	$1 + \gamma^3$	1001
γ 5	$\gamma^{2} + \gamma + \gamma + 1$	$(1+\gamma)^9$	γ^2	0100
ſγ	1	$(1 + \gamma)^{10}$	$\gamma^2 + \gamma^3$	1100
		$(1 + \gamma)^{11}$	$1 + \gamma + \gamma^3$	1011
		$(1 + \gamma)^{12}$	γ	0010
		$(1 + \gamma)^{13}$	$\gamma + \gamma^2$	0110
		$(1 + \gamma)^{14}$	$\gamma + \gamma^3$	1010

Table 5: GF(16) using $\pi_3(x)$.

- (d) Isomorphism between two fields is a one-one and onto mapping of the elements of one field to another such that all the operations of the fields are preserved. If ϕ is an isomorphism from $F_1 \to F_2$, $\phi(a_1 * a_2) = \phi(a_1)o\phi(a_2)$, where $a_1, a_2 \in F_1$, * is the operation defined in F_1 , and o is the operation defined in F_2 . Observing the elements of GF(16) constructed using $\pi_1(x), \alpha^7$ is a root of $\pi_2(x)$. Thus mapping $\alpha^7 \in GF_1 \to \beta \in GF_2$ is an isomorphism between GF_1 and GF_2 . Similarly, α^3 is a root of $\pi_3(x)$. Thus mapping $\alpha^3 \in GF_1 \to \gamma \in GF_3$ is an isomorphism between GF_1 and GF_3 .
- 3. (a) Finding all polynomials of degree 2 and degree 3 that are irreducible over GF(2) and GF(3):

- i. $x^2 + x + 1$ is the only irreducible polynomial of degree 2 over GF(2). $x^3 + x + 1$ and $x^3 + x^2 + 1$ are the irreducible polynomials of degree 3 over GF(2). To check if the irreducible polynomial of degree m over GF(p), f(x) is primitive, it is required to find the smallest number n such that f(x) divides $x^n 1$. If $n = p^m 1$, then f(x) is primitive, If $n < p^m 1$, then f(x) is not primitive. Since there is just one irreducible polynomial of degree 3 over GF(2), it has to be primitive. Both the irreducible polynomials of degree 3 over GF(2) are also primitive.
- ii. $x^2 + x + 2$, $x^2 + 2x + 2$ and $x^2 + 1$ are the irreducible polynomials of degree 2 over GF(3). It can be seen that $x^2 + 1$ divides $x^4 1$ over GF(3); thus, it is not a primitive polynomial. It can be verified that the other two irreducible polynomials of degree 2 over GF(3) are primitive. $x^3 + 2x + 1, x^3 + 2x^2 + 1, x^3 + x^2 + 2, x^3 + 2x + 2, x^3 + x^2 + x + 2$ and $x^3 + 2x^2 + 2x + 2$ are the irreducible polynomials of degree 3 over GF(3). $x^3 + 2x + 1$ and $x^3 + 2x^2 + 1$ are the primitive polynomials of degree 3 over GF(3), the rest of the irreducible polynomials are not primitive (It can be verified that they divide $x^{13} 1$).
- (b) Construction of GF(9) in two different ways:
 - i. Construction using primitive polynomial: Consider the primitive polynomial $\pi_1(x) = x^2 + x + 2$. Let α be a root of $\pi_1(x) = 0$; therefore, $\alpha^2 = 2\alpha + 1$.

Power	Polynomial	Vector(with basis $[1,\alpha]$)
0	0	00
1	1	01
α	α	10
α^2	$2\alpha + 1$	21
α^3	$2\alpha + 2$	22
α^4	2	02
α^5	2α	20
α^6	$\alpha + 2$	12
α^7	$\alpha + 1$	11

Table 6: $GF_1(9)$

ii. Construction using non-primitive polynomial: Consider the non-primitive polynomial $\pi_2(x) = x^2 + 1$. Let β be a root of $\pi_2(x) = 0$. Since $\pi_2(x)$ is not a primitive polynomial, β will not be a primitive element of GF(9). $\pi_2(x)$ can be written as, $\pi_2(x) = (x+1)^2 + (x+1) + 2$, Thus $(1+\beta)$ is a primitive element of GF(9).

Power	Polynomial	Vector(with basis $[1,\beta]$)
0	0	00
1	1	01
$(1 + \beta)$	$\beta + 1$	11
$(1+\beta)^2$	2β	20
$(1 + \beta)^3$	$2\beta + 1$	21
$(1+\beta)^4$	2	02
$(1 + \beta)^5$	$2\beta + 2$	22
$(1 + \beta)^{6}$	β	10
$(1+\beta)^7$	$\beta + 2$	12
	•	•

Table 7: $GF_2(9)$

To find the isomorphism between GF_1 and GF_2 , note that $\alpha^2 \in GF_1$ is a root of $\pi_2(x)$, thus $\alpha^2 \to \beta$ is an isomorphism.

4. (a) Let $GF(9) = \{0, 1, \alpha, \alpha^2, ..., \alpha^7\}$, where α is the root of the primitive polynomial $\pi(x) = x^2 + x + 2$. The multiplicative group $GF^*(9) = \{1, \alpha, \alpha^2, ..., \alpha^7\}$. $\operatorname{Ord}(\alpha^i) = n/(n, i)$, where n

is the order of the multiplicative group (8 in this case) and (n, i) denotes the GCD of n and i. Primitive elements are the elements with order 8.

Elements of order $2 = \{ \alpha^4 \}$; Elements of order $4 = \{ \alpha^2, \alpha^6 \}$; Elements of order $8 = \{ \alpha, \alpha^3, \alpha^5, \alpha^7 \}$ (primitive). Similarly, let $GF(16) = \{0, 1, \alpha, \alpha^2, \cdots, \alpha^{14}, \alpha^4 = \alpha + 1.$ Elements of order $3 = \{\alpha^5, \alpha^{10}\}$; Elements of order $5 = \{\alpha^3, \alpha^6, \alpha^9, \alpha^{12}\}$; Elements of order $15 = \{\alpha, \alpha^2, \alpha^4, \alpha^7, \alpha^8, \alpha^{11}, \alpha^{13}, \alpha^{14}\}$ (primitive).

- (b) Order of elements in GF(32): Order of the Multiplicative group $GF^*(32)$ is n = 31. Since n is prime, (n, i) = 1 for all $i \Longrightarrow$ all elements are primitive. For all non-zero, non-unity elements of $GF(p^m)$ to be primitive, $p^m 1$ should be prime.
- 5. (a) Multiplication and addition in GF(p) are defined modulo p. Thus, order of an element a is the smallest number n such that $a^n = 1 \mod p$. Using this condition, order of every element can be determined. Moreover, order of any element should divide the order of the multiplicative group p 1. An element is primitive if its order is equal to p 1.

GF(7): Elements of order $2 = \{ 6\}$; Elements of order $3 = \{ 2,4\}$; Elements of order 6 (primitive) = $\{ 3,5 \}$.

GF(11): Elements of order $2 = \{ 10 \}$; Elements of order $5 = \{ 3,4,5,9 \}$; Elements of order 10 (primitive) = $\{ 2,6,7,8 \}$.

- (b) All non-zero, non-unity elements of GF(p) cannot be primitive for p > 3 since (p-1) would not be prime, and there would be elements with order less than (p-1). In GF(3) there is only one non-zero, non-unity element and it has to be primitive.
- 6. (a) Let $\alpha \in GF(2^m)$. We know that $\alpha^{2^m} = \alpha$. Therefore, $(\alpha^{2^{m-1}})^2 = \alpha$. Hence, $\alpha^{2^{m-1}}$ is a square root of α .
 - (b) Proof is similar to that for the previous part.
- 7. In GF(16),

$$(x+y)^3 = x^3 + y^3 + 3x^2y + 3xy^2 = x^3 + y^3 + xy(x+y).$$

Using the given values for x + y and $x^3 + y^3$, we get that $(\alpha^{14})^3 = \alpha + xy(\alpha^{14})$. Simplifying, we get $xy = \alpha^{14}$ or $y = \alpha^{14}/x$. Using in $x + y = \alpha^{14}$, we get

$$x + \frac{\alpha^{14}}{x} = \alpha^{14},$$

or the quadratic equation $f(x) = x^2 + \alpha^{14}x + \alpha^{14} = 0.$

By trial and error, we see that the roots of f(x) in GF(16) are α^6 and α^8 . Hence, possible solutions for (x, y) are (α^6, α^8) or (α^8, α^6) .

8. (a) Since $x + y = \alpha^3$,

$$(x+y)^2 = x^2 + y^2 = (\alpha^3)^2 = \alpha^6$$

. We see that the second equation is consistent with and fully dependent on the first equation. The set of solutions is $\{(x, x + \alpha^3) : x \in GF(16)\}$.

- (b) The second equation is inconsistent with the first equation. Hence, no solution exists.
- 9. We are given that $x^3 + y^3 + z^3 = 0$ for $x, y, x \in GF(64)$. Note that $x^{63} = y^{63} = z^{63} = 1$. Since $(a + b)^2 = a^2 + b^2$ for $a, b \in GF(64)$, we see that $(a + b)^{32} = a^{32} + b^{32}$. Using this, we get

$$(x^3 + y^3 + z^3)^{32} = 0.$$

Simplifying the LHS above, we get that $x^{33} + y^{33} + z^{33} = 0$.

10. Suppose $\beta \in GF(q)$ is an element of order 5. Then, β is a root of $x^5 - 1$, since $\beta^5 - 1 = 0$. Notice that β^2 , β^3 , β^4 and $\beta^5 = 1$ are all distinct and additional roots of $x^5 - 1$. Since $x^5 - 1$ can have no further roots in GF(q), we get

$$x^{5} - 1 = (x - \beta)(x - \beta^{2})(x - \beta^{3})(x - \beta^{4})(x - \beta^{5}).$$

(a) If $\alpha \in GF(16)$ is a primitive element, we see that $Ord(\alpha^3) = 5$. Hence,

$$x^{5} + 1 = (x + \alpha^{3})(x + \alpha^{6})(x + \alpha^{9})(x + \alpha^{12})(x + 1)$$

in GF(16)[x]. In GF(2)[x],

$$x^{5} + 1 = (x + 1)(x^{4} + x^{3} + x^{2} + x + 1)$$

is a complete factorization into irreducibles.

In GF(11), we see from Problem (5a) that 3 is an element of order 5. Hence,

$$\begin{aligned} x^5 - 1 &= (x - 3)(x - 3^2)(x - 3^3)(x - 3^4)(x - 3^5), \\ &= (x - 3)(x - 9)(x - 5)(x - 4)(x - 1). \end{aligned}$$

- (b) $x^5 1$ factors into linear factors over GF(p) when p 1 is a multiple of 5.
- 11. (a) i. Cyclotomic Decomposition of GF(9) (α : primitive): $S = \{\alpha^0\} \cup \{\alpha, \alpha^3\} \cup \{\alpha^2, \alpha^6\} \cup \{\alpha^4\} \cup \{\alpha^5, \alpha^7\}$. Table 8 lists the minimal poynomials.

Element	Minimal Polynomial
0	x
1	x + 1
α, α^3	$x^2 + x + 2$
α^2, α^6	$x^2 + 1$
α^4	x+2
$lpha^5, lpha^7$	$x^2 - x + 2$

Table 8: Minimal polynomials of GF(9).

ii. Cyclotomic Decomposition of GF(16) (α : primitive): $S = \{\alpha^0\} \cup \{\alpha, \alpha^2, \alpha^4, \alpha^8\} \cup \{\alpha^3, \alpha^6, \alpha^{12}, \alpha^9\} \cup \{\alpha^5, \alpha^2\} \cup \{\alpha^7, \alpha^{14} \alpha^{13}, \alpha^{11}\}$. Table 9 lists the minimal poynomials.

Element	Minimal Polynomial
0	x
1	x + 1
$\alpha, \alpha^2, \alpha^4, \alpha^8$	$x^4 + x + 1$
$\alpha^3, \alpha^6, \alpha^{12}, \alpha^9$	$x^4 + x^3 + x^2 + x + 1$
α^5, α^{10}	$x^2 + x + 1$
$\alpha^7, \alpha^{14}, \alpha^{13}, \alpha^{11}$	$x^4 + x^3 + 1$

Table 9: Minimal polynomials of GF(16).

(b) Not neccessarily. As a counterexample, the minimal polynomial of $\alpha^3 \in GF(16)$ (order 5, nonprimitive element) has degree 4.