## Solutions to Problem Set 5

## EE419: Digital Communication Systems

Check the solutions for possible bugs!

1. No solution provided.
2. No solution provided.
3. (a) Assuming symbols are equally likely a priori, the probability of symbol error is given by

$$
P_{e}=\frac{6}{8}(2 Q(1 / \sigma))+\frac{2}{8}(Q(1 / \sigma))=\frac{7}{4} Q(1 / \sigma) .
$$

(b) One possible Gray labeling is $b_{0} b_{1} b_{2}=000,001,010,011,111,110,100,101$ from left to right. The LLR for $b_{0}$ (assuming bits are iid uniform a priori) is given by

$$
\begin{aligned}
\operatorname{LLR}\left(b_{0}\right) & =\log \frac{f\left(r \mid b_{0}=0\right)}{f\left(r \mid b_{0}=1\right)} \\
& =\log \frac{e^{-(r+7)^{2} / 2 \sigma^{2}}+e^{-(r+5)^{2} / 2 \sigma^{2}}+e^{-(r+3)^{2} / 2 \sigma^{2}}+e^{-(r+1)^{2} / 2 \sigma^{2}}}{e^{-(r-7)^{2} / 2 \sigma^{2}}+e^{-(r-5)^{2} / 2 \sigma^{2}}+e^{-(r-3)^{2} / 2 \sigma^{2}}+e^{-(r-1)^{2} / 2 \sigma^{2}}} .
\end{aligned}
$$

For $b_{1}$,

$$
\begin{aligned}
\operatorname{LLR}\left(b_{1}\right) & =\log \frac{f\left(r \mid b_{1}=0\right)}{f\left(r \mid b_{1}=1\right)} \\
& =\log \frac{e^{-(r+7)^{2} / 2 \sigma^{2}}+e^{-(r+5)^{2} / 2 \sigma^{2}}+e^{-(r-5)^{2} / 2 \sigma^{2}}+e^{-(r-7)^{2} / 2 \sigma^{2}}}{e^{-(r+3)^{2} / 2 \sigma^{2}}+e^{-(r+1)^{2} / 2 \sigma^{2}}+e^{-(r-1)^{2} / 2 \sigma^{2}}+e^{-(r-3)^{2} / 2 \sigma^{2}}} .
\end{aligned}
$$

For $b_{2}$,

$$
\begin{aligned}
\operatorname{LLR}\left(b_{2}\right) & =\log \frac{f\left(r \mid b_{2}=0\right)}{f\left(r \mid b_{2}=1\right)} \\
& =\log \frac{e^{-(r+7)^{2} / 2 \sigma^{2}}+e^{-(r+3)^{2} / 2 \sigma^{2}}+e^{-(r-3)^{2} / 2 \sigma^{2}}+e^{-(r-5)^{2} / 2 \sigma^{2}}}{e^{-(r+5)^{2} / 2 \sigma^{2}}+e^{-(r+1)^{2} / 2 \sigma^{2}}+e^{-(r-1)^{2} / 2 \sigma^{2}}+e^{-(r-7)^{2} / 2 \sigma^{2}}} .
\end{aligned}
$$

Probability of error for $b_{0}$ is given by

$$
\operatorname{Pr}\left\{\text { Error in } b_{0}\right\}=\frac{1}{4}(Q(1 / \sigma)+Q(3 / \sigma)+Q(5 / \sigma)+Q(7 / \sigma)) .
$$

Probability of error for $b_{1}$ is given by

$$
\begin{aligned}
\operatorname{Pr}\left\{\text { Error in } b_{1}\right\} & =\frac{1}{4} Q(1 / \sigma)+\frac{1}{4} Q(3 / \sigma)+\frac{1}{4}(Q(1 / \sigma)+Q(7 / \sigma))+\frac{1}{4}(Q(3 / \sigma)+Q(5 / \sigma)) \\
& =0.5(Q(1 / \sigma)+Q(3 / \sigma))+0.25(Q(5 / \sigma)+Q(7 / \sigma)) .
\end{aligned}
$$

Probability of error for $b_{2}$ is given by

$$
\begin{aligned}
& \frac{1}{8}(Q(1 / \sigma)-Q(3 / \sigma)+Q(5 / \sigma)-Q(9 / \sigma)+Q(13 / \sigma))+\frac{1}{8}(Q(1 / \sigma)+Q(1 / \sigma)-Q(3 / \sigma)+Q(7 / \sigma)-Q(11 / \sigma))+ \\
& \frac{1}{8}(Q(1 / \sigma)-Q(3 / \sigma)+Q(1 / \sigma)-Q(5 / \sigma)+Q(9 / \sigma))+\frac{1}{8}(Q(3 / \sigma)-Q(5 / \sigma)+Q(3 / \sigma)-Q(7 / \sigma))+ \\
& \frac{1}{8}(Q(1 / \sigma)-Q(5 / \sigma)+Q(3 / \sigma)-Q(5 / \sigma)+Q(7 / \sigma))+\frac{1}{8}(Q(3 / \sigma)+Q(1 / \sigma)-Q(5 / \sigma)+Q(7 / \sigma)-Q(9 / \sigma))+ \\
& \frac{1}{8}(Q(1 / \sigma)+Q(3 / \sigma)-Q(7 / \sigma)+Q(9 / \sigma)-Q(11 / \sigma))+\frac{1}{8}(Q(1 / \sigma)-Q(5 / \sigma)+Q(9 / \sigma)-Q(11 / \sigma)+Q(13 / \sigma)) \\
& =\frac{9}{8} Q(1 / \sigma)+\frac{1}{4} Q(3 / \sigma)-\frac{5}{8} Q(5 / \sigma)+\frac{1}{8} Q(7 / \sigma)+\frac{1}{8} Q(9 / \sigma)-\frac{3}{8} Q(11 / \sigma)+\frac{1}{4} Q(13 / \sigma) .
\end{aligned}
$$

(c) Binary labeling $b_{0} b_{1} b_{2}=000,001,010,011,100,101,110,111$ from left to right. The LLR for $b_{0}$ (assuming bits are iid uniform a priori) is given by

$$
\begin{aligned}
\operatorname{LLR}\left(b_{0}\right) & =\log \frac{f\left(r \mid b_{0}=0\right)}{f\left(r \mid b_{0}=1\right)} \\
& =\log \frac{e^{-(r+7)^{2} / 2 \sigma^{2}}+e^{-(r+5)^{2} / 2 \sigma^{2}}+e^{-(r+3)^{2} / 2 \sigma^{2}}+e^{-(r+1)^{2} / 2 \sigma^{2}}}{e^{-(r-7)^{2} / 2 \sigma^{2}}+e^{-(r-5)^{2} / 2 \sigma^{2}}+e^{-(r-3)^{2} / 2 \sigma^{2}}+e^{-(r-1)^{2} / 2 \sigma^{2}}}
\end{aligned}
$$

For $b_{1}$,

$$
\begin{aligned}
\operatorname{LLR}\left(b_{1}\right) & =\log \frac{f\left(r \mid b_{1}=0\right)}{f\left(r \mid b_{1}=1\right)} \\
& =\log \frac{e^{-(r+7)^{2} / 2 \sigma^{2}}+e^{-(r+5)^{2} / 2 \sigma^{2}}+e^{-(r-1)^{2} / 2 \sigma^{2}}+e^{-(r-3)^{2} / 2 \sigma^{2}}}{e^{-(r+3)^{2} / 2 \sigma^{2}}+e^{-(r+1)^{2} / 2 \sigma^{2}}+e^{-(r-5)^{2} / 2 \sigma^{2}}+e^{-(r-7)^{2} / 2 \sigma^{2}}}
\end{aligned}
$$

For $b_{2}$,

$$
\begin{aligned}
\operatorname{LLR}\left(b_{2}\right) & =\log \frac{f\left(r \mid b_{2}=0\right)}{f\left(r \mid b_{2}=1\right)} \\
& =\log \frac{e^{-(r+7)^{2} / 2 \sigma^{2}}+e^{-(r+3)^{2} / 2 \sigma^{2}}+e^{-(r-1)^{2} / 2 \sigma^{2}}+e^{-(r-5)^{2} / 2 \sigma^{2}}}{e^{-(r+5)^{2} / 2 \sigma^{2}}+e^{-(r+1)^{2} / 2 \sigma^{2}}+e^{-(r-3)^{2} / 2 \sigma^{2}}+e^{-(r-7)^{2} / 2 \sigma^{2}}}
\end{aligned}
$$

Probability of error for $b_{0}$ is given by

$$
\operatorname{Pr}\left\{\text { Error in } b_{0}\right\}=\frac{1}{4}(Q(1 / \sigma)+Q(3 / \sigma)+Q(5 / \sigma)+Q(7 / \sigma))
$$

Probability of error for $b_{1}$ is given by

$$
\begin{aligned}
\operatorname{Pr}\left\{\text { Error in } b_{1}\right\} & =\frac{1}{4}(Q(3 / \sigma)-Q(7 / \sigma)+Q(11 / \sigma))+\frac{1}{4}(Q(1 / \sigma)-Q(5 / \sigma)+Q(9 / \sigma))+ \\
& \frac{1}{4}(Q(1 / \sigma)+Q(3 / \sigma)-Q(7 / \sigma))+\frac{1}{4}(Q(3 / \sigma)+Q(1 / \sigma)-Q(5 / \sigma)) \\
& =\frac{3}{4}(Q(1 / \sigma)+Q(3 / \sigma))-\frac{1}{2}(Q(5 / \sigma)+Q(7 / \sigma))+\frac{1}{4}(Q(9 / \sigma)+Q(11 / \sigma))
\end{aligned}
$$

Probability of error for $b_{2}$ is given by

$$
\begin{aligned}
& \frac{1}{4}(Q(1 / \sigma)-Q(3 / \sigma)+Q(5 / \sigma)-Q(7 / \sigma)+Q(9 / \sigma)-Q(11 / \sigma)+Q(13 / \sigma))+ \\
& \frac{1}{4}(Q(1 / \sigma)+Q(1 / \sigma)-Q(3 / \sigma)+Q(5 / \sigma)-Q(7 / \sigma)+Q(9 / \sigma)-Q(11 / \sigma))+ \\
& \frac{1}{4}(Q(1 / \sigma)-Q(3 / \sigma)+Q(1 / \sigma)-Q(3 / \sigma)+Q(5 / \sigma)-Q(7 / \sigma)+Q(9 / \sigma))+ \\
& \frac{1}{4}(Q(1 / \sigma)-Q(3 / \sigma)+Q(5 / \sigma)-Q(7 / \sigma)+Q(1 / \sigma)-Q(3 / \sigma)+Q(5 / \sigma)-Q(7 / \sigma)) \\
& =\frac{7}{4} Q(1 / \sigma)-\frac{3}{2} Q(3 / \sigma)+\frac{5}{4} Q(5 / \sigma)-\frac{5}{4} Q(7 / \sigma)+\frac{3}{4} Q(9 / \sigma)-\frac{1}{2} Q(11 / \sigma)+\frac{1}{4} Q(13 / \sigma) .
\end{aligned}
$$

(d) Compare the $Q(1 / \sigma)$ terms in each expression.
4. Similar to the previous problem.
5. (a) When $A$ is a known constant, we have BPSK transmission. This has been discussed extensively in class.
(b) When $A \in\{ \pm 1\}$ is a discrete random variable (independent of $X$ and $N$ ) with $p=\operatorname{Pr}\{A=1\}$, the received signal constellation is 1 D with two points $\{-1,1\}$. To find the decision threshold $y$, the condtion is that

$$
\begin{aligned}
f(y \mid X=-1) & =f(y \mid X=1) \\
p e^{-(y+1)^{2} / 2 \sigma^{2}}+(1-p) e^{-(y-1)^{2} / 2 \sigma^{2}} & =p e^{-(y-1)^{2} / 2 \sigma^{2}}+(1-p) e^{-(y+1)^{2} / 2 \sigma^{2}} \\
(1-2 p) e^{-(y-1)^{2} / 2 \sigma^{2}} & =(1-2 p) e^{-(y+1)^{2} / 2 \sigma^{2}} \\
y & =0 .
\end{aligned}
$$

(c) When $A$ is Rayleigh, the received signal constellation is the entire $x$-axis. In this case, the decision threshold will work out to be 0 as well.
6. (a) The BPSK case has been done in class in detail.
(b) The LLR in this case will work out to

$$
\log \frac{p e^{-(y+1)^{2} / 2 \sigma^{2}}+(1-p) e^{-(y-1)^{2} / 2 \sigma^{2}}}{p e^{-(y-1)^{2} / 2 \sigma^{2}}+(1-p) e^{-(y+1)^{2} / 2 \sigma^{2}}}=\log \frac{p+(1-p) e^{2 y / \sigma^{2}}}{1-p+p e^{2 y / \sigma^{2}}}
$$

(c) No solution provided yet.
7. Here is a simple method. Since $Y=A X+N$ and $X \in\{ \pm 1\}, Y^{2}=A^{2}+2 A X N+N^{2}$. Taking expected values, $E\left[Y^{2}\right]=A^{2}+\sigma^{2}$. Hence, a simple estimate for $A$ is $\sqrt{E\left[Y^{2}\right]-\sigma^{2}}$ assuming $A$ is positive. A MSE estimate can be found by using ideas from constrained complexity (1-tap) equalization.

